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Cognitive neuroscience of aging studies traditionally target participants age 65 and older. However, epidemiological surveys show that
many women report increased forgetfulness earlier in the aging process, as they transition to menopause. In this population-based fMRI
study, we stepped back by over a decade to characterize the changes in memory circuitry that occur in early midlife, as a function of sex
and women’s reproductive stage. Participants (N � 200; age range, 45–55) performed a verbal encoding task during fMRI scanning.
Reproductive histories and serologic evaluations were used to determine menopausal status. Results revealed a pronounced impact of
reproductive stage on task-evoked hippocampal responses, despite minimal difference in chronological age. Next, we examined the
impact of sex and reproductive stage on functional connectivity across task-related brain regions. Postmenopausal women showed
enhanced bilateral hippocampal connectivity relative to premenopausal and perimenopausal women. Across women, lower 17�-
estradiol concentrations were related to more pronounced alterations in hippocampal connectivity and poorer performance on a subse-
quent memory retrieval task, strongly implicating sex steroids in the regulation of this circuitry. Finally, subgroup analyses revealed that
high-performing postmenopausal women (relative to low and middle performers) exhibited a pattern of brain activity akin to premeno-
pausal women. Together, these findings underscore the importance of considering reproductive stage, not simply chronological age, to
identify neuronal and cognitive changes that unfold in the middle decades of life. In keeping with preclinical studies, these human
findings suggest that the decline in ovarian estradiol production during menopause plays a significant role in shaping memory circuitry.
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Introduction
Our society is rapidly aging (Howden and Meyer, 2010), and
three out of four older adults report problems with their memory

(Koivisto et al., 1995). Thus, maintaining intact memory func-
tion with age may be one of the greatest public health challenges
of our time. Intervening early with high-risk individuals is critical
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Significance Statement

Maintaining intact memory function with age is one of the greatest public health challenges of our time, and women have an
increased risk for memory disorders relative to men later in life. We studied adults early in the aging process, as women transition
into menopause, to identify neuronal and cognitive changes that unfold in the middle decades of life. Results demonstrate regional
and network-level differences in memory encoding-related activity as a function of women’s reproductive stage, independent of
chronological age. Analyzing data without regard to sex or menopausal status obscured group differences in circuit-level neural
strategies associated with successful memory retrieval. These findings suggest that early changes in memory circuitry are evident
decades before the age range traditionally targeted by cognitive neuroscience of aging studies.
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for the attenuation and prevention of disability, but early targets
for treatment have not been identified. Given evidence that
women are at a higher risk for memory disorders than men later
in life (Gao et al., 1998; Mielke et al., 2014), applying a sex-
dependent lens to the study of memory circuitry aging may help
identify early antecedents of future memory decline. Moreover,
studying adults early in the aging process, as women transition
into menopause, may reveal sex-dependent characteristics un-
derlying the aging of memory circuitry in the middle decades of
life. Substantial evidence from animal studies indicates that sex
steroid hormones, including 17�-estradiol, influence synaptic
organization within the hippocampus and prefrontal cortex
(PFC), regions that support episodic memory encoding (Bailey et
al., 2011; Boulware et al., 2012). Despite clear implications for
human health, less is known about the role of sex steroids in the
aging of memory circuitry at a human cognitive neuroscience
level.

Verbal memory encoding is thought to rely on the coordi-
nated activity of neurons in a distributed set of brain regions,
including the hippocampus and other medial temporal lobe
structures, ventrolateral and dorsolateral PFC, and posterior pa-
rietal cortex (PPC; Buckner et al., 1999; Uncapher et al., 2006;
Blumenfeld and Ranganath, 2007; Spaniol et al., 2009; Cabeza
and Dennis, 2012). Age-related changes in neural activity during
memory encoding are well established (Morrison and Baxter,
2012; Reuter-Lorenz and Park, 2010; Grady and Craik, 2000;
Morcom et al., 2003; Rajah et al., 2015), with healthy older adults
typically showing altered responses in PFC and hippocampus
relative to younger adults. A distinct characteristic of these two
regions is that they are densely populated with sex steroid hor-
mone receptors, including estrogen receptors � and � (ER-� and
ER-�).

Two decades of experimental evidence in rodents have estab-
lished estradiol’s role in hippocampal structural plasticity (Woolley
and McEwen, 1994; McEwen 2002; Brinton 2009; Dimitriu et al.,
2010; Liu et al., 2008). For example, dendritic spine density in hip-
pocampal CA1 neurons varies over the course of the estrous cycle
(Woolley et al., 1990; Woolley and McEwen, 1993), and ovariecto-
mization leads to a 30% loss in spine density, which is reversed by
estradiol replacement (Dimitriu et al., 2010). In nonhuman pri-
mates, natural menopause reduces the density of perforated synapse
spines, which is correlated with worse recognition memory (Hara et
al., 2012). Previous findings at the epigenetic level suggest that estra-
diol shapes hippocampal-dependent memory in part by inducing
chromatin modifications that promote hippocampal plasticity (For-
tress and Frick, 2014). In parallel, nonhuman primate studies have
made substantial progress toward characterizing the role of estradiol
in PFC synaptic plasticity and PFC-mediated cognitive functions
(Hao et al., 2006; Morrison et al., 2006; Wang et al., 2010; Rapp et al.,
2003). Mounting evidence from human neuroimaging studies fur-
ther implicates sex steroids in the regulation of memory circuitry
(Berman et al., 1997; Shaywitz et al., 1999; Duff and Hampson, 2000;
Sherwin, 2003; Grigorova et al., 2006; Dumas et al., 2010; Jacobs and
D’Esposito, 2011; Epperson et al., 2012; Hampson and Morley, 2013;
Shanmugan and Epperson, 2014; Jacobs et al., 2016). This research
builds on the pioneering work of Berman et al. (1997) and Shaywitz
et al. (1999), who used pharmacological blockade and hormone re-
placement techniques to illustrate estradiol and progesterone’s in-
fluence on regional activity in memory circuitry.

