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Abstract

The FENE-P model of a fluid is particularly suitable for describing the rheology of dilute polymer

solutions (Newtonian solvents containing small amounts of dissolved polymer) as a result of its ability to

capture nonlinear effects arising from the finite extensibility of the polymer chains. In extensional flows,

these polymer solutions exhibit dramatically different behaviour from the corresponding Newtonian

solvents alone, notably through the creation of persistent filaments when stretched. By using the

technique of capillary thinning to study the dynamics of the thinning process of these filaments, the

transient extensional rheology of the fluid can be characterized. We show that under conditions of

uniaxial elongational flow, a composite analytic solution can be developed to predict the time evolution

of the radius of the filament. Furthermore we derive an analytic expression for the finite time to breakup

of the fluid filaments. This breakup time agrees very well with results obtained from full numerical

simulations, and both numerics and theory predict an increase in the time to breakup as the finite

extensibility parameter b, related to the molecular weight of the polymer, is increased. As b → ∞,

the results converge to an asymptotic result for the breakup time which shows that the breakup time

grows as tbreak ∼ ln(MW ), where MW is the molecular weight of the dilute polymer solution.
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1 Introduction

The addition of a small amount of polymer to a Newtonian solvent can yield rather dramatic differences

in the behaviour of the fluid under extension due to the increased resistance to flow [1, 2]. This can

readily be seen through the ability of these solutions to form persistent filaments and delay capillary

breakup when stretched. This polymer-induced phenomenon has many industrial applications, including

inkjet printing where minimization of satellite droplet formation is essential for printing quality [3, 4].

Additionally, in as early as 1908, Fano studied this phenomenon in the context of biopolymer solutions

such as egg white, bile, and plant extracts [5]. This elasticity is vital for many of the functions that these

biological fluids serve, and changes in rheological properties are sometimes used as diagnostic tools to

monitor the state of the fluid in question. For instance, Kopito and Kosasky [6] performed fertility studies

to assess hormone levels during the menstrual cycle by measuring the rheological properties of cervical

mucus. Further, Basilevsky and coworkers have explored the degradation of sputum upon exposure to

certain bacteria as measured through changes in its elastic properties [7]. As a final example, Zussman

and coworkers have noted that differences in saliva viscoelasticity between teenagers and the elderly may

explain why the most common dental health issues plaguing these two age groups differ [8]. Clearly, the

ability to quantify the elastic properties of such fluids is essential for these types of studies.

Following the original analysis by Entov and coworkers [9, 10, 11], capillary thinning rheometry has be-

come a standard technique for rapidly measuring the extensional properties of a wide range of viscoelastic

fluids, including polymer solutions. The Capillary Breakup Extensional Rheometer (CaBER) is a com-

mercially available instrument that is frequently used to perform these types of measurements. During

a capillary thinning experiment, a small sample of fluid is stretched between two plates to form a liquid

bridge, and a laser micrometer tracks the midpoint radius of the filament as it thins under the action of

capillary forces. In general for dilute polymer solutions, once fluid inertia can be neglected, the filament

thinning process is initially governed by a viscocapillary force balance in which viscous extensional stresses

from the solvent oppose the increasing capillary pressure, and is followed by a later elastocapillary stage

in which stresses generated by the stretching of the polymer chains dominate [12]. From measurements

of the time evolution of the filament radius, the breakup time of the filament and relaxation time of the

fluid can be obtained, both of which provide quantitative measures of the fluid’s viscoelastic properties.
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Entov and Hinch [11] provide a full numerical solution for the evolution in the radius of a filament of a

Finitely Extensible Nonlinear Elastic (FENE) fluid undergoing uniaxial elongational flow during elasto-

capillary thinning. The FENE model for a polymer solution assumes a Newtonian solvent containing a

dilute suspension of polymer chains that are modelled as finitely extensible (with maximum extensibility

b) and non-linearly elastic. To date, CaBER analysis has typically consisted of experimental measure-

ment and comparison with numerical simulations of filament thinning using the FENE model. Select

examples include Liang and Mackley [13], who studied the concentration-dependent relaxation times of

polyisobutylene (PIB) solutions, as well as Anna [14, 15] and Clasen and coworkers [16], who studied the

dynamics of elastocapillary thinning in various concentrations and molecular weights of polystyrene-based

Boger fluids and compared their results with numerical simulations of the FENE model to determine the

effective elongational relaxation time.

As a result of the continued interest in capillary thinning rheometry, it would be useful to have an analytic

solution that gives the finite time to breakup and describes the evolution in the mid-filament radius R(t)

as one varies the concentration, molecular weight, or solvent viscosity of a polymer solution. Recently,

Torres and coworkers [17] developed an exact implicit analytic solution for the finite time to breakup and

time evolution of the radius for a Giesekus fluid undergoing capillary-driven thinning. They studied semi-

dilute and concentrated guar gum solutions, and because of the very viscous nature of these entangled

systems, their analytic model for the forces acting on the filament was able to neglect the contributions

of solvent viscosity with negligible consequence. Many biological fluids, however, are dilute polymer so-

lutions, and in this concentration regime, the solvent viscosity is known to play an important role in the

overall extensional stress response, particularly at early times [12]. Motivated by these developments,

we analyse the elastocapillary thinning of a filament of a Finitely Extensible Nonlinear Elastic (FENE)

fluid, paying special attention to the different phases of the process including the initial solvent response,

the intermediate elastic regime when the chains are partially stretched, and the ultimate approach to

maximum extensibility as the polymer chains become fully stretched.

