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Abstract

A chemiresistive detector for carbon monoxide was created from single-walled carbon nanotubes 

(SWCNTs) by noncovalent modification with diiodo(η5: η1-1-[2-(N,N-

dimethylamino)ethyl]-2,3,4,5-tetramethylcyclopentadienyl)-cobalt(III) ([Cp^CoI2]), an 

organocobalt complex with an intramolecular amino ligand coordinated to the metal center that is 

displaced upon CO binding. The unbound amino group can subsequently be transduced 

chemiresistively by the SWCNT network. The resulting device was shown to have a ppm-level 

limit of detection and unprecedented selectivity for CO gas among CNT-based chemiresistors. 

This work, the first molecular-level mechanistic elucidation for a CNT-based chemiresistive 

detector for CO, demonstrates the efficacy of using an analyte’s reactivity to produce another 

chemical moiety that is readily transduced as a strategy for the rational design of chemiresistive 

CNT-based detectors.
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The notoriously odorless, colorless, yet highly toxic gas carbon monoxide, produced from 

incomplete combustion of carbon-based fuels, poses a significant global toxicological 
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threat
1
 as the most common cause of death and injury by poisoning worldwide.

2,3 Although 

detectors for CO are commercially available, there is still a need for electronic detectors that 

are small, low-powered, and inexpensive enough to be used as massively deployable 

distributed detectors.

Carbon nanotube (CNT)-based chemiresistors offer an opportunity to achieve these desirable 

attributes for CO detection. Like earlier optochemical detectors that changed color upon 

exposure to CO,
4
 CNT chemiresistors are inexpensive to fabricate and have low power and 

temperature requirements for operation. They also offer advantages over color-based 

indicators such as facile integration into electronic systems (e.g., alarms, remediation), the 

potential for quantitation, and freedom from line-of-sight observation.

Previous studies, however, show both theoretically
5,6 and experimentally

7–9
 that the 

resistance of pristine carbon nanotubes is not perturbed by the presence of carbon monoxide, 

which does not engage in charge transfer with CNTs.
10,11

 Some theoretical studies, though, 

suggest that deformed
6
 or doped

6,12,13
 CNTs may be competent CO detectors. Additionally, 

there is experimental evidence for CO detection by oxidatively damaged CNT resistors 

bearing carboxylic acid moieties,
8,9 CNTs dispersed in polyaniline

14,15
 or WO3,

16
 and 

CNTs decorated with metallic
17

 or metal oxide nanoparticles.
18

Although literature precedent exists for CNTs in electronic detectors for CO, a system based 

on CNTs functionalized with a discrete small molecule has yet to be reported. Indeed, the 

ill-defined nature of a nonmolecular system can hamper mechanistic elucidation. For 

example, in 2013, Zhang et al. reported a “CuCl”-CNT based CO detector but did not offer 

any experimentally substantiated mechanisms for the observed changes in resistance.
19 

Comparatively, a system based on a well-defined small molecule can be more readily 

understood using spectroscopic and computational tools available to the molecular chemist.

We hypothesized that a carbon nanotube-based chemiresistive detector for CO could be 

effected by designing a system that upon a highly selective reaction with CO would produce 

a chemical species capable of eliciting strong chemiresistive responses in CNTs such as 

ammonia or its derivatives.
10,20–22

 To this effect, we fabricated chemiresistors from CNTs 

noncovalently functionalized with diiodo(η5: η1-1-[2-(N,N-dimethylamino)-ethyl]-2,3,4,5-

tetramethylcyclo-pentadienyl)-cobalt(III) ([Cp^CoI2]), originally reported by Jutzi et al. 

toreversibly coordinate CO with concomitant liberation of its intramolecular tertiary amino 

ligand from the metal center as shown in Scheme 1,
23

 which can subsequently be transduced 

by the CNT network. The result, herein described, is the first example of a chemiresistive 

detector for CO based on CNTs functionalized with a discrete molecular species with a well-

defined, experimentally supported molecular mechanism for CO detection. Furthermore, this 

strategy, using the analyte of interest to produce a chemical species that induces a resistance 

change in the native CNT network, represents a new paradigm in the rational design of CNT-

based chemiresistors.

We synthesized [Cp^CoI2] according to literature procedures.
23,24

 Jutzi et al. note that a 

significant visible green-to-purple color change is observed upon [Cp^CoI2] binding to CO. 
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We also observe this color change upon sparging a solution of [Cp^CoI2] in CHCl3 with 1 

atm CO gas as shown in the visible absorbance spectra displayed in Figure 1.