Together, these findings provide converging evidence that
functional changes in estrogen receptor-rich regions of memory
circuitry are tied to ovarian status. Thus, the decline in ovarian

estradiol production during the menopausal transition in women
may impact specific neural circuits early in the aging process
(Hogervorst et al., 2000; Adams et al., 2002; Morrison et al., 2006;
Sherwin, 2006; Brinton 2009; Boulware et al., 2012; Maki and
Henderson, 2012; Epperson, 2013; Jacobs et al., 2016). In this
population-based functional MRI study of early midlife men and
women (N � 200; age range, 45–55), we demonstrate that re-
gional and network-level changes in memory circuitry during
verbal encoding are evident early in the aging process as a func-
tion sex, women’s reproductive stage, and sex steroid hormone
concentrations.

Materials and Methods
Subjects. Participants were selected from 17,741 pregnancies that consti-
tute the New England Family Study (NEFS), a Boston–Providence sub-
sidiary of the national Collaborative Perinatal Project (CPP). The NEFS
is a prospective study initiated over 50 years ago to investigate prenatal
and familial antecedents of pediatric, neurological, and psychological
disorders of childhood (Niswander and Gordon, 1972). Pregnant
women, recruited between 1959 and 1966 were representative of patients
receiving prenatal care in the Boston–Providence area. In a series of
studies over the last 20 years, we have followed a subset of NEFS offspring
to investigate the fetal programming of adult psychiatric and general
medical disorders and sex differences therein. We recently completed a
study of the fetal programming of sex differences in memory circuitry
aging (NIMH R01 MH090291). In this set of analyses, 200 offspring (100
males, 100 females) were recruited in early midlife, 45–55 years of age,
and completed clinical, cognitive, and neuropsychological assessments
in addition to functional and structural magnetic resonance and diffu-
sion tensor imaging (fMRI, structural MRI, Diffusion Tensor Imaging).
Exclusionary criteria included any history of neurologic disease, CNS
damage, head injury with loss of consciousness, endocrine disorders,
heart disease, alcohol-related diseases, current or history of psychosis,
other medical illnesses that may significantly alter CNS function, or any
MRI contraindication. Four subjects (all men) were excluded from fMRI
analyses due to excessive motion (�15% of trials were flagged as motion
outliers), and two subjects (both men) did not complete the functional
runs, producing a sample of 194 (100 women). Human subjects’ ap-
proval was granted by Partners Healthcare and Brown University. All
volunteers gave written informed consent and were paid for their
participation.

Study design and procedures. Subjects were seen at Brigham and
Women’s Hospital Outpatient Clinical Research Center. Women who
were still menstruating were scheduled in the early follicular phase (day
3–5) of their menstrual cycle, persuant to subject report. Based on com-
mon reference ranges (Beckman Coulter), progesterone levels for 75% of
premenopausal women were indicative of follicular phase testing; how-
ever, eight women had progesterone levels suggestive of luteal phase
testing. Subjects fasted for �8 h before a morning baseline blood draw.
Subjects were offered a light standardized breakfast (excluding caffeine)
followed by a 1 h MRI scanning session. Following the scan, subjects
completed a structured clinical interview, a basic neuropsychological
battery, two behavioral memory tasks, family medical history, and a re-
productive/menstrual cycle history administered by an experienced clin-
ical interviewer/clinician in a private testing room.

Neuropsychological assessments. Participants completed a basic mood
and neuropsychological battery that included the following: a digit span
(Wechsler, 1997), a Controlled Oral Word Association Test for verbal
fluency to the letters F, A, and S (FAS) and categories (Benton, 1968), the
American National Adult Reading Test (Nelson, 1982), the State-Trait
Anxiety Inventory, and the Profile of Moods Questionnaire (POMS). In
addition, two measures of episodic memory, the 12-item Face Name
Associative Memory Exam (Sperling et al., 2003; Rentz et al., 2011) and
the 6-trial Selective Reminding Test (SRT; Grober et al., 2000; Lemos et
al., 2014), were administered based on previous evidence of their in-
creased sensitivity to detecting early cognitive decline (Hedden et al.,
2012). Findings from these behavioral memory tasks were described in
detail previously (Rentz et al., 2016).
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Endocrine assessments. Trained nurses inserted a saline-lock intrave-
nous line in the nondominant forearm and acquired a fasting morning
blood at �8:00 A.M. to evaluate hypothalamic–pituitary– gonadal axis
hormones, including serum levels of sex steroids (estradiol, progester-
one, and testosterone) and gonadotropins [follicle-stimulating hormone
(FSH)]. Approximately 10 cc of blood were collected at Brigham and
Women’s Hospital Center for Clinical Investigation. Samples were al-
lowed to clot for 30 – 45 min, after which blood was centrifuged (1500 �
g for 10 min) and serum was aliquoted into 2 ml microtubes. Serum
aliquots were stored at �20°C for neuroendocrine evaluations and ar-
chiving. 17�-Estradiol, progesterone, and testosterone concentrations
were determined via liquid chromatography–mass spectrometry at the
Brigham and Women’s Hospital Research Assay Core. Assay sensitivities,
dynamic range, and intra-assay coefficients of variation were as follows,
respectively: estradiol, 1 pg/ml, 1–500 pg/ml, �5% RSD; progesterone,
0.05 ng/ml, 0.05–10 ng/ml, 5.75% relative standard deviation; testoster-
one, 1.0 ng/dl, 1–2000 ng/dl, �2% RSD. FSH levels were determined via
chemiluminescent assay (Beckman Coulter). The assay sensitivity was
0.2 mIU/ml, the dynamic range was 0.2–200 mIU/ml, and the intra-assay
coefficient of variation was 3.1– 4.3%. 17�-Estradiol values were log-
transformed to achieve a normal distribution.

Menopausal staging. The timing of menopausal transition between the
first clinical appearance of decreased ovarian function (i.e., shorter inter-
menstrual time periods) to menstrual irregularity and final amenorrhea
is highly variable and can occur over several years. Women in this sample
were between the ages of 45–55 years and were in various states of ovarian
decline. Some women were already in menopause with permanent
amenorrhea, low estradiol levels, and elevated gonadotropins; some ex-
hibited signs of follicular failure (elevated FSH and oligoamenorrhea);
and some showed normal cycling. Reproductive histories and hormonal
evaluations were used to determine the reproductive stage of women in
our sample following the Stages of Reproductive Aging Workshop
(STRAW)-10 staging system (Harlow et al., 2012). Principal staging cri-
teria were based on menstrual cycle characteristics, with supportive
criteria provided by FSH levels. Women were categorized as late repro-
ductive (“premenopause”; n � 32), menopausal transition (“perimeno-
pause”; n � 29), or early postmenopausal (“postmenopause”; n � 31).
The women in our sample ranged from Stage �3b, characterized by
regular cycling and low FSH, to Stage �1c, characterized by amenorrhea
and elevated FSH. An additional eight women reported current use of a
hormone replacement regimen and were excluded from all analyses re-
lated to reproductive stage. Their data were included in the “supergroup”
analyses of fMRI data used to generate generic, task-evoked functional
regions of interest (ROIs).

