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This chapter considers the design and analysis of networked experiments, one of the most precise tools 
available for studying social behavior. As a result of digitization, the scale, scope and complexity of 
networked experiments have expanded significantly in recent years, creating a need for more robust design 
and analysis strategies. I first review innovations in networked experimental design, assessing the 
implications of the experimental setting, sampling, randomization procedures and treatment assignment. I 
then discuss the analysis of networked experiments, with particular emphasis on modeling treatment response 
assumptions, inference and estimation, and recent approaches to interference and uncertainty in dependent 
data. I conclude by discussing important challenges facing the future of networked experimentation, focusing 
on adaptive treatment assignment, novel randomization techniques, linking online treatments to offline 
responses and experimental validation of observational methods. I hope this framework can help guide future 
work toward a cumulative research tradition in networked experimentation.  
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1. Embracing Interdependence 

Networked experiments have been conducted since at least the 1950’s, when Bavalas (1950) and 

Leavitt (1951) manipulated communication networks to measure their effects on group performance. But, 

trends toward digitization and fine grained data collection have recently expanded the scale, scope and 

complexity of networked experiments. Early experiments typically operated on hundreds of student sub-

jects, assembled in laboratories. Today however, we can design, conduct and analyze networked experi-

ments much more rapidly; and not just on samples of hundreds of people, but rather on hundreds of millions 

of people at a time. As more and more social interactions, behaviors, decisions, opinions and transactions 

are digitized and mediated by online platforms, our ability to quickly answer nuanced causal questions 

about the role of social behavior in population-level outcomes such as health, voting, political mobilization, 

consumer demand, information sharing, product rating and opinion aggregation is becoming unprece-

dented.  

The importance of this new line of inquiry in the social sciences is difficult to overstate. How we 

relate to one another, connect with one another, coordinate, cooperate and conflict with one another, are 

arguably the most fundamental data generating processes in the social sciences. They are, in some sense, 

what make the social sciences social. Networked studies, in recent years, have grown to represent larger 

fractions of total research in traditional social sciences, like economics and sociology, as well as in other 

important disciplines, such as computer science and physics, which are increasingly addressing social 

science questions. All of these disciplines are embracing interdependence, which has become a key 

assumption in the most influential theoretical and empirical work in these areas in recent years. 

As many scientific disciplines are simultaneously exploring the implications of interdependence in 

our social world, networked experiments, which help us understand our interdependence more deeply, are 

becoming one of the most important tools of social science. The increasing scale and scope of modern 

networked experiments has created a new ability to engineer and randomize social settings to robustly 

estimate peer effects and the outcomes of social interactions, to explore the heterogeneity in these causal 

effects across subpopulations, and to unpack the nuanced behavioral mechanisms that underlie and explain 
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these social effects. By understanding such causal behavioral mechanisms, how and why outcomes vary 

across individuals and how they change over time, we can develop more contextual, personalized and 

therefore more effective business and public policies. The ability to conduct large scale networked 

experiments therefore portends a sea-change in our scientific understanding of human relationships and 

behavior, and dramatic improvements in social policy as a result. 

 The precision and complexity of the experimental toolkit have also increased in recent years. As 

online platforms scaled to support hundreds of millions, even billions, of simultaneous users, and platform 

design became more open and precise, the ability to test complex dynamic hypotheses about social behavior 

expanded. For example, Facebook enables developers to customize application features for particular users, 

enabling feature and design randomization (e.g. Aral and Walker 2011a, 2012); Amazon Mechanical Turk 

enables the development of complex environments in which users can engage in precisely defined experi-

mental micro-tasks (Mason and Watts, 2012; Rand and Nowak, 2011; Suri and Watts, 2011); online labor 

markets and trading markets have been randomized to test market functions and market failure (Horton et. 

al., 2010); and formal collaboration with platform developers and website administrators is enabling re-

searchers to achieve even more comprehensive experimental control in large scale in-vivo environments 

(Bakshy et. al. 2012a; Bakshy et. al. 2012b; Muchnik, Aral, and Taylor, 2013). 

These digital tools are enabling a new era of experimental social science that has begun to reveal 

robust evidence of the nuanced causal determinants of human behavior. For example, recent large-scale 

digital experiments have revealed insights about product adoption and engagement (Aral and Walker, 

2011a, 2012; Bapna and Umyarov, Forthcoming; Taylor, Bakshy, and Aral, 2013), social commerce and 

advertising (Aral and Taylor, 2011; Bakshy et. al. 2012a; Tucker 2011), information sharing and diffusion 

(Bakshy et. al. 2012b), herding behaviors in cultural markets (Muchnik et al., 2013; Salganik, Dodds, and 

Watts, 2006; Tucker and Zhang, 2011), health behaviors (Centola, 2010, 2011), voting and political mobi-

lization (Bond et al., 2012), performance in innovation contests (Boudreau and Lakhani, 2011), the func-

tioning of labor markets (Horton et al 2010), coordination and cooperation (Fowler and Christakis, 2010; 

Kearns et. al. 2006; Mason and Watts, 2012; Rand and Nowak, 2011; Suri and Watts, 2011) altruism and 
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reciprocity (Bapna et. al. 2011; Leider et al., 2009), and the growth and efficiency of two-sided matching 

markets (Tucker and Zhang 2010, Bapna et al 2013). As a reference, I summarize the focus, context, ex-

perimental procedures and scale of recent large scale networked experiments in Table 1. These studies have 

employed complex experimental designs that randomize social conditions at the system (e.g., Salganik et 

al. 2006), category (e.g., Tucker and Zhang 2010), item (e.g., Muchnik et al. 2013), group (e.g., Suri and 

Watts 2011) and individual (e.g., Aral and Walker 2012) levels to reveal important insights about human 

behavior at population scale. 

*** Insert Table 1 about here *** 

The scale of modern day experimentation also enables new levels of analysis. Smaller scale ran-

domized experiments are typically only sufficiently powered to estimate average treatment effects -- the 

average effect of a policy in a population. But experimental tests of micro-level policies among millions of 

people allow researchers to unpack the heterogeneity of treatment effects across different populations and 

to explore the behavioral mechanisms that explain the treatment effects (Aral 2011). For example, the ex-

periment conducted by Aral and Walker (2012) estimates heterogeneity in the impact of influence mediat-

ing messages on different types of consumers, Bapna and Umyarov (Forthcoming) explore heterogeneity 

of influence across the degree distribution of users and Muchnik et al (2013) dig deeply into whether opin-

ion change or selective turnout creates the social influence bias they estimate to exist in online ratings. 

These insights enable policies tailored for particular groups of people. Furthermore, creating a deeper un-

derstanding of the data generating processes that explain the average behavioral effects of policy interven-

tions will prepare policymakers to respond to changes in these processes and to know how their interven-

tions create dynamic changes in behavior over time. 

Yet, while the increasing scale, scope and complexity of networked experiments creates tangible 

opportunities for scientific advancement, they also simultaneously create significant new challenges. As 

networked experiments become larger and more complex, the likelihood of non-trivial statistical 

interference, generating non-ignorable violations of the stable unit treatment value assumption (SUTVA) 

(Rubin 1986, 1990), must be explicitly considered. Although digital technologies enable us to observe more 
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micro-level human interaction, they may also obscure new constraints on sampling, reducing the marginal 

cost of reaching individuals online while increasing the chances that we will miss large swaths of society 

that interact offline. Meanwhile, the digital platforms across which we observe micro-level behaviors online 

are constantly changing, as the algorithms that drive human behavior are altered week to week and month 

to month. Such changes, and vast behavioral dependencies on the rules of engagement embedded in 

platform technologies must be considered as we generalize the findings of networked experiments 

conducted on digital substrates to the broader human condition. 

The purpose of this chapter is to present a concise and accessible review of advances in modern 

networked experimentation and to summarize the opportunities and challenges they create for 

understanding our social world. The chapter is divided into two sections that discuss the design and analysis 

of networked experiments respectively. I review innovations in networked experimental design in Section 

2, assessing the implications of the experimental setting, sampling, randomization procedures and treatment 

assignment. I then discuss the analysis of networked experiments in Section 3, with particular emphasis on 

modeling treatment response assumptions, inference and estimation, including recent approaches to 

interference and uncertainty in dependent data. I conclude by discussing important challenges facing 

researchers as we develop the future of networked experimentation, focusing on adaptive treatment 

assignment, novel randomization techniques, linking online treatments to offline responses and 

experimental validation of observational studies. 

**Figure 1 About Here** 

Figure 1 presents the sequence of key decisions in the design and analysis of networked 

experiments considered in Sections 2 and 3. In order to frame the discussion clearly, I use a particular paper, 

Aral and Walker (2011), to instantiate this sequence of key decisions in a recurring example throughout the 

paper. The choices made in Aral and Walker (2011) serve to concretely highlight the opportunities and 

challenges of networked experimentation. I have chosen this paper, to which readers may wish to refer 

directly while reading this chapter, not because it is the best example of networked experimentation (in fact 
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it is an early example of large scale, in vivo, networked experimentation), but because I am personally 

aware of the opportunities and challenges encountered during the work. 

