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Abstract.
During the LHC Long Shutdown 1, the CMS Data Acquisition system underwent a partial

redesign to replace obsolete network equipment, use more homogeneous switching technologies,
and prepare the ground for future upgrades of the detector front-ends. The software and
hardware infrastructure to provide input, execute the High Level Trigger (HLT) algorithms
and deal with output data transport and storage has also been redesigned to be completely file-
based. This approach provides additional decoupling between the HLT algorithms and the input
and output data flow. All the metadata needed for bookkeeping of the data flow and the HLT
process lifetimes are also generated in the form of small “documents” using the JSON encoding,
by either services in the flow of the HLT execution (for rates etc.) or watchdog processes. These
“files” can remain memory-resident or be written to disk if they are to be used in another part
of the system (e.g. for aggregation of output data). We discuss how this redesign improves the
robustness and flexibility of the CMS DAQ and the performance of the system currently being
commissioned for the LHC Run 2.

1. Introduction
The CMS experiment is one of two general purpose detectors located at the LHC at CERN,
Switzerland. It is designed to study both proton-proton and heavy ion collisions at the TeV
scale. A detailed description of the CMS can be found in [1]. It comprises about 50 million
electronics channels and features a fully pipelined readout architecture, capable of operating at
the machine crossing rate of 40 MHz without deadtime.

In the CMS Data Acquisition System (DAQ), signals from individual detector channels are
held in low-level very front end analog or digital pipelines awaiting a trigger decision. A first-level
trigger, accepting up to 100 kHz and consisting of custom electronic boards, operates on coarse-
granularity, fast readout from the calorimeter and muon detectors to produce a trigger decision
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within about 1 µs. Raw data for accepted events are read out and assembled in two steps,
using a complex of switched networks connecting the readout boards to a cluster of commercial
computers running Linux. Three types of applications run in the cluster: the Readout Unit (RU)
is connected to the detector front-end readout and performs a first data concentration stage,
assembling event fragments from a given detector partition; the Builder Unit (BU) receives event
fragments from the RUs and assembles full events which are then buffered while undergoing the
final event selection in the Filter Unit (FU). The High Level Trigger (HLT) algorithms run within
the FU and operate on full granularity event data from all subdetectors, selecting about 1-10%
of the events accepted by the Level-1 trigger. The HLT uses offline-grade algorithms and the
CMS offline reconstruction framework (CMSSW) [2]. Events accepted by the HLT are stored
locally and subsequently transferred to the CERN computing centre for offline processing.

2. The upgraded CMS DAQ for Run 2 (DAQ2)
After successfully operating throughout the Run 1 of the LHC8, the CMS DAQ underwent
a major reimplementation. The main reasons for this are the replacement of equipment at
the end of its life cycle, the need to replace obsolete technologies, the ever-increasing CPU
requirements of the HLT (also related to the anticipated performance of the machine), demanding
increased flexibility in integrating heterogeneous processor generations and architectures, and
the requirement to accommodate new detector components and upgraded detector readouts
exceeding the original DAQ specifications. While the general architecture remains the one
described in Section 1, most of the networking and much of the software have been redesigned
to take advantage of the new technologies and improve the robustness and maintainability of
the system.

The first level of data concentration, which was based on Myrinet, has been reimplemented
using 10/40 GE. The event builder network, which was based on Gigabit Ethernet [3], has
been reimplemented using InfiniBand [4]. Since Gigabit Ethernet switch ports were relatively
inexpensive at the time the DAQ1 was designed, each processing node was connected to the
event-builder network and ran the event building (BU) locally, i.e. it combined the BU and
FU functionality in each box. InfiniBand is 56 times more performant, but more expensive,
so the BU and FU functionalities have been split in DAQ2 to efficiently exploit a relatively
small InfiniBand network: 62 BU nodes are connected to the event builder network and each
write complete events to a large RAMdisk of 240 GB. The choice of buffering event data on a
RAMdisk is discussed in more depth in the following sections. More details on the DAQ2 event
builder can be found in [5].

The hardware used to run the online selection in the DAQ1 (collectively referred to as Filter
Farm) has evolved gradually, accommodating different generations of processors. The various
generation of machines currently forming the filter farm, and their specifications, are summarised
in table 1.