Verbal encoding fMRI paradigm and subsequent memory retrieval task.
Participants performed a verbal encoding task during fMRI scanning
(Stone et al., 2005; Golby et al., 2001). The task consisted of two condi-
tions, “Novel” and “Repeat.” In each condition, subjects were presented
with a pair of common nouns on a black background presented centrally
(4000 ms duration) with a variable interstimulus interval (600 –1500
ms). Subjects were asked to silently generate a sentence using both words
and were instructed to remember the stimuli for a later test. In the Repeat
condition, subjects viewed the same noun pair repeated throughout each
block of a run and were instructed to generate the same sentence each
time they saw the word pair. In the Novel condition, subjects viewed
novel word pairs and generated a new sentence in response to each pair.
Subjects were instructed to respond to every word pair with a single
button press (pointer finger) to indicate that they had successfully
formed a sentence in their mind. Subjects performed two experimental
runs of the task. Each run contained three Repeat blocks and three Novel
blocks, for a total of six blocks per condition.

A subsequent recognition memory task was administered immediately
following the encoding task using the same response box and while the
subject remained in the scanner. Subjects viewed single nouns, including
24 previously presented nouns and 24 foils. Each stimulus was presented
for 4000 ms with a variable interstimulus interval. Subjects were in-
structed to indicate, using one of two buttons, whether they had seen the
item on the screen in the previous task (yes) or not (no). Response times
(RT) and accuracy (d	) were recorded. Response time values �100 ms

were considered null and not included in the computation of subjects’
average RT. The sensitivity index d	 was calculated (Wickens, 2001) as
d	 � z[probability(hits)] � z[probability(false alarms)]. In accordance
with signal detection theory, a higher d	 represents a greater distinction
between signal and noise (i.e., better signal detection).

fMRI data acquisition. MRI data were acquired with a Siemens 3T Tim
Trio scanner equipped with a 12-channel head coil. Functional data were
obtained using a T2* weighted echoplanar imaging sequence sensitive to
blood oxygenation level-dependent (BOLD) contrast (repetition time,
2000 ms; echo time, 30 ms; field of view, 200 mm; flip angle, 90°; voxel
size, 3.1 � 3.1 � 3.0). Each functional volume consisted of 33 3 mm
oblique axial slices. A T1-weighted image was collected using a high
resolution 3D multiecho MPRAGE sagittal sequence with an isotropic
resolution of 1 mm 3. Following acquisition, MRI data were converted to
Nifti format and preprocessed in SPM8 (Wellcome Department of Cog-
nitive Neurology, London, United Kingdom). Preprocessing included
realignment and geometric unwarping of echoplanar imaging images
using magnetic field maps, correction for head motion, nonlinear
volume-based spatial normalization (Montreal Neurological Institute
template MNI-152), and spatial smoothing with a Gaussian filter (6 mm
full-width at half-maximum). Additional software (http://web.mit.edu/
swg/software.htm) was used to identify and exclude outliers in the global
mean image time series (threshold, 3.0 SD from the mean) and move-
ment (threshold, 1.0 mm; measured as scan-to-scan movement, sepa-
rately for translation and rotation) parameters. Statistical parametric
maps of BOLD activation were calculated in SPM8 using the general
linear model approach (Worsley and Friston, 1995).

fMRI data analyses. Hemodynamic responses were modeled using a
gamma function and convolved with onset times of Novel and Repeat
blocks to form the general linear model (GLM) at the single subject level.
Outlier time points and the six rigid-body movement parameters were
included in the GLM as covariates of no interest. To test a priori hypoth-
eses targeting ROIs within memory encoding circuitry (Golby et al.,
2001; Blumenfeld and Ranganath 2007; Spaniol et al., 2009; Uncapher
and Wagner, 2009), we conducted ROI analyses on functionally defined
masks of left dorsal/posterior VLPFC (BA44/BA45/BA9), mid-VLPFC
(BA45), ventral/anterior VLPFC (BA47; MNI coordinates, �51, 20, 25;
�51, 30, 10; and �39, 26, �2, respectively), left posterior parietal cortex
(BA7; �24, �61, 49; 10 mm spheres around peak loci), and anatomically
defined masks of the hippocampus. Functional ROIs were defined from
whole-brain analyses in the larger sample (N � 194; see Fig. 2B) based on
peak task-evoked activity generated at p � 10 �16, T � 8.99, and df � 193.
The hippocampal ROI was anatomically defined using a manually seg-
mented MNI-152 brain (based on methods previously published by the
Center for Morphometric Analysis at Massachusetts General Hospital
and Harvard Medical School; Makris et al., 2013). ROIs were imple-
mented as overlays on the SPM8 canonical brain using the Wake Forest
University PickAtlas ROI toolbox for SPM (Maldjian et al., 2003). Mean
� weights from the ROIs were extracted for each participant as a function
of encoding load (Novel � Repeat) using the REX toolbox (Whitfield-
Gabrieli, 2009). For each participant and ROI, � estimates were entered
into an ANOVA with reproductive status (premenopausal, perimeno-
pausal, postmenopausal) as a between-subjects factor, and age as a
covariate. Parallel analyses were run with sex (male vs female) as the
between-subjects factor.