The chapter provides a broad overview of networked experimental techniques, addressing key 

methodological concerns. It is intended as a review of the literature and a guide for researchers and 

practitioners interested in conducting experiments in networks. Given this aim, the chapter complements 

deeper treatments of narrower subtopics presented in this handbook in the chapters on laboratory 

experiments by Syngjoo Choi and Shachar Kariv, on field experiments in developing countries by Emily 

Breza and on experiments in social computation by Michael Kearns. The contribution of networked 

experimentation to our understanding of human social dynamics is likely to be large. I hope this overview, 

combined with the excellent contributions of my colleagues highlighted herein, provides a roadmap for 

extending networked experimentation in meaningful ways in the coming years.1 

 

2. Design of Networked Experiments 

2.1. Setting 

 The settings in which networked experiments are conducted typically enable and constrain the 

inquiries researchers can pursue. One useful categorization divides experiments along two dimensions: the 

context in which the experiment takes place (in the field or in the lab) and the dimensions of networks that 

are examined (network structure, dyadic relationships or individuals). Although, in some sense, network 

structure is always present, the focus of the inquiry, and thus the experimental manipulation, change 

simultaneously across these dimensions. 

 Context. Networked experiments typically take place either in a laboratory or in the field. The lab 

offers more experimental control but perhaps less realism and thus generalizability (depending on the 

                                                           
1 This introduction relies heavily on a review of the literature I wrote with Dylan Walker in Aral and Walker (2014). 
Here, I have expanded on and updated that review. Portions of the text as well as an earlier version of Figure 1 are 
reprinted by permission from Sinan Aral, Dylan Walker (2014) "Tie Strength, Embeddedness, and Social Influence: 
A Large-Scale Networked Experiment." Management Science 60(6):1352-1370. Copyright 2014, the Institute for Op-
erations Research and the Management Sciences, 5521 Research Park Drive, Suite 200, Catonsville, MD 21228 USA. 
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research questions being asked), while the field offers less control but a more realistic setting in which to 

observe human behavior. There are also experiments that take place in “virtual labs,” for instance in 

controlled laboratory environments created by researchers on the web (e.g. Salganik et al 2006, Centola 

2010, 2011; Mason and Suri 2012), as well as in “living labs,” which are instrumented physical locations 

like domiciles, dwellings or communities in which inhabitants are digitally instrumented (e.g. Aharony et. 

al. 2011), and in virtual worlds (Bainbridge 2007, Fiedler et al 2011). Virtual labs, living labs and virtual 

worlds have their own idiosyncrasies with regard to data collection, recruitment, sampling and so on, which 

are discussed in detail in the pioneering papers in these areas referenced here.  

The tradeoff between control and realism exists across lab settings and field settings even when the 

labs are virtual or the field is digitized. In a lab, the researcher can control many aspects of the environment 

that are difficult to control in the field. For example, complex network structure can be manipulated to study 

effects on information diffusion (Centola 2010), cooperation (Suri and Watts, 2011) or coordination 

(Kearns et al 2006). Participants are, in these cases, randomly inserted into precise, well controlled and well 

understood network structures to study how structure affects behavior. The information participants have 

access to can also be controlled, such that the interactions between complex network structures and 

information can be examined. Field studies sacrifice a measure of control for observation of more realistic 

networked behaviors. Subjects are observed and studied in their natural environment and through their 

typical modes of interaction with their real network connections. Field experiments allow us to study how 

real life relationships affect our judgment and how true social influence affects our behavior or opinions. 

The appropriate setting depends on the research question one is after: to understand how idealized behaviors 

change in response to complex changes in network structure, lab settings are quite powerful; to understand 

how behaviors evolve in real social structures, field experiments are perhaps more appropriate. 

Aral and Walker (2011) conducted a field experiment of interactions and behaviors taking place on 

the live Facebook social network, to measure the effects of design features on product virality and to 

investigate the impact of network externalities on engagement and the likelihood of customer churn. The 

paper randomly enables viral product features, such as social notifications and the ability to invite friends, 
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to test their effects on product diffusion and to measure how network externalities drive product use after 

adoption. I will return to this example periodically to illustrate various dimensions of networked 

experimentation. 

Network Dimensions. Inquiry can focus on the role of structure, the functioning of dyadic 

relationships or the implications of changes in setting or technology on the networked social behaviors of 

individuals or groups. Choices made among these network dimensions frame experimental studies and the 

inferences and generalizations that can be drawn from them. Such choices also have implications for 

downstream choices regarding network sampling, randomization procedures, treatment assignment, 

modeling, measurement and inference. Analyses of the role of structure require sampling a set of individuals 

representative of the population. Analyses of dyadic peer influence may require samples of representative 

ego networks from larger graphs that maximize statistical precision and minimize interference between 

units. Analyses of changes in technology, for instance the degree to which network externalities exist for a 

given technology, may require comprehensive samples of larger groups of interacting contacts to analyze 

the user experience under realistic network externality conditions, such as uniform access to the 

technology.2 

 For example, Aral and Walker (2011) are interested in estimating a) dyadic peer influence conveyed 

through different interpersonal mechanisms (in their case, differences in peer influence conveyed by one to 

one personal invitations and one to many broadcast notifications), b) the overall impact of viral features on 

social contagion in product adoption processes and c) the effect of network externalities on the persistence 

of behaviors inspired by social influence, over time. Thus the work contemplates both dyadic and network 

level dimensions of social contagion, which affects subsequent sampling, randomization, inference and 

estimation decisions.3 

                                                           
2 For a more comprehensive treatment of empirical investigations of network effects, I refer the reader to the excellent 
chapter on “Recent Developments in the Empirics of the Effects of Networks” by Bernard Fortin and Vincent Boucher 
in this handbook. 
3 It is important to note here that a networked experiment may also be interested in subsequent dynamic changes in 
network structure itself, a topic I do not cover in this chapter due to the dearth of prior research in this area. Although 
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2.2. Sampling 

 Given a setting, the network on which the experiment will be conducted must be generated or 

sampled from a graph or graph distribution. In cases where the network can be controlled, one may wish to 

initialize particular network structures based on theory. For example, a researcher may be interested in 

comparing coordination outcomes in cohesive or diverse networks (Suri and Watts, 2011, Shore et al 2014), 

or the propagation of simple or complex contagions across weak ties or wide bridges (Centola 2010). 

Alternatively, the researcher may generate synthetic graphs that display certain properties, such as power 

law degree distributions, particular path lengths or clustering characteristics, using a model of network 

formation. Random graph models, which provide a family of network generation models that produce 

graphs with precisely solvable average properties (Newman 2002), trace their origins to Erdos and Reyni 

(1959, 1960, 1961), whose random graphs underpin today’s modern graph generation procedures. 

Unfortunately, the original models also produced some unrealistic social network properties, like Poison 

degree distributions and a lack of clustering. More modern generalized random graph models incorporate 

arbitrary non-Poison degree distributions, clustering and more realistic, power-law degree distributions 

(e.g. Aiello et al 2001, Newman 2002).  

 In field experiments, naturally occurring network structure is typically taken as given, though not 

necessarily fixed, and randomization occurs through, for example, the perturbation of behaviors or 

information channels across the observed network. In this setting, individuals are sampled together with 

their peers from real graphs to study how changes in behavior affect social outcomes in the naturally 

occurring network. The goals of sampling can vary from estimating node or edge attributes, collecting 

subgraphs that are representative of local ego networks or collecting a sample of network paths that reliably 

                                                           
models of network dynamics consider link formation and disillusion, few, if any experimental studies examine deter-
minants of network evolution (for a notable exception, I refer the reader to work by Sharique Hasan who has exploited 
natural experiments to study network evolution (Hasan and Bagde Forthcoming) and is building a living laboratory to 
study network evolution through experimental means in a startup accelerator of his own creation in India). Experi-
mental studies of network evolution represent a fertile area for future research, one in which important insights are 
likely to be found. 
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reproduces likely diffusion events. Several sampling methodologies can produce the network on which the 

experiment is conducted. For example, node sampling and edge sampling, which choose nodes and edges 

independently and uniformly at random from the population network, typically do not preserve graph 

properties, such as the degree distribution, density, connectivity and clustering of the network (Stumpf et. 

al. 2005, Lee et. al. 2006).  

Topology based sampling is better equipped to preserve representative graph properties and 

structures. For example, complete snowball sampling (e.g. Aral et al 2009), which uses breadth first search 

from randomly selected seed nodes, can accurately preserve network properties within the snowball, but 

suffers from boundary bias as nodes at the edge of the snowball sample will be missing neighbors (Lee et. 

al. 2006). Snowball sampling can also miss the connectivity of the global graph because, although clusters 

of representative subgraphs around random seed nodes are complete, the connections between such 

subgraphs are typically under sampled. Complete snowball sampling therefore best suits studies of micro-

level social behavior (e.g. studies of average local peer effects or micro-level, interpersonal diffusion 

dynamics) rather than global diffusion or cascading behavior. 

Random walk sampling, which begins by selecting a seed node uniformly at random and simulating 

a random walk along the network, more accurately captures global graph properties and community 

structure, but makes micro-level, dyadic social processes difficult to characterize. Random jump sampling 

mirrors the random walk, but jumps to any random node instead of returning to the seed node and therefore 

suffers from a lack of reliable reproduction of symmetric and/or complete local network structures. Forest 

fire sampling (Leskovec, Kleinberg and Faloutsos 2005), conducts a partial breadth first search, which 

samples some proportion of the edges of a randomly sampled “ambassador” node (and its corresponding 

dyadic node counterparts) with some probability, continuing the process until the “fire” burns itself out. 