We begin by revisiting the derivation of the FENE-P constitutive equation (where the -P indicates the

Peterlin approximation) in several different forms, from which we derive an analytic expression for the

time evolution of the mid-filament radius R(t). Using this result, we can then determine the finite time to

breakup when the polymer stress contribution is considered in isolation of the viscous solvent response.

3



We subsequently consider the special limit of infinite extensibility, and show via comparison with the

corresponding result from Entov and Hinch [11] how the solvent viscosity must be explicitly accounted

for. We ultimately present a composite analytic solution, which incorporates both an initial viscous-

dominated phase and a later polymer-dominated phase. We explore the level of extensional strain at

which the transition from a viscocapillary to elastocapillary balance occurs. For real fluids, the viscous

phase can be followed by either an intermediate elastic phase or by transition directly to the fully stretched

FENE phase depending on the magnitude of the finite chain extensibility b. We conclude by comparing

the finite breakup times predicted from the numerical and composite analytic results as the molecular

extensibility of the chains varies, and show how these predictions compare with those from Entov and

Hinch [11] when the extensibility parameter b becomes very large.

2 Definitions and derivations

In what follows, we consider a cylindrical filament of initial radius R0, consisting of a dilute polymer solu-

tion with solvent viscosity ηs, surface tension σ, at temperature T , containing polymer chains of number

density n and molecular weight MW . The polymer chains are modelled as finitely extensible dumbbells

with spring constant H, and fully stretched chain length Q0. The finite extensibility parameter, related

to the ratio between the fully stretched length and equilibrium coil size, is defined as b =
3Q2

0
〈Q2〉eq =

HQ2
0

kT ,

where k is the Boltzmann constant and 〈Q2〉eq is the equilibrium mean square size of the chain. The

characteristic relaxation time of the dumbbell is defined as λH = ζ
4H , where ζ is the Langevin friction

coefficient of the beads [18].

In real solutions, the finite extensibility parameter and the relaxation time are related to the molecular

weight and the solvent quality through scalings of the form b ∼M1−ν
W , and λH ∼M3ν

W respectively, where

ν, the excluded volume coefficient characterizing the quality of the solvent, is in the range 0.5 ≤ ν ≤ 0.6

[16]. However, for what follows in this work, in keeping with the approach of Entov and Hinch [11],

we treat the relaxation time λH and the finite extensibility parameter b as independent variables. Later

work will focus on reconciling these parameters with changes in actual molecular structure of the polymer

chains, e.g. due to oxidative or mechanical degradation.
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2.1 Derivation of the Bird form of the FENE-P constitutive equation

We begin with the constitutive relation for the polymer stress tensor in a dilute suspension of FENE-P

dumbbells as derived in [19]:

Zτ p + λHτ p(1) − λH [τ p − nkTδ]
D lnZ

Dt
= −nKTλH γ̇, (1)

where τ p is the polymer stress tensor, Z is the FENE term defined as

Z = 1 +
3

b

(
1− tr(τ p)

3nkT

)
, (2)

γ̇ is the symmetric rate of strain tensor and δ is the unit tensor. This is the form considered by Bird et

al [20] which we later use to derive our analytic result.

The dynamics of the problem as well as the governing force balance are specified by assuming a time-

varying and axisymmetric uniaxial elongational flow (vr = −1
2 ε̇(t)r, vz = ε̇(t)z) in a cylindrical filament

of radius R(t), from which it follows that the time-varying strain rate is given by

ε̇(t) = − 2

R

dR

dt
. (3)

Combining the force balances in the radial and axial directions, we can eliminate the unknown pressure

inside the thinning filament and obtain the following force balance in which the capillary stress is balanced

by a combination of the viscous extensional stress difference and the polymer stress difference:

σ

R
= 3ηsε̇− (τzz − τrr). (4)

Eqs. (1)-(4) yield a closed set of equations which can be solved simultaneously in order to obtain the

time evolution of the various experimentally observable variables of the problem such as the mid-filament

radius R(t).

2.2 Derivation of the Entov and Hinch form of the FENE-P constitutive equation

Additional physical insight can be gained if we express these equations in terms of the microstructural

deformation tensor A, as is done by Entov and Hinch [11], instead of the polymer stress tensor τ p, . The

dimensionless tensor A is related to the ensemble average of the second moment tensor, 〈QQ〉 through
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A = 〈QQ〉
Q2
eq
3

, where Q is the connector vector (of magnitude Q) between the two ends of the dumbbell,

and 〈.〉 indicates an ensemble average over all dumbbells. As previously stated, the equilibrium coil size

is related to the fully stretched coil length through Q2
eq =

3Q2
0

b+3 [16]. The polymer stress is related to the

microstructural deformation through the expression τ p = −nkT (ZA− δ), where using this notation, the

FENE term Z can be expressed as

Z = f(tr(A)) =
1

1− tr(A)
b

.

Note that since b is generally quite large, we will make the approximation for all that follows that

(b+ 3) ≈ b. Finally, in order to simplify the calculations to follow, we introduce the parameters B = 3
b ,

and G = nkT .