Some of the legacy processing nodes are not yet at end of life and had to be integrated in
the DAQ2 with their GbE interfaces. On the other hand, recent dual CPU motherboards have
enough cores to require more bandwidth than what GbE can provide, while 10GbE NICs have
become sufficiently inexpensive. The Event Builder - Filter Farm interconnect is therefore built
around 40 GbE switches with 10 GbE breakout. The legacy nodes are further connected in
cascade to legacy 540-port 1/10 GbE switches. FU nodes are statically allocated to service a
particular BU node and are treated as a unit with it, called an appliance. Different generations
are allocated to different appliances in different numbers according to their relative performance
(table 1). The system can thus remain evolutionary by allowing, e.g., to connect future high-
performance very-many-cores systems to the event builder using 40GbE in a separate appliance.

8 The Run 1 DAQ system will henceforth be referred to as “DAQ1”
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Table 1. The Filter Farm currently consists of three generations of hardware. The legacy
machines, which will be progressively retired during Run 2, will not be retrofitted with 10 GbE
interfaces.

Machine
Type

Years
oper.

CPU (2×) Cores
/ node

RAM
(GB)

Total
nodes

Total
cores

Cores
/ BU

HLT
rel.

perf.

Network

C6100 2011-15 X5650 12 24 288 3456 216 0.6 1GbE
C6220 2012-16 ES2670 16 32 256 4096 256 1.0 1GbE

s2600KP 2015-19 ES2680v3 24 64 360 8640 288 1.66 10GbE

Total 904 16192

Finally the DAQ1 data-logging system, a SAN solution based on JBOD cages connected over
fibrechannel to individual nodes, and using ad-hoc software for data collection and storage [6],
was replaced with state-of-the-art NL-SAS-based hardware and a cluster file system. The DAQ2
Storage and Transfer System (STS) fulfils the additional requirements of output bandwidth
dictated by the new machine conditions and the experiment physics goals, while using a cluster
filesystem radically reduces the amount of ad-hoc software and controls. More details on the
DAQ2 STS can be found in [7].

3. File-based Filter Farm
In the DAQ1 system, the HLT algorithms ran inside the DAQ framework. A specific application
embedded the reconstruction process and took care of control and data flow using inter-process
communication [8]. The resulting tight coupling required several precautions: the different state
models and services of the XDAQ framework [9] and CMSSW had to be aligned, as well as
their release schedules; special care had to be taken when spawning HLT processes from XDAQ
to avoid interactions between the two frameworks; the same compiler and external libraries
versions had to be used. The File-based Filter Farm (FFF, figure 1) of the DAQ2 uses file
systems to decouple the data flow among the various stages of processing. Using files as an
interface among different processes is at the same time well proven and well adapted to the use
with a reconstruction framework which is offline-oriented.

Each BU writes fully built events in files on the local RAMdisk. A RAMdisk-based system
turned out to be the only solution which could provide sufficient bandwidth to meet the
requirements, i.e. up to 2GB/s per BU concurrent input and output. The FU processors
mount the RAMdisk from the BU over NFSv4, read input files from this disk and process them.
NFSv4 uses TCP/IP and a stateful implementation of the NFS protocol, thus being relatively
exempt from lock-ups and providing full support for remote locking, which is necessary for
the arbitration of file access over several machines. After running the HLT algorithms, accepted
events are written to the FU local disk in a format that allows combining them by concatenation.
Successive stages of merging combine output from all the HLT processes in one appliance on
the BU output disk. A final global merge combines output from all appliances in a cluster file
system.

By separating the data-flow and the event processing, one expects to improve the resiliency of
the system against localized failures, e.g. the loss of one processing node or a pathological event
tripping the HLT. In this respect, using files for data flow has many advantages: a file system
provides a simple mean of sharing a buffer, which comes with built-in resource accounting,
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Figure 1. Schematic view of the DAQ2 Event Builder and the File-based Filter Farm
components. Builder Units are connected to the event-builder network based on InfinBand,
while the FU processing nodes connect to the BU via Ethernet. An appliance with legacy
processors (left) uses an intermediate (legacy) 1/10 GbE switch, while recent ones have a 10
GbE connection. Both use a 40 GbE uplink to the BU.

arbitration and bookkeeping. A network filesystem provides the same advantages over different
nodes while being in itself network-agnostic.