These walk based sampling methods replicate global graph properties and community structure more 

accurately than snowball sampling (because they are not constrained to local networks), but they do not 

sample complete local networks around seed nodes. Respondent driven sampling (Heckathorne 1997, 

Salganik and Heckathorne 2004) relies on respondents to recruit their peers and a model of the recruitment 
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process to weight the sample to compensate for non-random recruitment patterns. While such methods are 

well suited to recovering statistically valid samples of difficult to reach groups (e.g. IV drug users, homeless 

youth), they too can produce biased samples of local structure.  

These sampling techniques make realistic testing of local social interactions more difficult to 

generalize because complete social environments are not observed. Structural determinants of social 

behavior are also difficult to analyze. For example, the debate about the roles and relative importance of 

wide bridges (Centola and Macy 2007) or thick bridges (Aral and Van Alstyne 2011) for the spread of 

complex contagions, becomes more difficult to resolve in the absence of complete local structure. The point 

of this discussion is not to provide a comprehensive treatment of network sampling (e.g. Leskovec, 

Kleinberg and Faloutsos 2005, Leskovec and Faloutsos 2006, Ahmed et. al. 2014). Rather, the aim is to 

point out that sampling or graph generating procedures, which produce the graphs on which experiments 

are conducted, can enable and constrain the inferences that are possible as well as the degree to which those 

inferences are generalizable to larger populations or sets of graph structures. 

In Aral and Walker (2011), we aimed to generalize our findings on social influence to users of 

Facebook and online social interactions more broadly. We therefore went to great lengths to ensure our 

experimental sample was representative of the Facebook population. We employed an ad targeting agency 

to target advertisements about the application on which we conducted the experiment such that the adopting 

population was representative of the Facebook population. Distributions of individual characteristics of the 

resultant sample were then compared to published statistics about the overall Facebook population to ensure 

the sample was representative. After approximately 10,000 initial adopters were recruited, a complete one 

step snowball sample was collected using the Facebook API to create a population of approximately 1.4 

million friends of initial adopters. All edges originating from the initial adopters as well as ties between 

friends of initial adopters were sampled. In addition, any diffusion event was captured comprehensively, 

meaning if an invitation was sent from an initial adopter to a friend, who then adopted the application and 

invited a friend of a friend to adopt and so on, every adoption in the chain prompted data collection about 

the adopter, their networks and their characteristics, to ensure complete observation of all diffusion events, 
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regardless of their depth. This example links the sampling strategy to the goals of the experiment. The 

representative sample of initial adopters allowed us to measure the impact of including viral invitation and 

broadcast notification features on the application’s diffusion process, the dyadic peer influence conveyed 

through different interpersonal mechanisms and the effect of network externalities on the prolonged use of 

the application for a representative sample of Facebook users. Experimental results based on this sampling 

strategy can therefore be generalized to Facebook users as a whole. 

  

2.3. Randomization 

 In some sense, the core of networked experimental design is the randomization procedure. 

Randomization creates the exogenous variation that identifies the causal effects of interest. If we aim to 

understand the impact of network structure on social behavior, exogenous variation should be introduced 

at the network level. If instead we aim to understand peer effects, exogenous variation should be introduced 

at the individual level. At least four categories of randomization procedures, aimed at different research 

questions, have gained traction in the last several years. 

Peer Encouragement Designs randomly encourage particular behaviors in a set of nodes to analyze 

the effects of those behaviors on the nodes’ peers. They enable studies of peer effects or social influence in 

a variety of settings and across a number of behaviors. For example, Bapna and Umyarov (Forthcoming) 

gift premium subscriptions to users of a social music streaming website to estimate peer influence in the 

decision to adopt the premium service among their peers. Hinz et al (2011) randomize initial seed recipients 

to test the impact of seeding strategies on the success of viral marketing campaigns in three different 

contexts. As with traditional encouragement designs, peer encouragement allows researchers to study social 

effects emanating from the adoption of products, services or behaviors whose adoption cannot be 

guaranteed by policy instruments in real world settings. 

 Mechanisms Designs change the mechanisms through which individuals interact. The focus could 

be on how different communication channels transmit information or the way behaviors spread in social 

networks through peer influence. For example, Bakshy et al (2012b) randomize exposure to signals about 
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friends’ information sharing on Facebook. They find those who are exposed are significantly more likely 

to spread information. Aral and Walker (2011) randomize the channels of communication through which 

users can promote applications on Facebook and find active personalized messaging is more effective per 

message and generates more engagement while passive broadcasts generate faster growth through more 

messages. Aral and Walker (2012, 2014) randomize the delivery of broadcast notifications to peers of 

selected Facebook users to estimate individual and dyadic correlates of social influence. Their 

randomization, at the ego-network level, also addresses known degree and homophily biases in independent 

random assignment designs (Thomas and Finegold 2013), a topic I cover in more detail in Section 3.  

 Structural Designs randomize network structure, or individuals’ positions within it, to understand 

the impact of structure on social behavior. For example, Kearns et al (2006) study how network structure 

affects individuals coordinating to solve the graph coloring problem. By randomizing structure, they find 

that networks generated by preferential attachment make solving the coloring problem more difficult than 

do networks based on cyclical structures or "small worlds." Centola (2010) studies how network structure 

affects the spread of health behaviors in an online social network. By randomizing the degree of local 

clustering, he finds that diffusion is more likely across clustered-lattice networks than random networks. 

Mason and Watts (2012), Suri and Watts (2012) and Rand and Nowak (2011) all randomize network 

topology to study cooperation and public goods games played by Amazon Mechanical Turk users.   

 Setting Designs change the settings in which social behavior takes place. Particular behaviors are 

not encouraged and interaction mechanisms are not necessarily altered. Instead, the environment in which 

the interaction takes place is altered and studied. For example, Aral and Taylor (2011) randomize the 

incentive structure in which social behaviors take place, to examine how incentives affect people’s social 

behavior. Bapna et al (Forthcoming) and Taylor et al (2014) randomize the presence of identifying 

information to study the effect of anonymity on social behavior in the context of online dating and online 

ratings respectively. Muchnik et al (2013) study how the presence of popularity information affects the 

ratings of friends and enemies on each others’ social content. Table 2 summarizes these four types of 

randomization procedure and their applications and gives examples of each.  
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**Table 2 About Here** 

 Aral and Walker (2011) implemented a mechanism design experiment that randomly enabled and 

disabled certain features on a Facebook application to measure their impact on viral diffusion. As people 

downloaded the application, they are randomly assigned to one of three treatment groups: baseline, passive-

broadcast, and active-personalized. Users assigned to the baseline treatment group received a version of the 

application in which both notifications and invitations were disabled. In the passive-broadcast treatment 

group (passive), only notifications were enabled. In the active-personalized treatment group (active), both 

notifications and invitations were enabled. There were no other differences between the baseline, passive, 

and active applications. In this sense, the randomization takes place at the user level and the environmental 

condition that is randomized is the state of the viral features that are enabled or disabled on the application. 

 

2.4. Treatment Assignment 

 Treatment assignments map nodes and/or edges to treatment conditions. Depending on the study 

design, assignments may be independent or correlated across nodes and edges in the network. Typical 

experimental treatment assignments independently assign units to treatment and control conditions. While 

this is certainly possible in network settings, treatment assignment with network autocorrelation may 

produce some desirable properties of the units chosen. Furthermore, in considering network autocorrelated 

assignments in which the assignment of some units is a function of the assignment of others, the sequencing 

of treatment assignments becomes critical. 

Network Autocorrelation. Network autocorrelation in treatment assignment may be used to study 

group interventions, for example in studies of inducement to peer pressure among sets of connected nodes 

(Mani et. al. 2013) or in studies of the adoption of products and services that exhibit network externalities 

(Ugander et. al. 2013). In the later case, realistic parameter estimates of network effects may require 

assignment of entire network neighborhoods to encouragements to adopt a product because, in a world with 

universal access to the product, network externalities operate on clustered adoption with all peers of an 

adopter able to adopt the product. Blocked treatment assignment is also essential to design based approaches 
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to statistical interference (e.g. Ugander et. al. 2013, Eckles et. al. 2014), which I discuss in detail in Section 

3. In these designs, clusters of treated nodes are optimally “surrounded” by peers with the same treatment 

assignment to reduce bias and error in estimation. In peer encouragement designs it may be useful to treat 

a set of seed nodes from a network and to block treatment of peers of those nodes (Airoldi et. al. 2013). 

Such a setup can facilitate measurement of peer effects while minimizing interference. This example 

highlights another key design choice: the temporal sequencing of treatments. 

Sequencing. The sequencing of treatment assignments are a critical aspect of randomization 

procedures that enable and constrain inference. Sequencing dilemmas are highlighted by viral marketing 

experiments which utilize response driven sampling.4 As networked experiments typically study cascading 

behaviors, products or services, how to treat units sampled through the spread of social behavior is a 

fundamental decision. For example, Aral and Walker (2011) experimented with multiple “viral product 

design” strategies to estimate their impacts on peer to peer sharing of an online application. They randomly 

assigned subjects to different versions of the application with different viral messaging features and 

measured referrals as the different versions diffused through the Facebook network. An important choice 

in this context is how to assign sequentially referred users to treatments. If, for example, a user with version 

A refers a second user, should the referee be assigned to treatment A or randomly assigned to either A or 

B? As diffusion dynamics may depend on the consistency of peer experiences (e.g. due to network effects 

or consumer expectations), consistent treatment assignment -- assigning all referees to the same treatment 

status as their referrers -- enables estimation of the global treatment impact of implementing version A. 