To investigate encoding-dependent alterations in functional connec-
tivity by reproductive status and sex, we performed psychophysiological
(PPI) analyses with seeds placed in two targeted regions: the hippocam-
pus and dorsal VLPFC (BA44/BA45/BA9). The hippocampus was a clear
candidate for examining the impact of reproductive status on functional
connectivity given the strong a priori evidence implicating sex steroids in
the regulation of this region and the results of the univariate analyses (see
Results, Regional BOLD response in VE circuitry). Second, the dorsal
VLPFC region showed the highest magnitude of task-evoked activity,
making it a compelling candidate for examining functional interactions
with PFC. Given the left-hemisphere dominance in verbal encoding tasks
(Blumenfeld and Ranganath 2007; Spaniol et al., 2009), time courses
from the left VLPFC seed and left hippocampus were extracted for PPI
analyses. For each participant, subject-level GLMs were constructed as
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described earlier, with the addition of the seed time course as a regressor
and two additional PPI regressors (the interaction of the seed time course
with the regressors for Novel and Repeat conditions). These interaction
regressors are orthogonal to the task and seed regressors and describe the
contribution of the interaction above and beyond the main effects of the
task and seed time course (McLaren et al., 2012). VLPFC and hippocam-
pal connectivity was measured at the single subject level by estimating the
difference between the interaction of the seed time course with the re-
gressor for Novel versus Repeat blocks. Single subject activation maps
were entered into second-level random effects analysis to probe group
differences in memory encoding-dependent VLPFC or hippocampal
connectivity. Given extensive evidence for the involvement of posterior
parietal cortices in verbal memory tasks (Uncapher and Wagner, 2009)
and sex differences in PFC–PPC structural covariance (Abbs et al., 2011),
we focused our analyses to examine connectivity between seed regions
and PPC by applying small volume correction to a mask of the parietal
lobe. The small volume correction approach in SPM8 limits voxelwise
analyses to voxels within an a priori volume, defined here as any
encoding-sensitive region within parietal cortex. The mask was gener-
ated by taking the conjunction of voxels that fell within an anatomical
parietal mask and those that demonstrated encoding-related activity
from the supergroup (N � 194) activity map. Parallel analyses were run
with sex (male vs female) as the between-subjects factor. Connectivity
between the left hippocampal seed and right hippocampus was examined
by applying a small volume correction across the anatomically defined
right hippocampus.

Behavioral data were analyzed with SPSS version 20.0 using ANOVAs
for demographic, neuropsychological, and clinical characteristics with
continuous variables where equal variance was assumed. ANCOVAs
were used to asses group differences in regional BOLD responses after
partialling out variance attributable to chronological age. Our strongest a
priori hypothesis was that advanced reproductive stage and, in particular,
the decline in 17�-estradiol concentrations would alter task-evoked ac-
tivity in the hippocampus and functional connectivity from the hip-
pocampal seed. We conducted parallel analyses in VLPFC and posterior
parietal cortex, two additional key nodes in memory encoding circuitry.
Spearman rank-order correlations were conducted to determine the re-
lationship between BOLD � values, behavioral performance, and sex
steroid hormone concentrations. Correlations were bootstrapped (1000
iterations), and 95% confidence intervals were computed. A p � 0.05
was designated for statistical significance (any p � 0.08 is noted for
completeness).

Results
Demographic, neuropsychological, and
clinical characteristics
The community-based sample was 92% Caucasian and 8% Afri-
can American. Participants were in early midlife (mean age, 49.9;
SD, 2.1), with an average of 2 years of college and an average
verbal IQ of 116.8 (SD, 10.5). Table 1 reports demographic char-
acteristics of the sample in men and by reproductive stage in

women. Groups were comparable on body mass index, educa-
tion, parental socioeconomic status, estimated verbal IQ, and
ethnicity. Although age ranges and mean age were similar across
groups (differing, on average, by �18 months), a group differ-
ence in age was significant (F(3,182) � 2.8, p � 0.04, � 2 � 0.04),
showing that premenopausal women were younger than post-
menopausal women (t(61) � �2.96, p � 0.009) and men (t(124) �
�2.5, p � 0.013). Thus, all analyses included chronological age
as a covariate. Perimenopausal and postmenopausal women
and men did not differ significantly from one another (all p
values �0.2).

Neuropsychological and mood assessments indicated that
groups did not differ on verbal fluency (composite of FAS and cate-
gories, F(3,181) � 0.40, p � 0.75), digit span (backward, F(3,181) �
0.97, p � 0.41), state anxiety (F(3,181) � 0.09, p � 0.96), trait anxiety
(F(3,181) � 0.17, p � 0.92), or mood scores from the POMS (sub-
scores for tension–anxiety, depression–dejection, vigor–activity, fa-
tigue–inertia, confusion–bewilderment, anger–hostility; all F � 1.7,
p�0.2). Performance on two episodic memory tests, the Face Name
Associative Memory Exam (Rentz et al., 2011; Papp et al., 2014;
Face-Name) and six-trial SRT (Masur et al., 1989), differed by sex
and reproductive stage. These findings were reported in detail pre-
viously (Rentz et al., 2016). To summarize, in aggregate, women
outperformed men on both the Face Name test (free recall, t(184) �
�3.26, p � 0.001, two-tailed, r � 0.23) and SRT (delayed recall,
t(183) � �4.15, p � 0.0001, two-tailed, r � 0.28). However, subse-
quent analysis revealed that the Face Name test performance differed
by reproductive stage (adjusted for age; F(3,179) � 5.85, p � 0.001,
partial �2 � 0.09), with postmenopausal women (mean, 9.34; SE,
0.73) performing worse than premenopausal women (mean, 11.75;
SE, 0.72; p � 0.021) and perimenopausal women (mean, 11.67; SE,
0.76; p � 0.028), but not significantly different from men (mean,
8.93; SE, 0.42; p�0.62). A similar pattern was observed with the SRT
task (Rentz et al., 2016). Medication use was determined by struc-
tured clinical interview and medical history information. Psychotro-
pic medication use was uncommon and similarly distributed across
groups: benzodiazapines (3 premenopausal, 2 perimenopausal, 3
postmenopausal women, 9 men) and antidepressants (selective se-
rotonin reuptake inhibitors; 7 premenopausal, 3 perimenopausal, 4
postmenopausal women, 5 men). Nonpsychotropic medications
consisted of those used as a preventative measure for cardiac-related
symptoms, e.g., statins (9 premenopausal, 10 perimenopausal, 10
postmenopausal women, 43 men).