Taking advantage of the increased memory bus speeds and the relative low price of RAM,
a buffer that allows significant time decoupling on the BU (order of minutes under normal
running conditions) is possible, thus nicely accommodating the relatively long initialization
times of CMSSW, due mainly to conditions loading. The time decoupling at all stages also
improves efficiency at run boundaries, by allowing the asynchronous start of the next run while
the processing of the previous one (HLT and/or output handling) is being completed [10].

4. Control and data flow
The FFF operates as a service and in an entirely data-driven fashion. At each run start,
the BU creates a run directory containing the run number and the configuration for the HLT
processes (trigger menu). The hlt daemon service (hltd), running on the FU, detects a new run
directory and starts the HLT processes with the specified configuration. The service allocates
CPU resources to a particular run by moving representative files from a pool of free resources
to a specific directory: if the FU is still processing data from a previous run, or if resources
on the FU are allocated for other tasks (e.g. for opportunistic offline processing), they are not
made available to the new run until they are returned to the free pool. Likewise, if processors
fail during operation and cannot be recovered, the corresponding resources are removed: the
BU can thus modulate its input bandwidth based on the actual CPU available in the appliance,
and generate backpressure if no resources remain.

Once the HLT processes are started, they look for input on the BU RAMdisk. The mechanism
to arbitrate access to input files is discussed below.
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4.1. Bookkeeping and arbitration
In CMS, a Luminosity Section (LS) is defined as a quantum of data taking9. An LS is defined
as a fixed time span lasting a predefined number of LHC orbits and treated as a unit. In the
FFF this translates in the requirement that no input or output file can cross LS boundaries. At
the same time, since output files from the HLT must be closed and assembled at the end of each
LS, all input event for that LS must then be accounted for. In order to efficiently exploit CPU
resources, every HLT process in the farm must receive sufficient input in an LS to work for the
entire LS, and the minimum theoretical latency when the system is fully loaded (from the last
input event for an LS to the last output file close) is the LS duration. A quick calculation shows
that a single BU must generate of the order of 10 files per second to meet this requirement. The
bookeeping and the arbitration of access to this large number of files may seem a daunting task.

In order to maintain control over the data flow and be able to trace every single event at
every stage in the system, every data file in the FFF is accompanied by a metadata file in JSON
format, which is also used as a hook to indicate completion and ownership of the data. The
metadata file for raw data from the event builder contains information about the number of
events in the file and the originating BU. This way, the data flow control does not need access to
the actual data files which are only accessed by CMSSW. When HLT processes in an appliance
start working on a run, they look for input in the corresponding RAMdisk directory. Arbitration
is achieved by means of a single index file, containing information about the next available input:
every process tries to lock it and, upon success, reads the information and takes ownership of
a file by moving the corresponding JSON metadata to its local directory. It then updates the
index to the next file, releases the lock, and starts reading the input. With this technique, it is
possible, for example, to reach a stable throughput of slightly over 3 GB/s with 256 processes
in 8 machines concurrently accessing the BU RAMdisk over 10 GbE (figure 2 left). Locking

Input&Only&
CMS&Preliminary& CMS&Preliminary&

Figure 2. Input throughput from RAMdisk in an appliance with 8 nodes and 256 processes
(left). Lock contention latency under the same conditions

is known to be a critical operation in network file systems. Therefore, it is important that
the lock contention latency be under control under heavy demand. Figure 2 (right) shows the
lock acquisition latency under the same conditions discussed above. In order to avoid wasting
CPU cycles while processes are waiting for the lock, a double buffer is used for input files, such

9 controlled by the Trigger Control and Distribution System (TCDS) and used later for the accounting of effective
integrated luminosity
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that a process never remains idle. This on the average only adds few seconds to the overall
input-to-output latency.

4.2. Data and metadata streams
The output of an HLT process is organized in “streams”. Streams categorize the type of event
data recorded (i.e. physics, calibration, data quality monitoring, etc.). Each HLT process
therefore produces one file per LS and per stream, and a typical HLT configuration defines of
order of 10 output data streams. Since, under normal conditions, the HLT accepts 1-10% of
the events, the required output throughput per FU is only few MB. Calibration and monitoring
streams produce together a similar amount of data, hence output can be comfortably written
to the machine local disk. Each output file is accompanied by a metadata JSON file similar
to the ones produced by the BU, which serves again as a completion indicator and contains
all the information needed for bookkeeping (i.e. total number of processed and output events,
originating process, etc.). The hltd service uses inotify10 to detect the appearence of new output
metadata files, and the information contained therein to verify that all input events in that
particular FU for a particular LS and stream are accounted for. The corresponding output data
files from the various processes are then concatenated (see above concerning the output format),
and the metadata aggregated to create a single pair of data/metadata files which are copied
back to the BU output disk over NFS. A chain of merger processes then takes care of moving
and aggregating output data further [7]. The overall disk configuration and data traffic in an
appliance are illustrated in figure 3.