Estimands can reflect what the world would look like if everyone received version A. However, consistent 

treatment assignment reduces the power of the experiment in estimating differences in micro-level peer 

effects -- the effects of A or B on sharing -- because fewer units are randomly assigned to treatment. Aral 

and Walker (2011) randomly assign response driven samples, rather than maintaining consistent treatment 

                                                           
4 While respondent driven sampling asks respondents to name new respondents, I use the term response driven sam-
pling here to refer to new units sampled as a consequence of responding to a peer behavior induced by the experiment: 
for example, adopting a product through a peer referral designed by the experimenter. 
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assignment throughout the referral process and discuss this tradeoff in experimental design at some length. 

In essence, the decision maps directly to the goal of the research. As the goal of the research is to robustly 

estimate micro-level peer influence effects, rather than global diffusion dynamics, random assignment of 

referred peers increases the statistical power of such estimation. 

Sequential treatment assignment also plays a significant role in downstream inference. As I discuss 

in more detail in Section 3, two stage, clustered treatment assignment strategies can reduce selection bias 

due to latent homophily and the chances of selecting high degree nodes in the second stage (Thomas and 

Finegold 2013). As peers of randomly selected users are likely to be of higher degree and similar in 

characteristics to their randomly selected peers, randomizing treatment assignment in the second stage can 

help alleviate these biases (Aral and Walker 2012). Sequential treatment assignment can also address other 

important statistical concerns, such as interference, that arise in interdependent data. As Airoldi et. al. 

(2013) propose, sequential assignment can help alleviate such concerns by making treatment assignments 

a function of the previous treatment assignment of peers.   

Finally, as we look toward the future of networked experimentation, adaptive sequential treatment 

assignment, in which treatment assignments are a function of prior treatment responses, could help us 

maximize precision, minimize interference or cost or harm, or investigate treatment effect heterogeneity or 

particular hypotheses. For example, if the result of a particular hypothesis is becoming obvious, fewer units 

could be allocated toward testing that hypothesis as the experiment progresses. I discuss the potential of 

adaptive treatment assignment further in Section 3. 

  

3. Analysis of Networked Experiments 

3.1. Modeling Treatment Response 

The potential outcomes approach, formally the Rubin Causal Model or the Neyman-Rubin Causal 

Model, attempts to tackle the fundamental problem of causal inference: We wish to estimate differences in 

units’ outcomes under different treatments, but are never able to observe a given unit under multiple 

treatments at the same time (Neyman 1923, Rubin 1974). As only one potential outcome can be observed 
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for any individual, the differences between potential outcomes (causal effects) are impossible to observe, 

but they can be inferred under some basic assumptions which I discuss in more detail in Section 3.3. A key 

assumption of the potential outcomes approach is that there is no interference between units, meaning “the 

observation on one unit [is] unaffected by the particular assignment of treatments to the other units.” (Cox 

1958: 19) If this stable unit treatment value assumption (SUTVA) (Rubin 1986, 1990) does not hold, then 

rather than having two potential outcomes under treatment and control, experimental units have many 

potential outcomes that depend on other units’ treatments (Rosenbaum 2007). 

Analysis of networked experiments therefore begins with a theoretical approach to treatment 

responses and assumptions about their interdependence.5 There exists some data generating process that 

translates treatment assignments and network structure into the observed outcomes of networked nodes. 

The assumptions we make about this data generating process, for instance whether it is assumed to be 

known or unknown, or in equilibrium or not, will guide our inference and our interpretations of 

experimental results. 

For example, Manski (2013) provides precise theoretical assumptions about treatment response that 

vary the degree to which a unit’s response depends on other units’ treatment assignments. Manski’s 2013) 

constant treatment response assumption considers a function that maps treatment assignment vectors to 

effective treatments such that a unit’s response depends on its own assignment as well as the assignments 

of other units. If nodes responses are assumed to depend only on their own assignment, in what Manski 

(2013) calls an individualistic treatment response assumption, the function simply maps units’ own 

assignments to their outcomes. In this case, there is no interference and SUTVA holds. If, on the other hand, 

node responses depend on their own assignment and the assignments of a reference group with which they 

interact, then the function maps sub-vectors of treatments in the reference group to node outcomes. One 

example of such an assumption is the neighborhood treatment response assumption of Aronow and Samii 

(2012), which posits that effective treatments depend on the unit’s assignment and the assignment of their 

                                                           
5 I return to a detailed treatment of recent approaches to interference in networked experiments in Section 3.3. 
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immediate network neighbors. But, other assumptions about effective treatments are also possible. For 

example, when estimating the effectiveness of child vaccinations, a plausible assumption is that a child’s 

illness is a function of their own vaccination status and the number or proportion of children vaccinated in 

their school, but not on the specific identities of those vaccinated. Manski (2013) refers to this as an 

anonymous treatment response assumption.  

The “exposure mapping” Aronow and Samii (2012) present in their simulation of Add Health data 

models units’ responses as a function of their own treatment and the number of their treated peers. 

Treatment responses may not only be a function of peer treatment assignments, but also of peer behavior. 

As Eckles et al (2014) point out, under such assumptions, peer behavior may fully mediate the effects of 

peers’ treatment assignments. Rather than comprehensively reviewing various treatment response 

assumptions, I present these as examples of the types of assumptions one can make. We can then use these 

assumptions to inform our models of treatment response, which we use to estimate and make inferences 

about networked behavior.  

One of the most widely used models of treatment response is the linear-in-means model, which 

specifies a linear additive contribution of treatment assignment and peer effects to the mean treatment 

response, such that behavior is a function of a direct effect of treatment and the mean of peers’ behaviors 

(which may mediate peers’ treatment responses): 

𝑌𝑌𝑖𝑖 = 𝛼𝛼 + 𝛽𝛽𝑋𝑋𝑖𝑖 + 𝛾𝛾
∑ 𝑌𝑌𝑗𝑗𝑘𝑘
𝑗𝑗=1,𝑗𝑗≠𝑖𝑖

𝑘𝑘𝑖𝑖
+ 𝜀𝜀𝑖𝑖, [1] 

where 𝛽𝛽 represents the direct effect of a unit’s treatment assignment (𝑋𝑋𝑖𝑖), and 𝛾𝛾 the indirect effects of the 

mean of peer behaviors (where j indexes i’s peers and 𝑘𝑘𝑖𝑖 represents i’s degree). A similar model for binary 

outcomes is described in Brock and Durlauf (2001). The linear-in-means model has become a staple in the 

estimation of peer effects, in part because of its simplicity, generality and applicability to a wide variety of 

social effects of interest in economics and sociology. Identification of the linear-in-means model has 

received a good deal of attention in the economics literature (e.g. Manski 1993, Graham and Hahn 2005, 

Lee 2007, Bramoulle et. al. 2009) and has been used to estimate peer effects in a variety of settings. In more 
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recent work, Dieye et al (2014) propose a structural extension to the linear in means model that accounts 

for social network effects in treatment response and allows for a contextual effect of treatment alongside 

the endogenous peer effect. 

However, the linear in means model is not without its limitations. For instance, in [1], 𝛾𝛾 captures 

the slope of the average peer effect of i’s neighbors, ignoring the possibility of dyadic peer effects that vary 

with the characteristics of i and j. Such a model is not well suited to situations in which peer effects are not 

simply linear in means. As Burke and Sass (2013) show for educational outcomes, average peer effects may 

be small while peer effects conditioned on the individual, the peer or the dyad may be quite large. If high 

ability students are influenced positively by other high ability students, but negatively by low ability 

students, then a linear-in-means model will miss important heterogeneity in the data. When linear-in-means 

models of social effects in educational outcomes are compared to models with interactions by own 

achievement, large peer effects are detected by the conditional model but missed by the linear-in-means 

model (Burke and Sass 2013).6 Similar extensions to the linear-in-means approach have been used in the 

study of peer influence in product adoption (Aral and Walker 2012), premium subscriptions (Bapna and 

Umyarov Forthcoming), online ratings (Muchnik et al 2013), and in the role of identity in opinion formation 

(Taylor et al 2014). It is also plausible that something other than the second moment of the distribution of 

peer behaviors is relevant to a unit’s outcome. For example, there may be threshold effects (Granovetter 

1978 , Watts 2002), quadratic reinforcement effects (Centola and Macy 2007), effects from the variance of 

peer behaviors, or other more complex dependencies. 

  

3.2. Inference 

Estimands. In randomized experiments, the randomization distribution generated by the 

experimental design forms the basis of inference: one infers individuals’ outcomes under treatments they 

were randomly denied from observations of individuals’ outcomes under treatments they were randomly 

                                                           
6 Thanks to Michaela Kerrissey for referring me to Burke and Sass (2013). 
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assigned. For simplicity I denote the randomization distribution of treatments under no intervention as 𝜂𝜂 

and under an arbitrary intervention as 𝜃𝜃. Since any individual cannot be observed under multiple treatments, 

causal estimands are typically defined as averages of potential outcomes (Rosenbaum 2007, Hudgens and 

Halloran 2008). 

Many different quantities of interest form the basis of relevant estimands in networked experiments. 