By re-expressing the constitutive relation derived in the previous section using this notation, we obtain

two ordinary differential equations for the radial and axial microstructural deformations

˙Azz = 2ε̇Azz −
1

λH
(ZAzz − 1) (5)

Ȧrr = −ε̇Arr −
1

λH
(ZArr − 1). (6)

In order to form a closed set of equations, we once again combine these evolution equations for the

dumbbell stretch with the kinematic expression for the strain rate ε̇ given in Eq.(3) and the force balance

from Eq.(4) expressed in terms of the microstructural deformation tensor:

σ

R
= 3ηsε̇+ nkTZ(Azz −Arr). (7)

In the numerical sections of the work to follow, the coupled system of equations (Eqs. (5)-(7) in combina-

tion with Eq. (3)) is solved using the Matlab integration routine ode15s with real and absolute tolerances

of 10−4 in order to obtain convergent numerical integrations of the complete equation set. The solution

of the full system of equations is treated as a reference or ‘exact’ solution. However, we show in the

following section that with a couple of additional simplifications, an analytic solution for the capillary

thinning of a solution of FENE dumbbells can also be obtained.
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3 Analytic solution

Numerical simulations suggest that after an initial phase in which the solvent viscosity is important (and

which we consider in detail later in Section 5), the capillary pressure becomes nearly entirely balanced

by the axial contribution to the polymer stress in the thinning and elongating filament. In this regime,

it is justified to make two additional assumptions in order to simplify the problem further: firstly, that

the radial and tangential contributions to the stress tensor are negligible; and secondly that the viscous

extensional stress difference is negligible.

From Eq. (4), the approximate force balance becomes

τzz ≈ −
σ

R
. (8)

Substituting this result, as well as that for the strain rate ε̇(t) given in Eq. (3) into the constitutive

equation given in Eq. (1) yields an ordinary differential equation for the midpoint radius R in terms of

time t only.

dR

dt

(
−3σ

R
+
( σ
R

+G
) Bσ

3GR(B + 1) +Bσ
+

4G

σ

)
= − 1

λH

(
1 +B

(
1 +

σ

3GR

))
(9)

At this point, it is useful to define some non-dimensional numbers in order to further simplify the equa-

tions to follow. We introduce a non-dimensional radius, ξ = R
R0

, a non-dimensional time, τ = t
λH

, and

an elastocapillary number, Ec = GR0
σ , which is the ratio between the elastic modulus G = nkT of the

dilute suspension of dumbbells and the initial capillary pressure σ
R0

. Following [11], we also introduce a

final non-dimensional parameter to scale the relative magnitude of the solvent viscosity, S = ηs
GλH

= ηs
ηp

,

which we discuss in detail further below. Typical ranges of these parameters for biological fluids are

ηs ∼ 1− 100 mPa s, λH ∼ 1− 1000 ms, Ec ∼ 0.001− 1 [21], and S ≥ 1.

Eq. (9) can be solved analytically, and using the initial condition that at non-dimensional time τ = 0 the

non-dimensional radius is ξ = 1, we obtain an implicit solution for the evolution of the radius with time,

given by

7



(
1

1 + Ec(b+ 3)
− 1

1 + ξEc(b+ 3)

)
+ 3 ln

(
1 + ξEc(b+ 3)

1 + Ec(b+ 3)

)
+ 4Ec

(b+ 3)

(b+ 2)
(ξ − 1) = −(b+ 3)2

b(b+ 2)
τ. (10)

In Figure 1, we plot the evolution of the nondimensional radius against the nondimensional time for

various values of the finite extensibility parameter, b. In keeping with the choice of Entov and Hinch, the

elastocapillary number is taken to be Ec = 0.001 [11]. The effect of increasing b is clearly to slow down the

thinning of the filament and delay the time to breakup. When b is small, the polymer chains reach their

fully stretched length relatively early in the thinning process. At this point, the viscosity of the FENE

fluid essentially becomes constant at a high value corresponding to the steady state extensional viscosity,

and the radius decays linearly in time. However, when b becomes sufficiently large, the chains continue to

be able to stretch elastically and resist the increasing capillary pressure for progressively longer filament

thinning times before reaching their finite extensibility limit. In the limit of b → ∞, finite extensibility

effects are never felt, and the Oldroyd-B solution corresponding to an exponential decrease in the radius

is recovered. This limit will be explored in detail in the next section.
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Figure 1: Evolution of the non-dimensional radius ξ versus non-dimensional time τ for various values of
the finite extensibility parameter b with an elastocapillary number Ec = 0.001 and S = 0.

Perhaps the most useful outcome of this solution is the ability to obtain an exact analytic result for the

finite time to breakup of the filament, tbreak. By substituting ξ = 0 into Eq. (10), we obtain the following

expression

tbreak
λH

= τbreak =
b(b+ 2)

(b+ 3)2

(
Ec(b+ 3)

1 + Ec(b+ 3)
+ 3 ln(1 + Ec(b+ 3)) + 4Ec

(b+ 3)

(b+ 2)

)
. (11)

This result allows us to quantify an important experimentally observable property for a thinning thread of

a complex fluid, the finite time to breakup, using only two non-dimensional microstructural parameters;

the molecular extensibility b of the chain and the elastocapillary number Ec. As b → ∞, the breakup

time diverges because the chains can stretch indefinitely. This limit of infinite extensibility is considered

in the next section.

4 Limit of infinite extensibility (b→∞)

In the limit of infinite extensibility of the chains, b → ∞ (or B = 0), Eq. (10) for the evolution of the

non-dimensional radius ξ reduces to
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3 ln(ξ) + 4Ec(ξ − 1) = −τ. (12)

At early times, when the mid-filament radius is still close to R0, ξ can be written as ξ = 1 − δ, where

δ << 1. Substituting this expression into Eq. (12) and expanding the logarithmic term, we see that the

radius initially evolves linearly in time as

ξ ≈ 1− τ

3 + 4Ec
. (13)

At later times, as ξ → 0, the logarithmic term dominates and Eq. (12) predicts that the radius decays

exponentially as

ξ = e
4Ec/3e−

τ/3 . (14)
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Analytic Result

Figure 2: Effect of the elastocapillary number Ec on the evolution of the non-dimensional radius ξ as a
function of the non-dimensional time τ , for the infinite extensibility limit of b → ∞. The linear limit
given in Eq. (13) is shown by the dotted line, and the later exponential limit in Eq. (14) is shown by the
dashed line.