Hormonal evaluations
Analysis of sex steroid hormones and gonadotropins confirmed
that serum estradiol (F(2,89) � 35.35, p � 0.001, r � 0.67) and

Table 1. Demographic characteristics of the sample in women by menopausal stage and men

Characteristic

Pre (n � 32;
age range, 46 –53)

Peri (n � 29;
age range, 47–55)

Post (n � 31;
age range, 46 –54)

Men (n � 94;
age range, 45–55)

F value p valueMean SD Mean SD Mean SD Mean SD

Age 49.1 1.5 49.8 1.9 50.5 2.2 50.2 2.3 2.84 0.04
BMI 28.4 6.1 28.5 6.1 27.8 5.8 29.1 5.4 0.39 0.76
Parental SES 5.9 2.1 5.4 1.9 5.9 1.9 5.8 1.8 0.58 0.63
Education (years) 14.5 1.9 15.2 1.6 14.9 1.7 14.6 2.4 0.34 0.79
Verbal IQ 119.5 7.8 115.3 10.7 115.2 11.2 116.9 11.0 1.13 0.34

n % n % n % n %

Ethnicity (% Caucasian) 24 92 24 96 18 90 59 94

Of the 200 subjects enrolled, eight women were excluded from analyses due to current hormone therapy use; four subjects were excluded due to excessive head motion (�15% motion outliers), and two subjects did not complete the
functional scans due to claustrophobia, producing a final sample of 186. Parental socioeconomic status (SES) was a composite index of family income, education, and occupation and ranged from 1.0 (low) to 9.3 (high). Verbal IQ was
estimated from the American National Adult Reading Test (Nelson, 1982). Pre, Premenopausal; Peri, perimenopausal; Post, postmenopausal.
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progesterone (F(2,89) � 12.04, p � 0.001, r � 0.22) levels declined,
while FSH levels rose (F(2,90) � 47.31, p � 0.001, r � 0.52) over
the menopausal transition (Fig. 1).

Verbal retrieval behavioral performance
Behavioral performance on the verbal retrieval task was compa-
rable across groups, with no significant differences observed for
measures of accuracy (percentage correct, F(3,177) � 0.21, p �
0.89; d	 sensitivity index, F(3,177) � 0.29, p � 0.93) or response
time (F(3,177) � 0.41, p � 0.75; Fig. 2A).

Regional BOLD response in VE circuitry
The verbal encoding paradigm evoked robust responses within
memory circuitry regions (Fig. 2B). Region of interest analyses ex-
amined group differences in task-evoked activity within VLPFC sub-
divisions (along a dorsal/posterior to ventral/anterior gradient),
hippocampus, and posterior parietal cortex (Fig. 3A). We began by
analyzing the data by sex, regardless of women’s reproductive status.
Adjusting for age and performance, no significant differences be-
tween men and women were observed for task-evoked responses
within VLPFC or hippocampus (all F(1,173) � 0.7, all p � 0.4). The
only exception was PPC, which men activated more strongly than
women (F(1,173) � 4.78, p � 0.03, r � 0.16; Fig. 3C).

However, group differences emerged
after taking into account the reproductive
status of women. Significant changes in
hippocampal activity were observed as a
function of women’s reproductive stage,
independent of chronological age. Task-
evoked activity in left hippocampus de-
creased over the menopausal transition
(F(2,85) � 3.5, p � 0.035, r � 0.28), with
premenopausal (mean, 0.28; SE, 0.06; p �
0.016) and perimenopausal (mean, 0.23;
SE, 0.06; p � 0.043) women exhibiting
greater activity relative to postmeno-

pausal women (mean, 0.03; SE, 0.06; Fig. 3B). Linear regression
analyses indicated that, controlling for age, as endogenous estra-
diol concentrations declined, the magnitude of left hippocampal
activity decreased (� � 0.15, t � 2.0, p � 0.05). Univariate activ-
ity in VLPFC and PPC did not differ by women’s reproductive
status (all F � 1.3, p � 0.3).

Functional connectivity during verbal encoding
Generalized psychophysiological interaction analyses examined
group differences in verbal encoding-dependent connectivity
from two seed regions, dorsal VLPFC and hippocampus. Analy-
ses by sex revealed stronger intra-VLPFC connectivity in men.
Clusters in ventral/anterior VLPFC displayed greater functional
connectivity with the dorsal VLPFC seed in men relative to
women (coordinates of peak voxel, �33, 29, �8; peak-level pFWE

corrected � 0.008; cluster-level pFWE corrected � 0.018; Fig. 4A). Men
also showed evidence of heightened connectivity between VLPFC
and bilateral inferior parietal lobule (BA40) relative to women.
Two clusters (left PPC, �51, �43, 49; right PPC, 54, �49, 52)
showed trend-level significance at pFWE corrected � 0.08. At a
threshold of pFWE corrected � 0.05, no clusters showed stronger
connectivity with the VLPFC seed in women (as a whole) com-
pared to men.

In contrast, women (as a whole) showed greater encoding-
related connectivity between the left hippocampal seed and right
hippocampus (coordinates of peak voxel, 33, �25, �14; peak-
level pFWE corrected � 0.045; cluster-level pFWE corrected � 0.04).
However, analyzing data with respect to women’s reproductive
stage revealed that bilateral hippocampal activity was driven by
postmenopausal women, who displayed heightened connectivity
relative to premenopausal women, perimenopausal women, and
men (all peak-level and cluster-level pFWE corrected � 0.05; Fig.
5A,B). Relative to premenopausal women, postmenopausal
women showed heightened connectivity between left hippocam-
pus and three right hippocampal clusters: 21, �10, �26 (peak-
level pFWE corrected � 0.007; cluster-level pFWE corrected � 0.027); 27,
�40, �2 (peak-level pFWE corrected � 0.033; cluster-level
pFWE corrected � 0.042); 21, �10, �26 (peak-level pFWE corrected �
0.041; cluster-level pFWE corrected � 0.042). Relative to perimeno-
pausal women, postmenopausal women showed greater
connectivity with one right hippocampal cluster: 21, �10, �26
(peak-level pFWE corrected � 0.029; cluster-level pFWE corrected �
0.042). Finally, relative to men, postmenopausal women showed
greater connectivity with two clusters in right hippocampus: 21,
�10, �26 (peak-level pFWE corrected � 0.011; cluster-level
pFWE corrected � 0.033) and 30, �25, �17 (peak-level
pFWE corrected � 0.013; cluster-level pFWE corrected � 0.022).

To plot the magnitude of bilateral hippocampal connectivity
across groups and control for chronological age, mean � values
were extracted from the entire right hippocampal mask (542 vox-

Figure 1. Sex steroid and gonadotropin hormone concentrations by menopausal stage. Serum estradiol and progesterone
levels declined and FSH levels rose as a function of advancing reproductive age in women. Pre, Premenopause (n � 32); Peri,
perimenopause (n � 29); Post, postmenopause (n � 31). Error bars represent 
1 SEM. ***p � 0.001.