The original report of [Cp^CoI2] characterizes its CO adduct using IR, 1H and 13C NMR 

spectroscopies, which were used as evidence for the amine-dissociated structure of 

[Cp^CoI2(CO)] (Scheme 1). However, Jutzi et al. were unable to obtain direct structural 

evidence by X-ray crystallographic structural determination for the purported amine 

dissociation upon binding of CO because [Cp^CoI2(CO)] is only stable under 1 atm CO, 

which also hampered our efforts to obtain diffraction-quality single crystals.

To support that [Cp^CoI2(CO)] with a free amine is the product of [Cp^CoI2] reacting with 

CO, we performed molecular calculations using density functional theory (DFT). The 

forward reaction depicted in Scheme 1 is calculated to be moderately exergonic with ΔGrxn 

= −2.10 kcal/mol. Using the relation ΔGrxn = −RT ln Keq, the predicted Keq is 34.4. These 

predictions are in remarkable agreement with the experimental observations made by Jutzi et 

al. of (1) spontaneous partial (~90% by 1H NMR in CDCl3) conversion of [Cp^CoI2] to 

[Cp^CoI2(CO)] under 1 atm of CO and (2) instability of the adduct upon removal of CO 

from the reaction headspace. Alternative CO adduct geometries with bound amine and 

slipped cyclopentadienyl or dissociated I− ligands were calculated to be thermodynamically 

uphill versus [Cp^CoI2] and free CO. These results support the structural assignment by 

Jutzi et al. of [Cp^CoI2(CO)] based on NMR spectroscopy.

We fabricated the chemiresistors from a suspension of 0.25 mg of single-walled CNTs 

(SWCNTs) and 1.0 mg of [Cp^CoI2] in a mixture of 0.80 mL of 1,2-dichlorobenzene 

(DCB), 0.20 mL of CHCl3, and 50 μL of halocarbon oil 27 (HC27). DCB is known to be a 

moderately good solvent for the suspension of CNTs but only marginally solubilizes 

[Cp^CoI2]; the CHCl3 was added to fully solubilize the [Cp^CoI2]. HC27, a high-boiling 

liquid polymer that remains even after in vacuo removal of DCB and CHCl3, provides a 

liquid matrix for the active material, which we found to be as essential to a functional device 

as [Cp^CoI2]. We hypothesize that HC27 allows for [Cp^CoI2] to engage in its solution-state 

reactivity with CO in the device, which we do not observe in its solid state.

Once prepared, the mixture was sonicated briefly at room temperature and then drop-cast 

between gold electrodes (1 mm gap) on glass microscope slides. The solvent was removed in 

vacuo at room temperature. The application of the suspension followed by in vacuo removal 

of the solvent was repeated until the resistance across the SWCNT network reached 10–100 

kΩ as measured by an ohmmeter.

We calibrated the responses of the devices to concentrations of CO gas physiologically 

relevant to acute CO toxicity. For these measurements performed in N2 for control purposes, 

the device was enclosed in a PTFE chamber, and the gold electrodes were attached to a 

potentiostat. Mass flow controllers were used to introduce either N2 or CO diluted in N2 to 

the device at a constant flow rate while the potentiostat applied a constant potential of 0.100 

V across the electrodes and recorded the current over time. The negative change in current 

resulting from exposure to CO gas (−ΔG) was divided by the initial current (G0) to give 

change in conductance (−ΔG/G0), which was taken as the device’s response.
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The responses of the chemiresistors to various concentrations of CO gas are summarized in 

Figure 2a, which shows the average responses to 60 s exposures of triplicate devices. The 

responses to CO as a function of concentration are fit empirically with a second-order 

polynomial. Figure 2b displays the baseline-corrected conductance traces of three devices 

and their average responding to 60 s doses of various concentrations of CO gas. Figure 2c 

shows the conductance traces for three devices and their average exposed to 3000 ppm of 

CO in N2 for 60 s with extended recovery time. The devices display sluggish reversibility; 

1090 s elapse between maximum and half-maximum response, which could possibly be 

ameliorated by heating but would require additional power input.
25

 With respect to 

reversibility, these devices behave in a manner similar to what we previously reported for a 

SWCNT-based ammonia chemiresistive detection system.
26

The limit of detection (LOD) for these devices is 90 ppm of CO, calculated as the 

concentration at which the signal exceeds three times the standard deviation of the baseline. 

Although the devices were not capable of detecting 50 ppm of CO, the OSHA PEL for an 8 

h period, even after extended exposure, an LOD of 90 ppm for a relatively rapid 60 s 

exposure is already sufficient to detect concentrations of CO at which it is acutely toxic 

enough to be fatal (600–1000 ppm).
27

 The active sensing composite is no longer functional 

upon omission of either HC27 or [Cp^CoI2]; the resulting devices give no discernible 

chemiresistive response to 3000 ppm of CO.