10



Entov and Hinch also present an analytic result for the radius evolution derived from Eqs. (5)-(7) during

what they term the “middle elastic time”; the period following the viscous dominated regime, when vis-

cous contributions to the extensional stress can be ignored and finite extensibility effects are negligible.

It is evident from Figure 1 that when b is small, this period is not necessarily encountered, as finite

extensibility effects become important essentially as soon as polymer stresses become significant enough

to play a role in the force balance. This is an important consideration when attempting to extract vis-

coelastic properties from CaBER experiments for dilute polymer solutions, as the relaxation time can

only be obtained from radius evolution data if the exponential decay regime characteristic of elasto-

capillary thinning is encountered [22, 23, 24]. A criterion for achieving this exponential elastocapillary

balance based on a minimum polymer concentration and molecular weight (or extensibility) argument

has been discussed by Campo-Deaño and Clasen [22]. Recently, however, Sachsenheimer et al have shown

that good measurements of the extensional relaxation time can still be obtained from filament sagging

measurements and force calculations using a tilted CABER, even if this exponential thinning regime is

not established [23]. We examine the detailed dynamics of this transition to polymer stress dominated

thinning later in this work.

The appropriate analogous period to Entov and Hinch’s [11] “middle elastic time” in the present analytic

solution corresponds to late times when b→∞, for which the solution to the capillary thinning equation

is given in Eq. (14). Following the arguments of Entov and Hinch [11], analysis of Eq. (2) indicates that

when finite extensibility effects are negligible, we can take Z ≈ 1. Substituting this approximation and

Eq. (3) along with the assumption that Azz − 1 ≈ Azz into Eq. (5), we obtain the following evolution

equation

dAzz
dt

= −Azz
(

4

R

dR

dt
+

1

λH

)
, (15)

which, using the initial condition (R = R0 and t = t0), as previously done, yields

Azz =

(
1

ξ

)4

e−τ . (16)

Under these conditions and the assumption that the radial and tangential contributions to the polymer

stress are again negligible, the force balance in Eq. (7) reduces to an elastocapillary balance of the form
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σ

R
= GAzz. (17)

Finally, combining Eqs. (16) and (17) yields Entov and Hinch’s expression [11] for the non-dimensional

radius evolution during the middle elastic time:

ξ(EH) = E
1/3
c e−

τ/3 =

(
nkTR0

σ

)1/3

exp
(
−t/3λH

)
. (18)

This result is clearly inconsistent with what was obtained analytically in Eq. (14). For a typical value

of the elastocapillary number Ec = 0.001 at time τ = 0, Eq. (18) predicts that ξ = E
1/3
c = 0.1, while

Eq. (14) predicts that ξ = e
4Ec/3 ≈ 1. It is clear then that the assumption made in deriving our analytic

solution in Eq. (10) that the solvent viscosity could be neglected entirely is not true in this parameter

range. Indeed, for dilute polymer solutions, there is an initial period of filament thinning during which

the viscous extensional stress dominates over the polymer stress contribution. Results derived from the

full numerical solution accurately capture this initial period (see for example Clasen at al [16]), which

explains why, unlike the analytic result, simulations show that when the middle elastic time begins, the

corresponding value of the radius is R < R0.

This analysis motivates the need for a composite analytic result, in which the analytic solution derived

above for the radius evolution during the polymer stress-dominated capillary thinning regime is combined

with an appropriate short time solution in the early viscous regime. Determining how to construct this

composite analytic result and comparing it with direct numerical solution of Eqs. (5)-(7) will be the focus

of the remainder of this manuscript.

5 Composite analytic result

In order to formulate the composite analytic solution, two remaining items are needed: first, we must

solve for the temporal evolution of the radius during the initial viscous regime, and second, we must

determine the point at which the transition to the polymer stress dominated regime occurs.

At this time, we more formally introduce the final non-dimensional parameter, S = ηs
ηp

= ηs
GλH

, which

gives the ratio between the solvent and polymer contributions to the viscosity, where the latter is given
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by ηp = GλH . We can also express this ratio in terms of polymer concentration by writing the zero-shear

viscosity in expanded form as η0 = ηs(1 + c[η] + ...) = ηs + ηp, where c is the concentration of polymer

chains and [η] is the intrinsic viscosity. It follows that S = 1
c[η] . Since the coil overlap concentration c∗

scales as c∗ ∼ 1
[η] , then S ≈ c∗

c [16]. From this result, it is clear that in order for the polymer solution to be

dilute, which is the case for many biological fluids, we require that S ≥ 1, and for the remaining figures,

we generally use S = 1 to be consistent with Entov and Hinch [11]. The solution given in Eqs.(10),(11)

is relevant only in the limit S << 1.

5.1 Early viscous regime

Addressing the first item noted above, if S ≥ 1, then early in the thinning process (before the polymer

chains have been sufficiently stretched to begin contributing to resisting the capillary pressure that drives

the thinning filament) the force balance in Eq. (4) simplifies to

σ

R
= 3ηsε̇. (19)

Before continuing on to the solution of this equation during the early viscous regime, however, a more

in-depth consideration of the viscocapillary balance in Eq.(19) is merited.