We may seek to understand individual-, group- or population-level interventions and outcomes. In addition, 

we may be interested in experimental effects on the treated, peers of the treated, or the groups or populations 

in which treatment is studied. The estimands implied by these various research goals vary and are being 

extended and re-conceptualized in some of the most recent literature. Precisely defining the experimental 

quantities of interest can help researchers draw bounded generalizations from experimental results. A large 

literature addresses the decomposition of treatment effects into direct, indirect and total effects across the 

units in an experiment (Halloran and Struchiner 1991, 1995). Using this decomposition, Hudgens and 

Halloran (2008) define several estimands useful for conceptualizing the quantities of interest in 

experimental studies with interdependence across groups. I describe how these estimands can be related to 

quantities of interest in networked experiments and illustrate their application in a peer encouragement 

design example. For simplicity, consider a basic peer encouragement design where treated nodes are given 

an encouragement to adopt a product and the researcher is interested in effects of this encouragement on 

product adoption outcomes (𝑌𝑌). In this context we can think about direct, indirect and total effects as 

follows: 

Direct Causal Effects, the effect of the treatment on the treated, can be formalized as the difference 

in individual average potential outcomes under treatment and no treatment conditions given the 

randomization distribution 𝜃𝜃 (i.e. in the case where an intervention is initiated): 𝐷𝐷�𝑖𝑖(𝜃𝜃) ≡ 𝑌𝑌�𝑖𝑖(0;𝜃𝜃) −

𝑌𝑌�𝑖𝑖(1;𝜃𝜃). Where 𝐷𝐷�𝑖𝑖(𝜃𝜃) represents the average direct effect under the randomization distribution 𝜃𝜃, 𝑌𝑌�𝑖𝑖(0;𝜃𝜃) 

represents the average potential outcome under control and 𝑌𝑌�𝑖𝑖(1;𝜃𝜃) the average potential outcome under 
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treatment. In the toy example, this represents the direct effect of the encouragement on product adoption 

outcomes among treated nodes in the network. 

Indirect Causal Effects, the effect of the treatment on others, can generally be defined as the 

difference in individual average potential outcomes without treatment when a reference group7 to which 

the individual is related in some way is treated and untreated: 𝐼𝐼�̅�𝑖(𝜃𝜃, 𝜂𝜂) ≡ 𝑌𝑌�𝑖𝑖(0; 𝜂𝜂) − 𝑌𝑌�𝑖𝑖(0;𝜃𝜃). In our peer 

encouragement example this could represent the indirect effect of treatment on untreated peers of the 

treated, where a “peer” is a node with any arbitrary relationship to the treated node, including being 

connected, directly or indirectly, to the treated node in a social network or being a member of a group to 

which the treated node belongs (e.g. a classroom or a neighborhood).8 

Total Causal Effects, the sum of the direct and indirect causal effects, can then be defined as the 

difference in individual average causal effects for an individual under treatment when an intervention is 

initiated (𝜃𝜃) and under no treatment when an intervention is not initiated (𝜂𝜂): 𝑇𝑇�𝑖𝑖(𝜃𝜃, 𝜂𝜂) ≡ 𝑌𝑌�𝑖𝑖(0; 𝜂𝜂) − 𝑌𝑌�𝑖𝑖(1;𝜃𝜃). 

In our example, the potential outcomes of interest are those of an encouraged node when the encouragement 

is introduced randomly to members of the node’s reference group and those of a node that is not encouraged 

when no encouragement is introduced at all. 

These estimands formalize the quantities of interest that form the basis for estimating the effects of 

networked social behavior. For example, in the peer encouragement example, we may be interested in 

estimating the micro-level peer influence effect of an encouragement to adopt a product on the peers of the 

encouraged. In other words, we may want to measure how peer influence affects the likelihood of adoption. 

Alternatively, we may be interested in the total effect on adoption in a reference group (e.g. a consumer 

population) of a program to encourage adoption by some members of the group. If peer spillovers exist, 

                                                           
7 A reference group is simply a group to which the individual belongs such that an intervention in that reference group 
could plausibly affect their potential outcomes. This could be a school, classroom or social network to which the 
individual belongs. 
8 Indirect effects can exist as treatment effects on the untreated or reinforcement effects from treated nodes on other 
treated nodes. Assuming there is no complex interaction between treatments of distinct nodes, the indirect effects can 
be considered marginal effects holding own treatment status constant. Of course, interaction effects could exist and 
could subsequently be modeled. 
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measuring the direct effect of treatment will underestimate the total effect of the intervention. Returning to 

our example, Aral and Walker (2011) are interested in the direct and indirect effects of viral features, but 

less so in isolating the total causal effect. The decision to randomly assign referee adopters to the baseline, 

active-personalized and passive-broadcast conditions, rather than maintaining consistent treatment 

assignments throughout the diffusion process, enables robust estimation of direct and indirect effects and 

reflects a decision to forgo estimation of the total causal effects of the design decision. These tradeoffs are 

inevitable in any networked experiment. 

Data. It is worth mentioning briefly that the granularity of the data we can now collect through 

large networked experiments is changing the nature of what is estimable. Today’s networked experiments, 

especially those conducted online, are collecting data on micro-level, individual behaviors and opinions in 

unprecedented detail and time stamped to the second. Our observations of human behavior have moved 

from static snapshots, to longitudinal panels, to continuous data streams (Domingos et al 2000). Online 

platforms that record continuous streams of behavioral data are also themselves evolving over time. As a 

consequence, new machine learning methods are being devised to deal with key issues in the analysis of 

streaming data, including concept drift (Wang et al 2003), clustering (Aggarwal et. al. 2003) and querying 

(Babu and Widom 2001). Fine grained data collection and new techniques for mining massive data streams 

are enabling new estimation strategies that incorporate subtle behaviors and time. As new data enable new 

models, future work should build theory around how granular, continuous time data can be incorporated 

into experimental analysis. 

 

3.3. Estimation 

Model Specification. The most straightforward approach to analyzing networked experiments is to 

estimate Average Treatment Effects (ATE): the difference in means between the treatment and control 

outcomes, as described in the estimands above. However, occasionally it may be fruitful to specify more 

sophisticated models that allow us to explore more of the heterogeneity in the data, for example how 

treatment effects vary across subpopulations, what moderates the treatment effects or the underlying 
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behavioral processes that explain the outcomes of the experiment. Specifying a more sophisticated model 

allows more complex investigation but at the cost of having to make more restrictive assumptions about 

treatment responses. For example, Aral and Walker (2011) incorporate time into their analysis by fitting 

hazard functions that estimate the rate at which individuals react to a treatment, rather than simply whether 

or not they react. They then validate their more sophisticated models with simple tests of differences in 

means that require fewer assumptions. 

Interference. If the treatment response of one individual depends on the treatments of other 

individuals in the experiment, the treatments are said to “interfere” with one another. Interference is possible 

in a variety of settings including, for example, the effects of vaccination programs (Halloran and Struchiner 

1991), housing vouchers (Sobel 2006) and educational interventions (Rosenthal and Jacobsen 1968). A 

substantial literature addresses contexts in which interference may exist between individuals in the same 

group, but not across groups (Sobel 2006, Rosenbaum 2007, Hudgens and Halloren 2008, Middleton and 

Aronow 2011, Tchetgen Tchetgen and VanderWeele 2012). This dependence structure, known as partial 

interference (Sobel 2006), is common in multi-level, group randomized or cluster randomized studies, in 

which clusters represent well defined groups, such as households (Tchetgen Tchetgen and VanderWeele 

2012), neighborhoods (Ali et al 2005), classrooms (Sobel 2006), or land plots (Kempton 1997). 

Networked interference is in some sense a substantial departure from partial interference, as the 

pattern of interdependence is more complex and perhaps more uncertain in that it is not cleanly contained 

within well defined groups. In another sense, however, recent approaches to interference in networks extend 

approaches to partial interference, modeling interference as a decreasing function of social distance and 

using the observed graph structure to define groups (or subgraphs) within which interference is more or 

less likely. Two sets of such strategies for addressing networked interference have emerged in recent years, 

which I refer to as inference strategies and design strategies. 

Inference Strategies correct for interference during analysis. For example, Aronow and Samii 

(2012) define exposure models that map assignment vectors and units’ characteristics to exposure values 

or likelihoods of being subject to a given exposure. They then derive unbiased average treatment effect 
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(ATE) estimators and variance estimators based on the assumptions of their exposure mapping. Airoldi et. 

al. (2013) take a similar approach, deriving causal estimands based on the adjacency weighted matrix of 

exposure to treatment through social influence in a linear additive model. In Aronow and Samii’s work, the 

basic approach is to model direct and indirect exposure and to base inference on the generalized 

probabilities of exposure implied by the model. For example, they consider an exposure model that assumes 

individuals’ outcomes depend only on their own assignments and the assignments of their immediate 

neighbors. In their analysis of Add Health data, they assume a subject’s outcomes depend only on their own 

assignment and a count of their treated neighbors. In both cases, each node’s probability of being subject 

to a given exposure is precisely defined given a well defined experimental design and known network 

structure. 

One important challenge with this approach is the difficulty of validating the exposure models. 