Figure 2. Verbal encoding circuitry and subsequent memory retrieval performance.
A, Memory retrieval response time (RT) and accuracy (discriminability index, d	) by group.
B, Task-evoked BOLD responses throughout verbal encoding circuitry, Novel � Repeat, dis-
played at p � 10 �16 (N � 194). Error bars represent 
1 SEM. Pre, Premenopause (n � 32);
Peri, perimenopause (n � 29); Post, postmenopause (n � 31); men (n � 94).
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els) to avoid biasing the results by selecting clusters known to
differ across groups. The magnitude of connectivity between the
left hippocampal seed region and right hippocampal ROI (aver-
aged across all voxels) showed a similar impact of menopausal
group (F(3,184) � 3.58, p � 0.015, r � 0.24), partialling out vari-
ance attributable to age. Post hoc comparisons confirmed that
postmenopausal women exhibited greater bilateral hippocampal
connectivity compared to premenopausal women (mean, �0.21;
SD, 0.54; p � 0.002), perimenopausal women (mean, �0.04; SD,
0.61; p � 0.053), and men (mean, �0.07; SD, 0.52; p � 0.007; Fig.
5B). Finally, to investigate the role of gonadal hormones in shap-
ing bliateral hippocampal connectivity in women, mean PPI �
values from the right hippocampal mask (representing the mag-
nitude of functional connectivity with the left hippocampal seed)
were related to estradiol concentrations. Linear regression anal-

yses indicated that, controlling for age, as estradiol levels de-
clined, the magnitude of left–right hippocampal connectivity
substantially increased (F(2,86) � 8.89, p � 0.001, r � 0.42; estra-
diol, � � �0.57, t � �3.76, p � 0.001; Fig. 5C). This association
was not observed for progesterone (F(2,86) � 0.78, p � 0.65).

In sum, during verbal memory encoding, men showed height-
ened intra-VLPFC functional connectivity (from more dorsal/
posterior to ventral/anterior subdivisions) and some evidence of
greater PFC–PPC connectivity relative to women. In contrast,
women showed heightened bilateral hippocampal connectivity as
a function of advanced menopausal status and declining estradiol
levels, independent of chronological age.

Finally, to further investigate the altered pattern of hippocam-
pal functional connectivity in postmenopausal women, partici-
pants were subdivided into tertiles of “low” (n � 10), “middle”
(n � 11), and “high” (n � 10) performers based on a composite
index of performance on the Face Name Associative Memory task
(Fig. 6A), a task shown previously to be sensitive to early changes
in memory function (Rentz et al., 2011; Hedden et al., 2012).
Within postmenopausal women, the highest performers showed
the least recruitment of contralateral right HIPP (i.e., smallest
magnitude of left–right hippocampal connectivity; F(2,30) � 4.3,
p � 0.024, r � 0.49; Fig. 6B). Post hoc comparisons revealed that
high performers (mean, �0.28; SD, 0.57) differed significantly
from low (mean, 0.67; SD, 1.0; p � 0.007) and middle (mean,
0.38; SD, 0.52; p � 0.045) performers, while low and middle
tertiles did not differ from one another (p � 0.39). In addition,
postmenopausal women with preserved memory function re-
cruited VLPFC (BA45) more strongly than poorer performing
subjects (F(2,30) � 3.36, p � 0.050; high vs low, p � 0.056; high vs
middle, p � 0.023; Fig. 6C).

Figure 3. Modulation of verbal encoding-related fMRI BOLD activity in midlife by meno-
pausal status and sex. A, Surface location of functionally defined masks of VLPFC subdivisions,
BA44/BA45/BA9 (turquoise), BA45 (dark blue), BA47 (green), and posterior parietal (BA7, or-
ange) on a rendered brain. Functional ROIs were generated from a supergroup activity map
(Novel�Repeat; N � 194). The white box reveals a cutout of the anatomically defined left
hippocampal mask (yellow). B, Task-evoked activity in left hippocampus decreased over the
transition to menopause. Premenopausal (n � 32) and perimenopausal (n � 29) women
exhibited greater activity relative to postmenopausal women (n � 31). C, Men (n � 94)
showed greater activity in left posterior parietal cortex relative to women (n � 92), regardless
of menopausal stage. Parameter estimates are adjusted for chronological age. Error bars repre-
sent 
1 SEM. *p � 0.05.

Figure 4. Functional connectivity within encoding circuitry by sex. Left, Relative to women
(n � 92), men (n � 94) showed greater functional connectivity between dorsal VLPFC (tur-
quoise seed) and ventral VLPFC (BA47, coordinate of peak voxel, �33, 29, �8; cluster signifi-
cant at p � 0.05, FWE corrected). Center, Right, Men also exhibited greater connectivity
between the VLPFC seed and two clusters in bilateral posterior parietal cortex. Clusters in left
BA40 (�51, �43, 49) and right BA40 (54, �49, 52) reached trend significance at p � 0.08,
FWE corrected. To illustrate the spatial extent of the pattern of connectivity, clusters are dis-
played at p � 0.005, uncorrected.