Up until this point, all derivations have assumed a perfectly cylindrical filament at all times during the

thinning process. Although this is a reasonably good approximation late in the thinning process when

polymer stresses are dominant (which is the case that the analytic solution considers), there is ample

evidence that early on during the initial viscous thinning phase, the curvature of the filament is quite

important [25, 26] (though this will not affect the agreement between the analytic model and numerical

simulations since both assume a cylindrical filament). We therefore introduce the notation of Tripathi

and McKinley [25], derived for viscous Newtonian fluids, to account for the axial filament curvature and

enable quantitative agreement between the composite analytic solution and experimental data.

By assuming a perfectly cylindrical thread of Newtonian fluid attached to infinite reservoirs at either end,

the solution assumes that the net longitudinal stress in the solvent is 0 for all times. In this limit, the

axial tension in the filament arising from surface tension is

Fz(t) = 2πσRmid(t).
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Tripathi and McKinley show that in fact the axial curvature and the resulting viscous longitudinal stress

in the filament is non-zero, and good agreement can be achieved with experimental data by incorporating

a correction factor X(t) such that Fz(t) = X(t) × 2πσRmid(t). Numerical solution of the similarity

solution presented by Papageorgiou for slender viscous threads shows that the value of X(t) converges

to a constant given by X(t) ≈ 0.7127 [27]. As such, the modified force balance during the initial viscous

thinning period is found to be

(2X − 1)
σ

R
= 3ηsε̇, (20)

where it is simple to see that X = 1 recovers the initial cylindrical filament solution [25].

Substituting the expression given in Eq. (3) for ε̇ into Eq. (20) and integrating using the initial condition

R = R0 at t = 0, we find the well known result that during the initial viscous regime, the filament radius

decays in a linear fashion given by

ξ = 1− (2X − 1)τ

6SEc
. (21)

From this relationship, we can derive the viscous breakup time tc at which a Newtonian filament (in

which the only term opposing the capillary pressure is the viscous extensional stress difference) would

break. To find tc, we set ξ = 0 in Eq. (21), and obtain

tc =
6SEcλH
(2X − 1)

=
6ηsR0

σ(2X − 1)
. (22)

From Eq. (3), it follows that the strain rate during the viscous regime is given by

ε̇ =
2

λH(τc − τ)
, (23)

where τc = tc/λH = 6SEc
(2X−1) .

Since elastic stretching of the chains starts from equilibrium conditions, during this period finite extensi-

bility effects are negligible, and so again we take Z = 1. From Eq. (5) and the relationship for ε̇ during

the linear viscocapillary period (Eq. (23)), we find that the early axial microstructural deformation is

given by
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Azz =

(
τc

τc − τ

)4

e−τ . (24)

Figure 3 shows the evolution of the axial microstructural deformation Azz at very early times for various

values of the finite extensibility parameter b. The solution obtained for Azz during the initial linear

viscous period is shown by the dashed blue line. It can be seen that this expression diverges at the

viscous breakup time, τc, as derived in Eq. (22) and shown in Figure 3 by the broken (black) line.

However, for short times τ < τc, Eq.(24) provides a very good analytic expression for the evolution in

Azz(t) for all values of b (large or small).
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Figure 3: Effect of varying the finite extensibility parameter b on the level of axial microstructural
deformation Azz near the transition point at which the viscous regime ends. The solid black lines
correspond to the numerical simulations, and the dashed blue line denotes the evolution of Azz during
the viscous regime as given in Eq. (24). The solid dots denote the transition points (τ∗, A∗zz) that need to
be determined for the composite analytic solution. The breakup time for a Newtonian fluid, τc, and the
transition time τ∗∞ in the limit of infinite extensibility, are shown with dot-dashed lines. As b is reduced,
the level of axial microstructural deformation departs from the viscocapillary solution increasingly early
as a result of the limited extensibility of the constituent dumbbells and plateaus at A∗zz = b

(
1− 1

2Wi∗

)
≈ b

as given in Eq. (27). As b becomes very large, τ∗ approaches the infinite extensibility transition time τ∗∞,
and the plateau value of Azz approaches that predicted during the “middle elastic time”, A∗zz,∞, given in
Eq. (16) and shown by the dashed black line.

5.2 Transition to the polymer stress dominated regime

Now to address the second remaining issue, we note from Figure 3 that at some time t∗ and radius R∗

and corresponding value of the polymer stretch A∗zz (where the star superscript denotes the transition

point value of each variable) the extensional stress resulting from the stretching of the polymer chains

becomes comparable in magnitude to the viscous contribution from the solvent. We determine this

transition time by considering the point at which both the viscocapillary and elastocapillary balances
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hold simultaneously. The former arises from the early linear viscocapillary regime and is given by

σ

R∗
=

3ηsε̇v
∗

(2X − 1)
(25)

where ε̇v
∗ is the strain rate at time t∗, as determined from Eq. (23), ε̇∗v = 2

λH(τc−τ∗) . Simultaneously,

a new force balance (as given in Eq.(7) with only the axial stress term retained) develops between the

capillary pressure and the combined resistance of the viscous and the polymer contributions to the tensile

stress. In order to be able to satisfy this new relationship for the same value of the capillary stress, the

strain rate must instantly drop to some new lower value, ε̇∗ < ε̇v
∗, and equating this force balance with

the viscous one from Eq.(25) yields the relationship

3ηsε̇v
∗

(2X − 1)
=

σ

R∗
= 3ηsε̇

∗ + nkTZ∗A∗zz. (26)