Aronow and Samii (2012: 19) acknowledge this criticism and make a convincing counterargument that 

“there is no escaping specification of exposure mappings for causal analysis.” After all, analysis that does 

not specify a model of indirect exposure de facto embraces an assumption of no interference. However, it 

is possible to approach the problem by making less restrictive exposure assumptions and foregoing point 

identification to establish bounds on bias reduction. For example, Eckles et al (2014) establish bounds on 

bias reduction achieved with estimands derived solely from successively more restrictive fractional 

neighborhood treatment response assumptions and an assumption of monotonicity in direct and indirect 

treatment responses (see their Theorem 2.2).9 Using Manski’s (2013) notion of effective treatments, they 

develop estimands that consider nodes as effectively treated if they satisfy successively more restrictive 

fractional neighborhood treatment response assumptions, where a node is considered treated if at least a 

fraction 𝜆𝜆 of its neighborhood is treated. For example, considering nodes as effectively treated if all of their 

neighbors are treated is more restrictive than including nodes as effectively treated if half of their peers are 

                                                           
9 This is less restrictive than Aronow and Samii’s (2014) generalized probability of exposure (𝜋𝜋𝑖𝑖(𝑑𝑑𝑘𝑘)) which precisely 
defines the probability that node i is subject to exposure 𝑑𝑑𝑘𝑘. 



          Networked Experiments 

 24 

treated.10 Assuming treatment responses are monotone, estimands with more restrictive assumptions on 

effectively treated nodes achieve bias reduction greater than or equal to estimands with less restrictive 

assumptions. Aral and Walker (2011) take a similar approach to interference, censoring peers any time after 

they have more than one treated neighbor, which defines a node as effectively treated at time t if and only 

if one of their peers was treated at time t.11 These restrictive assumptions on effective treatment in 

experiments with independent assignment achieve bias reduction at the expense of increased variance (see 

Eckles et al 2014 Fig 5). Though, as I discuss below, when combined with design strategies like graph 

cluster randomization (Ugander et al 2013), they can reduce bias and variance simultaneously under certain 

conditions. 

Design Strategies define treatment assignments over a network to minimize interference. More 

specifically, they use information about network structure to select treated nodes according to some 

interference minimizing protocol. Two types of design strategy take contrasting approaches to interference 

minimization (Walker and Muchnik 2014): 

(1) Treatment Clustering Strategies randomize connected clusters of nodes, with high edge density 

within clusters and low edge density across clusters, into treatment and control groups to simulate global 

treatment and control conditions in which the entire network would either be treated or untreated. For 

example, Ugander et al (2013) begin by defining an exposure condition called network exposure, in which 

a node is “networked exposed” if their treatment response under a given randomization distribution is the 

same as their treatment response under a randomization distribution in which the entire network is treated. 

They then investigate several conditions, analogous to fractional neighborhood treatments, which constitute 

network exposure. The main design element of the work is a “graph cluster randomization” procedure that 

partitions the graph into clusters across which treatments are randomized. The idea is to randomize 

                                                           
10 As Eckles et al (2014) note, a fractional neighborhood treatment response assumption where 1 > 𝜆𝜆 > 0 is less 
restrictive than Aronow and Samii’s (2014) neighborhood treatment response assumption (𝜆𝜆 = 1) and more restrictive 
than Manski’s (2013) independent treatment response assumption (𝜆𝜆 = 0). 
11 They then control for variation in degree by including a degree parameter in their model. A more comprehensive 
description of their approach to interference can be found in the paper’s appendix (see Aral and Walker 2011). 



          Networked Experiments 

 25 

treatment at the cluster level such that nodes are maximally surrounded by other nodes with the same 

treatment status. Although the protocol can admit any arbitrary clustering procedure and graph structure, 

Ugander et al (2013) show that for any graph satisfying their restricted growth condition, specific graph 

cluster randomization protocols produce unbiased estimates with variance on the order of 1/n that is linear 

in the degrees of the graph. This is an important result because naïve clustering can produce estimators with 

variances that increase exponentially in the degrees. As Eckles et al (2014) show, graph cluster 

randomization produces dramatic decreases in root mean squared error (RMSE) compared to independent 

assignment when peer effects are large (see their Figure 5). Graph cluster randomization is useful when we 

want to estimate the effect of a global treatment. For example, if we are interested in changes in the degree 

to which local network externalities exist for a given technology, we may need to understand the effects of 

clustered adoption rather than of isolated adoption as the value to a new adopter is theoretically a function 

of the number of their peers who adopt the product. 

One limitation to standard graph cluster randomization, which assigns all nodes in a cluster to the 

same treatment, is that it can become impossible to observe some nodes with a particular number of treated 

peers. This can complicate, for example, estimation of threshold effects in behavioral contagion studies 

because all nodes may not have a positive probability of being assigned to all threshold conditions (e.g. 

having 1, 2, 3, 4 or more treated peers). Eckles et al (2014) therefore extend standard graph cluster 

randomization to allow for some nodes to be assigned to a different treatment than the rest of their cluster 

- a procedure they term “hole punching.” Hole punching adds node level randomness to the clustered 

treatment assignment by specifying independent switching variables that flip the assignment of some nodes 

in a cluster with a given probability. The result is that some fraction of the nodes in a cluster with a given 

cluster-level treatment assignment are assigned to the opposite condition, allowing for measurement of 

threshold effects in contagion or comparison of direct effects and peer effects. 

(2) Treatment Separating Strategies assign treatments that maximize network distance between 

treated nodes in order to minimize interference between treatments. In contrast to Ugander et al (2013), 

Coppock and Sircar (2013) develop a protocol that partitions the graph into non-interfering clusters 
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according to assumptions about effective treatments described by what they call the “SUTVA degree” of a 

graph. The SUTVA degree corresponds to the maximum path length between two nodes over which 

interference is assumed to occur. A graph partition based on SUTVA degree produces a sample of nodes 

and edges that are relatively isolated from one another, enabling estimates of direct treatment and indirect 

exposure effects that minimize interference. Treatment separating strategies similar to Coppock and Sircar 

(2013) are not well suited to studying the effects of a global treatment or groups of commonly treated nodes, 

for instance in the case of estimating implications of changing network externality conditions. But they are 

well suited to studying micro-level peer effects. Airoldi et. al. (2013) propose a different treatment 

separating randomization design called “insulated neighbors randomization” (INR), which assigns nodes 

to a non-exposure or k-level exposure status at random, such that the treatment assignments of the nodes 

already assigned are maintained and a percentage of shared neighbors between treated nodes are assigned 

to control. The purpose is to increase the causal information produced by the randomization at the expense 

of bias. Thomas and Finegold (2013) suggest a related block-randomized design in which a sample of nodes 

are selected to receive a treatment and a subset of their peers are randomly chosen to be denied access to 

(or awareness of) the treatment. They propose this design to deal with selection bias on degree and 

homophily between selected nodes and their peers, rather than interference per se. The peers of randomly 

selected nodes will be of higher degree and will exhibit observed and latent homophily with the selected 

nodes. Block-randomization can ameliorate this selection bias by randomizing at the level of the ego 

network. Aral and Walker (2012) achieve a similar goal through a mechanism randomization design that 

sends notifications of ego’s behaviors only to randomly selected peers of the treated. 

Eckles et al (2014) observe larger bias and error reductions through design strategies than through 

inference strategies, though they admittedly explore specific design and inference strategies under a 

particular set of network and social effect conditions. Though the inference strategies they examine reduce 

bias, this bias reduction comes at a significant cost to precision. Combining design and inference approaches 

to networked interference also marginally improve both bias reduction and precision, though the effects on 
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precision come mainly from assignment clustering rather than from neighborhood response assumptions or 

weighting. 

Estimators (and their Variance). Since network exposure probabilities vary across nodes, 

estimators must adjust for different proportions of units in different exposure conditions. The Horvitz-

Thompson (HT) estimator can produce unbiased estimates the differences in means of the ATE estimand 

in stratified samples, using inverse probability weighting to adjust for the varying proportions (Horvitz and 

Thompson 1952). However, heavy tailed degree distributions in networks ensure high variability in the 

likelihood of network exposure, generating very large or small numbers of units with high weights, 

increasing the variance of the HT estimator, at times dramatically. Several adjustments have been suggested 

to reduce the variance of the HT estimator in the context of network experiments. The Hajek (1971) 

refinement, which uses the sum of the weights in the denominator, achieves efficiency gains at the cost of 

bias, though increases in bias are typically small relative to estimator’s variability. Bootstrap methods have 

been evaluated to deal with a lack of coverage of standard difference in means estimators (Thomas and 

Finegold 2013) and the multiway dependence structure common in online settings (Bakshy and Eckles 

2013). Ugander et. al.’s (2013) graph cluster randomization further reduces the variance of both the HT and 

Hajek estimators by increasing the expected number of the individuals who are network exposed to a 

treatment or control condition and limiting the number of individuals outside of selected clusters who are 

network exposed (see Eckles et. al. 2014 Fig 5).  

  

4. The Future of Networked Experimentation 

4.1. Adaptive Treatment Assignment 

 An area of innovation that may be relevant to the future of networked experimental design is the 

extension of sequential treatment assignment to more adaptive dynamic treatment assignment protocols. 

Such protocols might consider the sample characteristics or responses of the initially treated to inform 

downstream assignments to maximize precision, minimize interference or cost or harm, or to investigate 

treatment effect heterogeneity or a particular hypothesis. Sequential treatment assignment, in which a 
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node’s assignment is a function of network structure and prior assignments, has been proposed as an 

approach to minimize interference (Airoldi et. al. 2013). However, one could imagine adaptive assignments 

that use response information obtained during early estimation to adjust the proportions or types of nodes 

assigned to a given treatment. Adaptive treatment assignment has been used in medical trials to expose 

fewer patients to avoidable harm than strategies with fixed assignments (Hu and Rosenberger 2006). 