Jutzi et al. note that [Cp^CoI2] reacts selectively with CO over its close analog C2H4,
23

 and 

indeed, this selectivity appears to translate to the [Cp^CoI2]-based chemiresistor. Figure 3 

shows the chemiresistive responses of quadruplicate [Cp^CoI2]-SWCNT devices to 0.3% 

CO diluted in N2 in comparison to their responses to other gases at comparable 

concentrations also diluted in N2. The responses to these other gases, such as acetylene and 

ethylene, which have electronic similarities to CO and are common interferents for CO, and 

hydrogen, which is also a known interferent for electrochemical CO detectors, are 

negligible. Among previously reported CNT-based electronic CO detectors, all of which are 

based on functionalization with nonmolecular chemical species, this level of demonstrated 

selectivity for CO is unprecedented.

Additionally, Figures 2c and 3 show that dilution of CO in air at 10% relative humidity (RH) 

rather than in N2 at 3% RH does not significantly affect the chemiresistive response, 

suggesting that the devices tolerate both O2 and modest levels of moisture. Prolonged testing 

of devices over the course of a few days or testing at 75% RH significantly impaired the 

magnitude of current decrease upon exposure to CO. This loss of performance may be due to 

movement of material such as aggregation of the SWCNTs facilitated by the presence of 

HC27 in the device, chemical instability of the composite, or loss of HC27 to evaporation 

over time. These general considerations continue to be a fundamental challenge in CNT-

based sensors.

In this CO detection scheme, the reaction of CO with [Cp^CoI2] liberates an amine group, 

which can subsequently engage in charge transfer (electron donation) with CNTs
28

 as 

suggested by previous theoretical
29–31

 and experimental
32

 studies, thus increasing their 

resistance. Therefore, we sought to confirm by Raman spectroscopy that charge transfer to 
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the SWCNT occurs upon CO exposure. NH3 has been noted to induce a downshift in the D 

band in the Raman spectrum of SWCNTs upon adsorption.
33

 Indeed, we observe a 

downshift in the D band of the Raman spectrum of the [Cp^CoI2]-SWCNT material upon 

exposure to 1 atm CO, 1318 to 1316 cm−1 (Figure S3). No shift is observed upon exposure 

to 1 atm CO in the absence of [Cp^CoI2] (Figure S2). These spectroscopic measurements 

suggest that CO does liberate the amine group from the metal center of [Cp^CoI2], making it 

available for charge transfer to the SWCNTs.

In summary, we have rationally constructed a chemiresistive detector for CO gas from 

SWCNTs and [Cp^CoI2], which reacts with CO as shown in Scheme 1. The tertiary amine 

arm is then available to participate in charge transfer to the CNTs, leading to a marked 

increase in resistance. The resulting inexpensive, low-power device can detect CO at 

concentrations relevant to its acute toxicity with exposure times as short as 1 min; efforts to 

improve further on the sensitivity using ternary mixtures are ongoing. The device also 

demonstrates exquisite selectivity for CO unmatched by any previously reported CNT-based 

chemiresistor. We demonstrate that designing a system wherein reaction with a target 

analyte is coupled to the production of a chemical moiety that is strongly detected by CNTs 

is an effective approach for the development of CNT-based chemiresistive detectors. 

Additionally, due to the discrete molecular nature of this system, we are able to describe and 

experimentally support a well-defined, molecular mechanism for the first time in a CNT-

based detector for CO.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Visible absorbance spectra of [Cp^CoI2] in CHCl3 before and after addition of 1 atm CO 

gas.
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Figure 2. 
(a) Average conductance changes of three [Cp^CoI2]-SWCNT chemiresistive detectors in 

response to 60 s exposures to various concentrations of CO gas diluted in N2 (quadratic fit); 

(b) conductance traces of [Cp^CoI2]-SWCNT chemiresistors to 60 s exposures (marked by 

blue boxes) of various concentrations of CO gas diluted in N2; (c) conductance trace of three 

[Cp^CoI2]-SWCNT chemiresistors to 60 s exposure to 3000 ppm of CO in N2 and one in air.
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Figure 3. 
Average conductance changes of four [Cp^CoI2]-SWCNT chemiresistors in response to 60 s 

exposures to various gases diluted in N2 unless otherwise indicated. Error bars represent 1 

standard deviation across the four devices.
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Scheme 1. 
Reversible CO Binding to Cp^CoI2
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