It remains to determine the transition point values of the axial microstructural deformation A∗zz, axial

polymer stress τ∗zz = −nkTZ∗A∗zz, and finite extensibility parameter Z∗. At the transition point (t∗, R∗),

the numerical simulations shown in Figure 3 as the solid black lines indicate that the axial microstructural

deformation reaches an approximate plateau value. The maximum deformation the polymer chains can

reach is limited by the finite extensibility parameter, b. When b is small, the chains are nearly fully

extended once this plateau occurs and A∗zz ≈ b. Clearly, FENE effects are non-negligible in this regime,

and so the force balance derived during the “middle elastic time” is not valid. As b increases, the chains

continue to extend after the linear viscous regime ends, but it is evident from Figure 3 that the time

rate of change of Azz is comparatively very small (in dimesionless terms because of the large elastic

stress difference that arises for finitely extensible chains). Therefore, at the transition point, we make the

approximation that ˙Azz ≈ 0, which from Eq. (5) yields that Z∗ ≈ 2Wi∗, where Wi∗ is the Weissenberg

number at this transition, defined as Wi∗ = λH ε̇
∗. From the definition of Z (Eq. (2)) we obtain

A∗zz = b

(
1− 1

2Wi∗

)
. (27)

By substituting the expression for A∗zz given in Eq.(27) and the expression for ε̇v
∗ derived above into

Eq.(26) we obtain the final result for the crossover force balance

3ηs
2

λH(τc − τ∗)(2X − 1)
' σ

R∗
' 3ηsε̇

∗ + 2GλHbε̇
∗
(

1− 1

2Wi∗

)
. (28)
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Both the solvent contribution and the FENE contribution from the extended polymer chains are therefore

viscous in character (i.e. they scale linearly with ε̇∗). For all that follows, we take X = 1 for simplicity,

and drop the factor of (2X − 1) from the initial viscous solution, although retention of this factor or

substitution of X = 0.7127 from the Papageorgiou similarity solution would neither be difficult nor

would it alter the nature of the analysis to follow. Solving Eq.(28) yields a first relationship between the

rate of strain at the crossover ε̇∗ and the crossover time τ∗

ε̇∗ =

2
λH(τc−τ∗) + Gb

3ηs

1 + 2GbλH
3ηs

. (29)

The second relationship is found from the fact that at the transition point, the axial microstructural

deformation is constant in both regimes on either side of the ‘pinch’. In other words, because ˙Azz ≈ 0

we have at t∗ that

(
τc

τc − τ∗

)4

e−τ
∗

= A∗zz = b

(
1− 1

2Wi∗

)
. (30)

This yields a second equation for ε̇∗ in terms of τ∗,

ε̇∗ =
1

2λH

[
1− e−τ

∗

b

(
τc

τc − τ∗

)4
]−1

. (31)

Finally, we solve for the crossover or transition time τ∗ by equating Eqs. (29) and (31) to obtain, in

non-dimensional form, the following implicit expression for τ∗:

1

2

(
1− e−τ

∗

b

(
τc

τc − τ∗

)4
)−1

= Wi∗ =
2

τc−τ∗ + b
3S

1 + 2b
3S

. (32)

From this expression, τ∗ can be solved for numerically, and the result is then used to compute the

modified strain rate ε̇∗ and the plateau value of the various other parameters such as Z∗ and Wi∗. The

dimensionless radius at the transition point, ξ∗, is found from substituting this result for τ∗ into Eq. (21).

It is important to note that when b approaches the limit of infinite extensibility (b→∞), FENE effects

and the viscous contribution to the total extensional stress are indeed negligible during this elastocapillary

period, and at the end of the viscous regime the solution does transition to the “middle elastic time”

defined by Entov and Hinch [11] and in Section 2.2. In Eq. (18), we derived an explicit result for the

rate of radius evolution in this regime. We can therefore combine this result with the linear evolution of
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the filament radius (Eq. (21) here with X = 1) expected in the initial viscocapillary regime in order to

determine the transition time τ∗∞ = t∗∞/λH in the limit of infinite extensibility

1− τ∗∞
6SEc

= E
1/3
c e−

τ∗∞/3 . (33)

The value of the filament radius at the transition point (denoted R∗∞), follows from either equation ((18)

or (21)). Since the “middle elastic time” is simply a special case of the early FENE period with Z = 1

and ε̇∗ sufficiently small that the viscous extensional stress is negligible, as b → ∞ the two transition

points converge with

lim
b→∞

(t∗, R∗)→ (t∗∞, R
∗
∞). (34)

The plateau value for the microstructural deformation in the limit of b → ∞ can also be derived by

combining Eqs. (16) and (18), which are both valid during the “middle elastic time”, to obtain

A∗zz,∞ → E−
4/3

c e
τ∗∞/3 . (35)

Although in general we must solve for this crossover time τ∗ given in Eq.(32) numerically, in certain limits

an analytic expression can be obtained. If we consider S to be of order unity, then the non-dimensional

transition time τ∗ is very small (typically on the order of 10−3) and the exponential term in Eq. (32)

can be approximated as unity. In the limit of large finite extensibility parameter b, a Taylor expansion

of Eq.(32) then gives

τ∗ ≈ τc(1− E
1/3
c ) (36)

It is simple to see that this analytic result for the case of b → ∞ is in agreement with the solution

obtained for the “middle elastic time” (Eq. (33)) for the limit of τ∗∞ = t∗∞/3λH → 0.