Though these adaptive cases are difficult to optimize in situations in which the number of experimental 

units is large, heuristic approaches and near-optimal strategies have been shown to be valid in non-

networked settings, even when the size of study population is unknown or unbounded (Press 2009). 

 Adaptive treatment assignment is essentially a bandit problem in which the researcher wishes to 

allocate treatments among experimental units, whose properties and responses are only partially known at 

the time of allocation, but which may become better understood as time passes during the experiment (Berry 

and Fristedt 1985, Berry 2006, Press 2009). Bandit problems exhibit the classic tradeoff between the cost 

of gathering information and the benefit of exploiting information already gathered (e.g. exploration vs 

exploitation). I can imagine a line of research that develops adaptive treatment assignment procedures in 

network contexts, deriving optimal solutions to relevant allocation problems, incorporating network 

information and inference into the approaches. Networked information and the regularity of assortativity 

and other networked characteristics may prove useful in cases analogous to contextual bandit problems 

because social structure provides so much information about the relationships between experimental units 

and their relative context. 

 

4.2. Novel Randomization Techniques 

The flexibility of modern application programming interfaces (APIs) is enabling new forms of 

randomization in networked experiments. As more comprehensive observability and new communication 

and messaging features imbue our online social networks with new functionality, new ways of creating 

exogenous variation at different network levels are constantly emerging. Several examples demonstrate the 
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power of modern online environments to create useful variation with which to identify causal effects in 

social behavior. 

Aral and Walker (2012) utilize the Facebook API to randomize the peer recipients of automated 

notifications a node's behaviors. For example, when a user rated a movie or linked to a celebrity, packets 

of notifications informing their peers of their behaviors were automatically generated and randomly 

delivered to their Facebook friends. This randomization enables them to identify peer influence, 

susceptibility to influence and individual and dyadic correlates of influence and susceptibility at the 

individual level. Bakshy et al (2012b) use a similar design by directly manipulating Facebook’s algorithms, 

randomly blocking information delivered to users’ news feeds in order to identify causal information 

diffusion dynamics in networks. These types of micro-level randomization enable quite nuanced 

investigations of social behavior. 

Bakshy et al (2012b) and Aral and Walker (2012, 2014) examined correlates of social influence by 

randomizing messages between individuals in the network. However, these designs cannot estimate the 

causal effect of receiving a message from a particular individual with particular characteristics. Taylor et al 

(2015) select ad exposures where viewers could potentially be exposed to social cues involving two 

different peers and then randomly choose which peer is shown, providing exogenous variation in the dyadic 

characteristics of friends displayed in the social cue.12 This exogenous variation enables causal estimates 

of the influence of particular social cues (i.e. the age, gender, similarity, or tie strength associated with a 

particular peer) on behavior. These types of randomization will form the basis of personalized social 

advertising in the near future.  

Finally, anonymity designs provide another novel randomization technique that can help identify 

subtle social effects. Bapna et al (2014) enable randomly selected users of an online dating site to browse 

other users’ profiles without leaving a digital signal of their interest (the default setting on the website is to 

provide viewing information to the user whose profile is being viewed). This enables causal estimates of 

                                                           
12 This paper is based on Chapter 3 of Sean Taylor’s PhD thesis (Taylor 2014). 
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the effects of anonymity on both browsing behaviors and the matches that are eventually formed. 

Interestingly, anonymous browsers are more likely to view other users who are of different races. Taylor et 

al (2014) use a similar anonymity design to suppress the identity of users posting content to a social news 

aggregation website. They find strong identity effects on opinion formation as measured through ratings. 

These examples highlight the new designs that are possible today. In the future, nuanced randomization 

procedures such as these are likely to improve our understanding of subtle social effects at scale. 

 

4.3. Linking Online Treatments to Offline Responses 

 Although digitization is enabling advances in networked experimentation, there remains a danger 

in relying too heavily on digital substrates to explore human behavior. Not only are digital samples biased 

toward those who are more active online, potentially missing large swaths of society, but limiting inquiry 

to digital behaviors constrains the theoretical reach of experimental work. It will therefore be important to 

devise strategies for linking online treatments to meaningful offline behaviors.  

For example, Bond et al (2012) go to great lengths to validate the results of their Facebook voting 

experiment in public voting records. They find that users who received a social message were more likely 

to vote than users who received no message or an informational message with no social cue, raising doubts 

about the efficacy of information-only appeals to vote (Aral 2012). Similarly, in an ongoing collaboration 

with the Praekelt Foundation in South Africa, we are connecting data from experiments conducted on a 

mobile messaging platform with data on HIV testing conducting in physical clinics. We designed scratch 

cards with unique identifiers that are given to people who test in a facility and mention the program. They 

unlock their experimental incentive by entering the unique identifier on the card into their phone. When 

this identifier is entered, we can connect cell phone referral data to data on verified HIV tests. To maintain 

anonymity, we only record users’ data as de-identified strings and never inquire about individual HIV test 

results, only whether a test was taken.  

These examples provide evidence of the importance of linking online and offline behaviors in 

digital networked experiments. Validating the effects of digital treatments on physical behaviors or the 
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digital measurement of physical behaviors will help establish and maintain the external validity of studies 

conducted on digital substrates that wish to generalize findings to a broader set of people and subjects. 

 

4.4. Experimental Validation of Observational Methods 

 An important use of networked experiments is in benchmarking the results of observational studies 

against provably causal estimates. For example, Aral et al (2009) adapted high dimensional propensity 

score matching (HDPSM) to dynamic network settings to identify peer influence in product adoption 

decisions. They analyzed a global instant messaging network of 27.4 million Yahoo users, combined with 

comprehensive daily product adoption data on a personalized news and weather application and users’ 

longitudinal behavioral, demographic, and geographic characteristics. They found that previous methods 

overestimated peer influence by 300–700%, and that homophily explained greater than 50% of the 

perceived behavioral contagion. Shalizi and Thomas (2012) subsequently argued that, theoretically 

speaking, homophily and contagion are “generically confounded.” They claimed that latent unobserved (or 

unobservable) homophily will always thwart the identification of peer effects. Given the expense and 

difficulty of running experiments and the availability of observational data, it would be useful to develop 

reliable, non-experimental causal inference strategies in networks. But, how can we know how close our 

observational estimates are to provably causal estimates of social effects? How can we measure the error 

and bias of observational methods that potentially miss unobserved latent effects? 

 Eckles and Bakshy (2014) demonstrated one approach to the experimental validation of 

observational methods, by conducting a “constructed observational study” evaluating the effectiveness of 

HDPSM in identifying peer effects in networks. Their study uses the results of a randomized experiment of 

peer influence in information diffusion among 35 million Facebook users (Bakshy et al 2012b) to 

benchmark HDPSM methods applied to identify the same effects. In essence, they treat the results of the 

randomized experiment as a gold standard and measure how well, or how poorly, HDPSM does in 

identifying peer effects, compared to the experimental estimates, using the same data.  
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Three notable results emerge from their study: First, HDPSM methods can achieve a 70% bias 

reduction in estimates of peer effects compared to experimental benchmarks. This provides grounds for 

optimism in that observational techniques can effectively estimate peer effects and other causal effects in 

networks. Whether estimates that achieve 70% bias reduction are useful to policy makers depends on the 

policy being evaluated. In many cases, a reliable estimate of the direction and order of the effects can help 

guide policy. In other cases, however, more reliable estimates may be necessary. Second, contextual 

variables used in the first stage matching procedure are critical to bias reduction. Eckles and Bakshy (2014) 

find models that use a limited number of demographic features to create the matched sample only achieve 

approximately an 8% bias reduction. Contextual features relevant to the behavior being modeled improve 

matches and thus the reliability of matching estimates. Finally, the overestimates of social contagion by 

naïve methods found in Aral et al (2009) and Eckles and Bakshy (2014) are quite similar. Both studies find 

naïve models overestimate social contagion by approximately 300%.13 These benchmarks help us 

understand the errors produced by observational methods. 

Constructed observational studies are one example of how networked experiments can be used to 

validate observational approaches to the identification of social effects. Using experimental results as a 

benchmark for true causal estimates can help us understand when and to what degree observational methods 

produce bias.14 

  

5. Conclusion 

Networked experiments are rapidly becoming one of the most precise tools available for studying 

social behavior. As more and more social behaviors are digitized and mediated by online platforms, our 

ability to quickly answer nuanced causal questions about the role of social behavior in population-level 

                                                           
13 Aral et al (2009) find a 700% overestimate in the early weeks of the product’s lifecycle, immediately after the 
product launch. Their estimates then decrease to a consistent 300% overestimate. 
14 Of course, experiments are not necessarily a silver bullet. There exist many known potential biases in experimental 
settings as well. However, under certain assumptions and with robust execution, experiments provide the most reliable 
causal estimates of networked behavior. 
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outcomes is becoming unprecedented. Interdependent behaviors potentially represent the most fundamental 

data generating processes in the social sciences, as they are in some sense what make the social sciences 

social. 