Figure 5. Hippocampal functional connectivity by menopausal status. A, Left, A slice
through right hippocampus (white box) is visible on a rendered brain. Right, Postmenopausal
women (n � 31) showed greater connectivity between the left hippocampal seed and multiple
clusters in right hippocampus relative to premenopausal (n � 32) and perimenopausal (n �
29) women (all significant at p � 0.05, FWE corrected; for coordinates, see Results). Clusters are
displayed at p � 0.005, uncorrected. B, Beta values extracted from the entire right hippocam-
pal mask (542 voxels) represent the average magnitude of connectivity between left (L) and
right (R) hippocampus during verbal encoding. Bilateral hippocampal connectivity increased
over the menopausal transition. Men shown for comparison. C, Scatter plot displays the corre-
lation between endogenous estradiol concentrations (log transformed) and the magnitude of
bilateral hippocampal connectivity in women. As estradiol concentrations decline, the magni-
tude of bilateral hippocampal connectivity increases. Pre, Premenopause; Peri, perimenopause;
Post, postmenopause. Gray dotted lines represent 95% CI. Error bars represent 
1 SEM. �p �
0.06; **p � 0.01; ***p � 0.005.
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Brain– hormone– behavior relationships
The magnitude of encoding-related activity within memory cir-
cuitry was strongly related to subsequent memory retrieval. In
men, regional activity in mid-VLPFC (BA45; � � 0.27; 95% CI,
0.04 – 0.47; p � 0.008, two-tailed; n � 94) and ventral/anterior
VLPFC (BA47; � � 0.23; 95% CI, 0.01– 0.42; p � 0.03, two-
tailed) was related to more successful memory retrieval perfor-
mance. For women, better retrieval was related to activity in
dorsal/posterior VLPFC (BA44/BA45/BA9; � � 0.32; 95% CI,
0.11– 0.52; p � 0.003, two-tailed; n � 91; Fig. 7A,C). With re-
spect to gonadal hormones, in women, successful retrieval was
related to higher endogenous estradiol levels (� � 0.29; 95% CI,
0.06 – 0.49; p � 0.011, two-tailed; Fig. 7B). In men, a similar
pattern emerged with higher testosterone levels related to better
memory retrieval, but the findings were not statistically signifi-
cant, in part due to low variability of testosterone among the men
(� � 0.13; 95% CI, �0.04 – 0.35; p � 0.13).

Discussion
Summary of findings
Cognitive aging studies traditionally tar-
get participants aged 65 and older, yet ep-
idemiological surveys show that many
women report increased forgetfulness and
“brain fog” earlier in the aging process, as
they transition through menopause
(Greendale et al., 2011). In this
population-based fMRI study, we stepped
back by over a decade to characterize the
changes in memory circuitry that occur in
early midlife (age �45–55) as a function
of sex and women’s menopausal status.
Women’s reproductive stage shaped task-
evoked hippocampal activity during ver-

bal memory encoding, despite minimal variance in chronological
age. Premenopausal and perimenopausal women recruited left
hippocampus more strongly than postmenopausal women. Next,
using generalized psychophysiological interaction analysis, we
explored the impact of reproductive stage on integrated activity
across task-related brain regions. Analyses within women re-
vealed a reorganization of functional networks across the meno-
pausal transition. Postmenopausal women showed heightened
bilateral hippocampal connectivity relative to premenopausal
and perimenopausal women. Furthermore, the magnitude of re-
gional activity and functional connectivity during encoding was
related to verbal memory retrieval.

While the influence of menopausal status was greatest in the
hippocampus, a number of sex differences were observed in pre-
frontal and parietal cortices, which were independent of women’s
reproductive stage. For example, men showed greater task-
evoked activity in left PPC and heightened VLPFC–PPC func-
tional connectivity relative to women. Critically, analyzing these
data without regard to sex obscured group differences in the
circuit-level neural strategies associated with successful memory
performance.

At the neuroendocrine level, lower 17�-estradiol was related
to more pronounced alterations in hippocampal activity, hip-
pocampal connectivity, and poorer performance on a subsequent
memory task, strongly implicating sex steroids in the regula-
tion of this circuitry. Subgroup analyses revealed that high-
performing postmenopausal women (relative to low and middle
performers) exhibited a neuronal response pattern similar to that
of premenopausal women. Together, these findings underscore
the importance of considering reproductive stage and sex steroid
hormones, not simply chronological age, to identify neuronal
and cognitive changes that unfold in the middle decades of life.
More broadly, these findings suggest that early changes in mem-
ory circuitry are evident decades before the age range typically
targeted by cognitive neuroscience of aging studies.

Study design and limitations
Given that chronological age differed marginally between groups
(�18 months, on average), the observed differences in task-
evoked BOLD responses are unlikely to be attributable to age-
related changes in cerebral vasculature (D’Esposito et al., 2003).
Furthermore, the impact of reproductive status on BOLD was
region-specific and thus not likely driven by global changes in
blood oxygenation. One limitation of this study is its cross-
sectional design, which precluded our ability to directly assess
incremental changes over the transition to menopause. However,
by using a midlife cohort for whom chronological age was similar

Figure 6. High-performing postmenopausal women show the least bilateral hippocampal connectivity and enhanced VLPFC
activity relative to low performers. A, Postmenopausal women were categorized into tertiles of low (n�10), middle (n�11), and
high (n � 10) performers based on a composite summary score of the Face Name Associative Memory Task (see Materials and
Methods). B, C, High-performing women showed the least functional connectivity between left (L) and right (R) hippocampus (B)
and the greatest recruitment of VLPFC relative to the two lower performing tertiles (C). Error bars represent 
1 SEM. �p � 0.06;
*p � 0.05; **p � 0.01.

Figure 7. Relationship between VLPFC activity and memory retrieval in women and men.
A, C, Scatter plots display the correlation between the magnitude of encoding-related activity
(� value) in VLPFC subdivisions and performance on a subsequent memory retrieval task. A, In
women (n � 92), the magnitude of activity in dorsal VLPFC (BA44/BA45/BA9) predicted better
memory retrieval. B, Higher estradiol levels were also associated with better retrieval in
women. C, In men (n � 94), activity in mid (BA45) and ventral (BA47) VLPFC subdivisions was
associated with more successful retrieval. Gray dotted lines represent 95% CIs.
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but menopausal status varied, we were better able to tease apart
the influence of reproductive aging from chronological aging.
Second, medical histories indicated that some participants in our
midlife cohort reported use of a prescription drug. To limit con-
founding effects of medication status, we ensured that psychotro-
pic medication use, while uncommon, was evenly distributed
across groups. Furthermore, plotting ROI � estimates by medi-
cation status and group produced highly comparable values
across every region of interest. This ensured us that medication
status was unlikely to be driving the observed findings.