Finally, we summarize the steps required in order to construct the composite analytic solution, and then

plot and compare this result with the numerical solution. We first obtain the transition time for crossover

from a viscocapillary to elastocapillary balance τ∗ by solving Eq. (32) numerically, where for τ < τ∗, the

radius evolution is given by the linear viscous result from Eq. (21). For times τ > τ∗, the mid-filament

radius evolution ξ(τ) is given by the analytic result in Eq. (10), although the initial radius is no longer
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R0 since there has already been capillary thinning during the initial linear viscocapillary regime. We

account for this by defining a new effective elastocapillary number E∗c , which reflects the fact that the

elastocapillary thinning period actually begins with a smaller effective initial mid-filament radius, R∗0

than the initial plate radius. We obtain this new radius by numerically solving Eq. (10) for the value

of R∗0. We can then calculate the effective elastocapillary number through the rescaling E∗c = Ec
R∗0
R0

.

Finally, with this effective elastocapillary number, we can obtain an exact analytic expression for the

finite time to breakup of the filament (which has taken account of the initial importance of the viscosity

of the solvent at early times using Eq. (11)).

In Figure 4, we plot the evolution of the non-dimensional radius ξ as a function of the non-dimensional

time τ for the numerical, analytic, and composite analytic solutions with Ec = 0.01 and a reasonably large

value of the finite extensibility parameter, b = 3× 104, for three different values of the non-dimensional

solvent viscosity, S. The analytic elastocapillary solution from Eq. (10), shown by the dashed-dotted

black line, clearly overpredicts the full numerical result on account of its neglect of the initial period of

rapid viscocapillary thinning. The inset shows how the composite analytic solution is created, as summa-

rized above. We begin with the linear viscocapillary balance (from Eq. (21)), shown by the dotted line

for each value of S, which matches the corresponding numerical result very well at early times τ < τ∗.

At the transition point, denoted (τ∗, ξ∗), (and shown by a large star in the inset figure), we reinitialize

our analytic elastocapillary result, defined with a new effective radius R∗0 (or equivalently a new elasto-

capillary number E∗c ), and depicted by a solid line. The reinitialized form of Eq.(11) then can be used

to find τbreak. Especially for small and moderate values of S, the composite analytic result matches the

numerical solution nearly exactly for the entire thinning process, as can be seen in the main graph.
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Figure 4: Comparison of the numerical, analytic, and composite analytic results for the evolution of the
non-dimensional radius ξ as a function of the non-dimensional time τ for Ec = 0.01, b = 3 × 104, and
three different values of the non-dimensional viscosity S = ηs/ηp . The red curve denotes S = 1, the blue
curve denotes S = 3, and the green curve denotes S = 10. The composite analytic result, composed of
the linear viscous result and the analytic result from Eq. (10) adjusted for the new effective initial radius
R∗0, matches the full numerical solution very well. The analytic result from Eq. (10) overpredicts the
radius due to its neglect of the solvent viscosity which dominates the initial rapid stretching phase. The
inset shows that the solvent viscosity ratio S affects the solution only at very early times. The principal
effect being to delay the transition point (τ∗, ξ∗), denoted by a star, as a result of the polymer stresses
being comparatively smaller for longer times. However, once elastic stresses dominate, the value of S
becomes irrelevant.

Clearly, the effect of increasing the non-dimensional solvent viscosity ratio S is to delay the transition time

at which the thinning becomes dominated by elastic polymer stresses as opposed to viscous extensional

ones. We note that S is increased by increasing the solvent viscosity ηs, and that a delay in the transition

time is associated with a decreased value in the filament radius R∗ at which the transition ultimately

occurs. This can clearly be seen in the inset of Figure 4. As the solvent viscosity is increased from

S = 1 → 10, the viscous extensional stress grows correspondingly as well, and so the polymer chains

must be stretched more and more before the polymer stresses become significant components of the total

force balance. It follows that the finite time to breakup also increases with S (for fixed values of λH
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and b), although for the parameter range chosen in Figure 5 the overall effect is rather small. From Eq.

(18), it is clear that the effect of increasing the elastocapillary number Ec, either by increasing the initial

radius R0, the temperature T , or chain density n, or decreasing the surface tension of the solution σ, is

to increase the radius at the transition point R∗, which implies an earlier transition to the elastocapillary

thinning regime. As a result, the effect is also to increase the time to breakup of the filament, since more

of the thinning process occurs at the relatively lower exponential thinning rate of the elastocapillary

regime as opposed to the initial rapid linear thinning rate that results from a viscocapillary balance.

6 Analytic expression for the breakup time

The use of the new effective initial radius for the elastocapillary balance R∗0 and a corresponding effective

elastocapillary number E∗c in order to account for the initial viscous thinning period allows us to solve

for the finite time to breakup of the filament analytically using Eq. (11).

In Figure 5, this breakup time is plotted as a function of the finite extensibility parameter b for both our

composite analytic result (solid line) and the numerical solution of Eqs. (3) and (5) -(7) (filled points).

For the purposes of numerical computation, the breakup time is chosen to correspond to the time at

which ξ∗ → 10−4. It can be seen that the two results match very well over the whole range of values of b

considered.
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Figure 5: Comparison of the predicted breakup time from the numerical and composite analytic solutions,
as a function of the finite extensibility parameter b. The elastocapillary number is taken to be Ec = 0.001
and the non-dimensional viscosity is taken to be S = 1 in order to provide comparison with the results
presented by Entov and Hinch [11]. The two results agree very well, and converge to the limiting analytic
result when the finite extensibility parameter approaches infinity.