Yet, while the increasing scale, scope and complexity of networked experiments creates tangible 

opportunities for scientific advancement, they also simultaneously create significant new challenges. This 

chapter presented a review of advances in modern networked experimentation, summarizing the 

opportunities and challenges they create for understanding our social world. Fundamental innovations in 

networked experimental design are changing the implications of the experimental setting, sampling, 

randomization procedures and approaches to treatment assignment. At the same time, the analysis of 

networked experiments is witnessing a rapid evolution, from modeling treatment response assumptions, 

measurement and inference to recent approaches to interference and uncertainty in dependent data. These 

changes require networks researchers to be aware of the most modern approaches to experiments in 

interdependent data. At the same time, new challenges and opportunities are shaping the future of 

networked experimentation, particularly in adaptive treatment assignment strategies, novel randomization 

techniques, linking online treatments to offline responses and experimental validation of observational 

methods. 

There is much work to do as we usher in this new era of networked experimentation and I cannot 

think of a more important set of social scientific endeavors. Scalable networked experimentation represents 

an application of the scientific method to questions about our social world, at unprecedented scale and 

precision. It behooves us to tackle such scientific challenges with vigor as we develop these new tools in 

the pursuit of human progress. 
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Tables 
 

Table 1. Examples of Large-Scale Networked Experiments 

Study Focus Context Experimental 
Procedure Scale 

Product Diffusion and Engagement 
Aral and Walker 
(2014) 

Impact of Tie Strength 
and Embeddedness on 

Social Influence 

Facebook App 
Adoption 

Randomize Influence 
Mediating Messages at 

the Dyad Level 
1.3M Users 

Aral and Walker 
(2011a) 

Viral Features and So-
cial Influence in Prod-

uct Adoption 

Facebook App 
Adoption and Use 

Randomize Viral Fea-
tures at the App Level 1.5M Users 

Aral and Walker 
(2012) 

Social Influence and 
Susceptibility in Prod-

uct Adoption 

Facebook App 
Adoption 

Randomize Influence 
Mediating Messages at 

the Individual Level 

1.3M Experimental 
Users 

12M Observational 
Users 

Bapna and 
Umyarov 
(Forthcoming) 

Social Influence in 
Paid Product Adoption 

Last.fm Paid Sub-
scription Adoption 

Randomize Gifted Paid 
Subscriptions at the In-

dividual Level 

40K Experimental Us-
ers 

1.2M Observational 
Users 

Taylor et al. 
(2013) 

Downstream Selection 
Effects in Online Shar-

ing Behavior 
Facebook Offers 

Randomize Sharing 
Mechanisms at Platform 

Level 
1.2M Users 

Hinz et al. 
(2011) 

Seeding Strategies to 
Promote Diffusion 

Redeemable To-
kens ; URLs to a 

viral video 

Randomized Initial Seed 
Recipients 

120 Users/28 Experi-
ments 

1,380 Students 
Social Commerce and Advertising  

Bakshy et al. 
(2012a) Social Advertising Facebook Social 

Advertising 
Randomize Social Sig-

nals in Advertising 

23M Users 
148K Ads 

101M User-Ad Pairs 

Tucker (2011) Social Advertising Unnamed Non-
Profit 

Randomize Social Ad 
Text and Targeting 

630 Ads 
13K Impressions 

Aral and Taylor 
(2011) 

Incentivized Peer Re-
ferral Marketing 

Online Floral De-
livery Site 

Randomize Incentive 
Structure: Selfish, Gen-

erous and Fair 
637 Users 

Information Sharing and Diffusion 

Bakshy et al. 
(2012b) 

Social Influence in In-
formation Diffusion 

Facebook News 
Feed 

Randomize Influence 
Mediating Messages at 

the Individual Level 

253M Users 
76M URLs 

1.2B User-URL Pairs 
Herd Behaviors in Ratings and Cultural Markets  

Salganik et al. 
(2006) 

Herd Behavior in Cul-
tural Markets 

Artificial Music 
Lab 

Randomize Popularity 
Information 14K Users 

Tucker and 
Zhang (2011) 

Popularity Information 
and Choice 

Wedding Service 
Vendor Website 

Randomize Availability 
of Popularity Infor-

mation 

3 Vendor Categories 
90K Click-Throughs 

Muchnik et al. 
(2013) 

Social Influence Bias 
in Online Ratings 

Ratings in an Un-
named Social News 
Aggregation Web-

site 

Randomize First Rating 
at the Comment Level 

116K Users 
101K Comments 

10M User-Comment 
Impression Pairs 

Taylor et al. 
(2014) 

Impact of Identity on 
Rating Social Content 

Ratings in an Un-
named Social News 
Aggregation Web-

site 

Randomize Availability 
of Identity Information 

350K Comments 
17M Impressions 

875K Commenter-
Viewer Pairs 

Health Behaviors 

Centola (2010) 
Social Influence in the 
Spread of Health Be-

haviors 

Artificial Health 
Network  

Randomize Alters / Net-
work Structure 1500 Users 

Centola (2011) 
Homophily and Influ-
ence in the Spread of 

Health Behaviors 

Artificial Health 
Network  

Randomize Alters / Net-
work Structure 700 Users 

Voting and Political Mobilization 

Bond et al. 
(2012) Voting 

Facebook Voter 
Registration Cam-

paign 

Randomize Social Sig-
nals in Voting 61M Users 

Cooperation and Coordination 
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Kearns et al. 
(2006) Graph Coloring Laboratory Randomize Network 

Topology 
2 Experiments 

55 Users 
Fowler and 
Christakis 
(2010) 

Social Influence in Co-
operation 

Laboratory Experi-
ments 

Random Partnering in 
Cooperation Games 240 Users 

Rand and 
Nowak (2011) Cooperation Games Amazon Mechani-

cal Turk Laboratory 
Randomize Fixed and 

Fluid Network Structure 
785 Users 

40 Sessions 
 Suri and Watts 
(2011) Public Goods Game Amazon Mechani-

cal Turk Laboratory 
Randomize Network 

Topology 
113 Experiments 

24 Users/Experiment 
Mason and 
Watts (2012) 

Cooperation and Ex-
ploration Games 

Amazon Mechani-
cal Turk Laboratory 

Randomize Network 
Topology 

256 Experiments 
16 Users/Experiment 

Reciprocity and Altruism 
Leider et al. 
(2009) Altruism, Directed Al-

truism 
Facebook Dictator  

and Helping Games 

Randomize Anonymity 
and  Repeated Interac-

tion 

802 Students 
2,360 Students 

Bapna et al. 
(2011) Reciprocity Games Facebook Game Randomize Anonymity 190 Users 

77 Games 
Innovation Contest Performance 

Boudreau and 
Lakhani (2011) Innovation Contests NASA TopCoder 

Contest 

Randomize Incentives 
and Sorting on Compet-

itive Regime 
Multiple Settings 

Labor Market Outcomes 
Horton et al 
(2010) Labor Markets ODesk Online La-

bor Market 
Three Different Ran-

domizations Multiple Settings 

Two-Sided Markets and Matching 

Tucker and 
Zhang (2010) 

Growing Two-Sided 
Markets 

B2B Exchange 
Market 

Randomize Display of 
Number of Buyers 

and/or Sellers 

15 Categories  
3,314 Listings 

Bapna et al. 
(2012) 

Effect of Anonymous 
Weak Signaling on 

Date Matching 
Dating Website Randomize Anonymous 

Weak Signaling Feature 

10K Experimental Us-
ers 

100K Observational 
Users 

 
  

Table 2. Common Networked Randomization Procedures 
Design Procedure Application Examples 

Peer 
Encouragement  

Designs 

Randomize Encouragement of 
Behavior in Focal Node; Meas-
urement of Response in Peers 

Measurement of Peer Ef-
fects, Social Influence or 
Social Contagion 

Randomly Encourage Product Adoption 
(Bapna and Umayurov Forthcoming); 
Randomly Encourage Thankful Status 

Updates on Facebook (Eckles) 

Mechanism 
Designs 

Randomize Characteristics of 
Channels of Interaction Between 
Nodes; Measure Responses of 
Ego and Peers 

Measurement of Impact of 
Interaction Channels on Dif-
fusion, Contagion, Coopera-
tion 

Randomize Viral Features of a Product 
(Aral and Walker 2011); Randomize 

Message Delivery (Bakshy et al 2012, 
Aral and Walker 2012) 

Structural 
Designs 

Randomize Properties of Network 
Structure; Measure Responses of 
Ego and Peers 

Measurement of Impact of 
Network Structure on Diffu-
sion, Contagion, Coopera-
tion, Team Performance 

Randomize Network Structure in Be-
havior Diffusion (Centola 2010); in Co-
operation Games (Suri and Watts, Rand 

et al) 

Setting 
Designs 

Randomize Environment in which 
Social Behavior Takes Place (e.g. 
Availability of Contextual Infor-
mation or Incentive Structures); 
Measure Responses of Ego and 
Peers 

Measurement of Social En-
vironment Effects on Inter-
actions, Transactions, Diffu-
sion, Cooperation 

Randomize Incentives to Propagate a 
Product (Aral and Taylor 2011); Ran-
domize Incentives and Sorting (Bou-

dreau and Lakhani 2011) 
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Figures 

 
Figure 1. Key Decisions in the Design and Analysis of Networked Experiments. The figure represents key 
decisions the researcher must make during the design and analysis of networked experiments. Though the figure 
presents these decisions sequentially, the process is, in a sense, iterative. Problems encountered during estimation, 
for example interference, necessitate changes in one’s approach to sampling, randomization and modeling. 
Though there are feedback loops that connect the key decisions, this sequential representation helps frame the 
problems in a logical order. 

 