The aggregated disk throughput required on the BU to receive output from the entire
appliance under normal conditions is of the order of 50 MB/s, which can be provided by a
standard array of magnetic disks. Figure 4 illustrates the performance of the BU output disk.
In this example, the BU NFS server is concurrently loaded with full input traffic from 8 FUs
in the appliance. The configuration with a 4-disk raid-0 array is shown to provide an ample
margin on the output throughput required.

NFSv4& input& output&

Figure 3. Detailed filesystem configu-
ration and data traffic in the appliance

0&
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4&x&1&TB&SATA&raid0&

2&x&1&TB&SATA&raid0&

8&FU&HLT&x&1&BU&x&merge&to&Lustre&
10&streams&

Figure 4. End-to-end output through-
put for the appliance discussed above
and for two different disk configurations.

Besides the event-data streams, the system can handle a diverse array of non-event data,
mainly used for monitoring. These are generated as a byproduct of the algorithm execution and
include:

• data quality histograms accumulated in the algorithms using the full Level-1 statistics
• counters of Level-1 and HLT accepts

10 https://www.kernel.org/doc/Documentation/filesystems/inotify.txt
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• event summary data used for quick feedback on potential interesting events

Non-event data streams are handled exactly like event data, and the resulting files used by
specialized applications or migrated to a database by the STS.

4.3. Mechanisms of data flow control
The main mechanism to control data flow in the FFF uses information on the available resources
at the different stages of processing to modulate the data traffic on each appliance independently.
For example, the BU calculates how many events per second it is going to build based on the
available CPU in the appliance. Thresholds on the data buffers are applied at all stages to
detect conditions where the appliance cannot keep up with the current data traffic and must
be throttled. For example, when the RAMdisk reaches an almost-full threshold, the BU stops
requesting events to the event builder. Building is not resumed until the RAMdisk usage goes
below a safe threshold. Similarly, when the FU output buffer is almost full, the BU will be
throttled. If safe running conditions are exceeded (e.g. not enough CPU, too high output rate)
this will ultimately result in DAQ backpressure which will throttle the Level-1 trigger (figure
5).

Figure 5. Illustration of the mechanism of backpressure as visualized by the FFF monitoring
system. The top plot shows the input rate. As the system cannot keep up with the rate (in
this case because of an HLT misconfiguration), the RAMdisk occupancy goes up on most BUs
(middle plot). As the “almost-full” threshold is exceeded, most BUs raise the “throttle” flag
(top part of bottom plot), and some of them raise the “blocked” flag (bottom part of bottom
plot). As a consequence, the input is throttled and starts fluctuating around an acceptable level
following the BU RAMdisk usage.

4.4. Data flow and execution monitoring
The metadata generated at every stage of processing are constantly aggregated by the hltd
service and used for data bookkeeping. They enable to account for every single input event
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all the way to individual output streams. The HLT is monitored by sampling the execution
of the algorithms, thus providing a statistical estimate of their CPU usage. The hltd service
also generates information about system parameters and available resources. Full-granularity
and aggregated metadata files are injected in a monitoring system based on a distributed search
engine, elasticsearch [11]. Details on the FFF monitoring system can be found in [12]. As an
example, figure 5 shows an analysis of backpressure and RAMdisk occupancy on the system
using elasticsearch.

5. Conclusions
The CMS File-based Filter Farm for Run 2 uses files and file systems for the control, monitoring,
and data flow of the HLT and it is entirely data-driven. The system is now in production and
performing as expected so far (though Run 2 has not properly started yet). Initial measurements
on the production system indicate it will meet the specifications, i.e. input at the full L1-
trigger accept rate of 100 kHz, up to 200 ms HLT CPU time per event, and order of 1 kHz
aggregated event rate at the output. This architecture, using a conventional technology in a
slightly unconventional way, is particularly suitable for a system which is in constant evolution
and, being entirely data driven and otherwise similar to a standard batch farm, supports well
the opportunistic use of online computing resources for offline tasks during periods of machine
unavailability.
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