Changes in memory circuitry are evident in midlife
Despite the tradition in the aging literature of studying adults 65
and older, more attention is being paid to the neural and cogni-
tive changes that happen in the preceding decades, as adults enter
midlife. Previous findings suggest that changes in memory en-
coding and retrieval ability and related neural activity are evident
by midlife (Park et al., 2013; Cansino et al., 2015; Kwon et al.,
2015). During source encoding, Cansino et al. (2015) observed
underrecruitment of prefrontal regions in middle aged relative to
younger adults. During spatial and temporal context memory,
Kwon et al. (2015) observed no difference in encoding-related
brain activity, but heightened PFC activation in middle aged
adults during retrieval. Across the small handful of functional
MRI studies to investigate memory function in midlife, none
reported changes in middle temporal lobe regions (when perfor-
mance is matched across groups), and changes in PFC function
are less consistent across studies (Kennedy et al., 2012; Grady et
al., 2006; Kwon et al., 2015). Although these studies represent a
critical step toward characterizing early changes in memory cir-
cuitry, none of the studies examined their findings with respect to
sex or women’s reproductive stage. Given that this time period
marks one of the most significant periods of hormonal change for
women, and given the role of sex steroid hormones in regions
central to memory encoding and retrieval processes, considering
women’s menopausal status may be critical for fully understand-
ing the changes in memory circuitry that take place in midlife. In
fact, one of the most consistently observed cognitive changes in
women transitioning through menopause is in the domain of
verbal learning and memory (Berent-Spillson et al., 2012; Epper-
son et al., 2013). Advancing our understanding of the hormonal
regulation of memory circuitry may provide insights as to why
women are at higher risk for memory disorders later in life
(Mielke et al., 2014).

Sex differences in midlife
Although no differences were observed in VLPFC as a function of
reproductive stage, we observed an overall sex difference in this
region in our midlife cohort, with men showing stronger func-
tional connectivity within VLPFC (from dorsal to ventral subdi-
visions) and between VLPFC and PPC relative to women. We also
found that subdivisions of VLPFC were differentially associated
with verbal retrieval performance in men and women, with
women reliant on dorsal subregions (bordering BA44/BA45/
BA9) and men reliant on middle and ventral subregions (BA45
and BA47). Findings from the resting-state literature suggest that
these VLPFC subdivisions are part of different functional net-
works, with the dorsal VLPFC region falling within the dorsal
frontoparietal attention network and the more anterior/ventral
VLPFC regions falling within the ventral controlled retrieval net-
work (which includes the hippocampus; Nyhus and Badre,
2015). Although speculative, this hints that men and women may

be relying on different neural strategies (represented here as dif-
ferent functional networks) to successfully perform the task.

Reproductive stage and estradiol impact
hippocampal function
Previous cognitive aging studies found age-related underrecruit-
ment of left VLPFC during episodic encoding (Spaniol and
Grady, 2012). Age-related changes in bilateral parietal cortex
have also been observed, with greater encoding-related activity in
older versus younger adults (unmatched for performance; Sper-
ling et al., 2003; Grady et al., 2006; Murty et al., 2006). In this
study, neither VLPFC nor PPC activity differed as a function of
reproductive age in women, despite differences in hippocampal
activity over this same period. This suggests that the hippocam-
pus may be more sensitive to the impact of reproductive aging
than VLPFC or PPC. From a neuroendocrine perspective, this
makes sense given that the hippocampus contains some of the
highest concentrations of ER� and ER� in the brain (second only
to hypothalamic nuclei and central medial nucleus of the
amygdala; Österlund et al., 1999, 2000). In fact, we found that
17�-estradiol concentrations were related to alterations in hip-
pocampal connectivity and poorer performance on a subsequent
memory task across women, strongly implicating sex steroids in
the modulation of hippocampal function. We did not find evi-
dence of a relationship between progesterone and hippocampal
activity, but our data do not rule out the possibility that addi-
tional gonadal hormones, including progesterone and its neuro-
steroid metabolites, contribute to the observed effects. Future
studies should examine reproductive age-related changes using
more challenging episodic memory tasks, such as tasks that rely
on context memory as opposed to item recognition. Doing so
may reveal functional differences across a broader network of
regions, including PFC (Kwon et al., 2015).

High-performing postmenopausal women show
premenopausal-like pattern of neural activity
The purpose of this study was to characterize the impact of meno-
pausal status on memory circuitry function. However, an impor-
tant exploratory question is whether some women progress
through menopause but retain a pattern of brain activity akin to
premenopausal women and show elevated cognitive function in
domains known to decline as a function of reproductive stage
(Epperson et al., 2013; Rentz et al., 2016). To address this, we used
an individual-differences driven approach to test whether
memory circuitry function differed between low- and high-
performing postmenopausal women. Using a strategy similar to
previous aging studies (Gazzaley et al., 2005), we defined tertiles
of low, middle, and high performers based on the 12-item Face
Name Associative Memory Exam. This task was chosen because
of its increased sensitivity for detecting early changes in memory
function (Rentz et al., 2011, 2016). On average, postmenopausal
women showed heightened bilateral hippocampal connectivity
during encoding relative to premenopausal and perimeno-
pausal women. However, subgroup analysis revealed that this
heightened connectivity was characteristic of low and middle
performers and uncharacteristic of postmenopausal women
with preserved memory function.

Ample preclinical evidence demonstrates that the decline in
ovarian estradiol production during menopause leads to neuro-
nal changes in the hippocampus. For example, Hara et al., 2012
showed that natural menopause in female macaques results in a
lower density of perforated synapse spines in the hippocampus
and worse recognition memory. Our data support and extend
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this literature by demonstrating alterations in hippocampal func-
tion in women as a function of reproductive stage. Our data are
consistent with estradiol’s general role in modulating hippocam-
pal function. However, an outstanding question is how the sub-
group of high-performing postmenopausal women compensated
even in the face of low estradiol. Note that in our sample, low,
middle, and high performers did not differ in demographic char-
acteristics (e.g., age, body mass index, socioeconomic status),
estradiol and progesterone concentrations, or the number of
years since their final menstrual period. One possibility is that as
ovarian sources of estradiol decline, secondary estrogenic sup-
port from other peripheral sources may play a role in maintaining
hippocampal function and hippocampal-dependent memory
performance. For high-performing women, the loss of ovarian
estradiol may be compensated for through other endocrine path-
ways, a possibility we are currently pursuing.

Moving forward, understanding the cellular, synaptic, and
circuit-level mechanisms for maintaining memory function in
the face of reduced ovarian function is a critical challenge for
future research, given the potential for identifying therapeutic
targets (Frick, 2012). Identifying the distinguishing characteris-
tics between low and high performers will be an important step
toward understanding divergent trajectories of cognitive aging as
they unfold in the middle years of life.

Conclusions
These results contribute to our broader understanding of the
impact of sex and reproductive status on the aging of memory
circuitry. In keeping with preclinical studies, our findings suggest
that the loss of ovarian estradiol during menopause plays a sig-
nificant role in shaping memory circuitry.
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