Entov and Hinch [11] present an analytic result for the breakup time at large b (for a simplified case of

their model in which the fluid is assumed to have a single relaxation time) given by

τ
(HE)
break → 3 ln

(
4b

3

)
+ 4 ln(Ec) + 3. (37)

They state that this equation overpredicts the results that they obtain from their full numerical solution

rather significantly [11]. By using the solution for the breakup time given in Eq. (11),it can readily be

shown that in the limit of b→∞, Eq. (11) becomes

τbreak → 3 ln(b) + 3 ln(E∗c,∞) ∗+4E∗c,∞ + 1 (38)

where E∗c,∞ = Ecξ
∗
∞ is the effective rescaled elastocapillary number in the limit of infinite extensibility

that is relevant after crossover to the elastocapillary balance.
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This result is plotted as the dotted line in Figure 5. At large values of the finite extensibility parameter

corresponding to
√
b & 300, both the composite analytic and numerical solutions converge to this asymp-

totic result that is appropriate for very large (but finite) values of the extensibility parameter. Thus, our

result improves on the expression derived by Entov and Hinch [11] (Eq. (37)).

7 Conclusions

In this work we have derived a composite analytic solution that describes the complete time evolution of

the filament radius and the finite time to breakup of a FENE-P fluid filament undergoing elastocapillary

thinning. The composite analytic solution consists of an initial viscocapillary regime characterized by

an initial linear decrease in the filament radius (see Eq. (21)), followed by a rapid crossover (or ‘pinch

point’) to an elastocapillary regime dominated by the polymer stress, for which we have determined an

analytic expression for the evolution of the filament radius (see Eq. (10)). The time and radius at which

the crossover between the two regimes occurs, denoted (t∗, R∗) respectively, can be approximated analyt-

ically by considering simultaneous force balances: during the initial linear regime, it is assumed that the

viscous extensional stress alone balances the capillary force; while in the second regime, both the viscous

extensional stress and the FENE polymer stress are important. By determining this pinch point and

rescaling the initial radius for our analytic elastocapillary balance to be R∗0, the finite breakup time can

be derived and is given by Eq. (11). We have also noted that in the limit of infinite chain extensibility

(b → ∞), this transition point converges to values (t∗∞, R
∗
∞), which correspond to an alternate elasto-

capillary balance in which capillary forces are opposed only by neo-Hookean polymer stresses (without

FENE effects) and the viscous extensional stress is negligible. This corresponds to the “middle elastic

time” regime first considered by Entov and Hinch [11]. We have also shown that our composite analytic

solution matches very well with the full numerical simulations over a wide range of fluid parameters in

terms of both the time evolution of the mid-filament radius R(t) and the finite time to breakup. Although

negligibly small, these simulations do incorporate the contribution of the radial stresses.

As has been shown before, both numerically (see for instance Entov and Hinch [11]) and experimen-

tally (Anna [14]), our composite analytic solution also predicts that the time to breakup of the filament

depends strongly on the molecular weight of the polymer in solution through the finite extensibility pa-
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rameter b, where b ∼ M1−ν
W . Indeed, from our analytic expression for the breakup time in Eq. (38) in

the limit of large extensibility, we show that τbreak ∼ 3 ln(b) ∼ 3(1− ν) lnMW . This result is interesting

in the context of using CaBER as a diagnostic tool for probing the rheological state of biological fluids,

particularly sensitive materials which begin to degrade once a fluid sample has been collected. A spe-

cific example of relevance here is the loss of viscoelasticity of saliva with age once it has been extracted

from the mouth. Aggazzotti reported this observation in as early as 1922 [28] in his ground-breaking

studies of potere filante or filament forming potential. He performed a series of experiments on saliva

at various ages, such as stretching filaments until they broke and recording their maximum extensions,

and examined the solubility of saliva components through the addition of acetic acid. His results showed

a decrease in the maximum extension length of the thread, as well as an increase in the solubility of

saliva as it aged. Although he did not draw this conclusion himself, both results suggest that as saliva

ages, the molecular weight, and thus the characteristic relaxation time (λH) and molecular extensibility

(b), of the principal biopolymer contained in saliva (i.e. the MUC5B mucin) decreases as a result of

biological decomposition mechanisms. This also appears to be consistent with the findings of Basilevsky

and coworkers with regards to bacterial degradation of sputum [7]. It will be of future interest to see

whether degradation in the molecular weight of the MUC5B chains can be systematically monitored and

modelled using the finite breakup time derived from the FENE-P model presented herein and tested

against results from CaBER experiments. Care must be taken when extracting molecular weight values

at various stages of degradation from the values of b extracted from filament thinning measurements, as

previous work has shown that the FENE-P model can substantially overpredict the true tensile stress in

strong transient elongational flows [29, 30]. However, in the quasi-steady FENE limit in which the chains

are close to fully stretched, much better agreement with the values expected from molecular theory can

be obtained [31].

Finally, we note that part of the challenge in determining the composite analytic solution arises from

determining the crossover point (t∗, R∗) between the initial viscocapillary and (finitely extensible) elas-

tocapillary balance that develops at later times. Determining this crossover accurately is important for

establishing the characteristic length scale on which elastic effects become important in dilute polymer

solutions. However, as the concentration of dissolved polymer increases (and S decreases), or as the net-

work forming character of the fluid sample increases, this term becomes progressively less important. This

can be easily observed experimentally by the absence of an initial viscocapillary thinning phase (see for
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example the filament thinning measurements in [13], [14], [17] and [32]). In this case, the simple explicit

expressions for the filament radius and the breakup time given in Eqs. (10) and (11) respectively can

be used directly to model the capillary thinning process and determine the extensibility of the polymeric

network.
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