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Abstract

Deep convolutional neural networks (CNNs) are indis-
pensable to state-of-the-art computer vision algorithms.
However, they are still rarely deployed on battery-powered
mobile devices, such as smartphones and wearable gad-
gets, where vision algorithms can enable many revolution-
ary real-world applications. The key limiting factor is the
high energy consumption of CNN processing due to its high
computational complexity. While there are many previous
efforts that try to reduce the CNN model size or the amount
of computation, we find that they do not necessarily result
in lower energy consumption. Therefore, these targets do
not serve as a good metric for energy cost estimation.

To close the gap between CNN design and energy con-
sumption optimization, we propose an energy-aware prun-
ing algorithm for CNNs that directly uses the energy con-
sumption of a CNN to guide the pruning process. The en-
ergy estimation methodology uses parameters extrapolated
from actual hardware measurements. The proposed layer-
by-layer pruning algorithm also prunes more aggressively
than previously proposed pruning methods by minimizing
the error in the output feature maps instead of the filter
weights. For each layer, the weights are first pruned and
then locally fine-tuned with a closed-form least-square so-
lution to quickly restore the accuracy. After all layers are
pruned, the entire network is globally fine-tuned using back-
propagation. With the proposed pruning method, the en-
ergy consumption of AlexNet and GoogLeNet is reduced by
3.7× and 1.6×, respectively, with less than 1% top-5 accu-
racy loss. We also show that reducing the number of target
classes in AlexNet greatly decreases the number of weights,
but has a limited impact on energy consumption.

1. Introduction

In recent years, deep convolutional neural networks
(CNNs) have become the state-of-the-art solution for many
computer vision applications and are ripe for real-world de-
ployment [1]. However, CNN processing incurs high en-
ergy consumption due to its high computational complex-

ity [2]. As a result, battery-powered devices still cannot af-
ford to run state-of-the-art CNNs due to their limited energy
budget. For example, smartphones nowadays cannot even
run object classification with AlexNet [3] in real-time for
more than an hour. Hence, energy consumption has become
the primary issue of bridging CNNs into practical computer
vision applications.

In addition to accuracy, the design of modern CNNs
is starting to incorporate new metrics to make it more
favorable in real-world environments. For example, the
trend is to simultaneously reduce the overall CNN model
size and/or simplify the computation while going deeper.
This is achieved either by pruning the weights of exist-
ing CNNs, i.e., making the filters sparse by setting some
of the weights to zero [4–14], or by designing new CNNs
with (1) highly bitwidth-reduced weights and operations
(e.g., XNOR-Net and BWN [15]) or (2) compact lay-
ers with fewer weights (e.g., Network-in-Network [16],
GoogLeNet [17], SqueezeNet [18], and ResNet [19]).

However, neither the number of weights nor the num-
ber of operations in a CNN directly reflect its actual energy
consumption. A CNN with a smaller model size or fewer
operations can still have higher overall energy consump-
tion. This is because the sources of energy consumption
in a CNN consist of not only computation but also memory
accesses. In fact, fetching data from the DRAM for an op-
eration consumes orders of magnitude higher energy than
the computation itself [20], and the energy consumption
of a CNN is dominated by memory accesses for both fil-
ter weights and feature maps. The total number of memory
accesses is a function of the CNN shape configuration [21]
(i.e., filter size, feature map resolution, number of channels,
and number of filters); different shape configurations can
lead to different amounts of memory accesses, and thus en-
ergy consumption, even under the same number of weights
or operations. Therefore, there is still no evidence show-
ing that the aforementioned approaches can directly opti-
mize the energy consumption of a CNN. In addition, there
is currently no way for researchers to estimate the energy
consumption of a CNN at design time.
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The key to closing the gap between CNN design and en-
ergy efficiency optimization is to directly use energy, in-
stead of the number of weights or operations, as a metric
to guide the design. In order to obtain realistic estimate of
energy consumption at design time of the CNN, we use the
framework proposed in [21] that models the two sources
of energy consumption in a CNN (computation and mem-
ory accesses), and use energy numbers extrapolated from
actual hardware measurements [22]. We then extend it to
further model the impact of data sparsity and bitwidth re-
duction. The setup targets battery-powered platforms, such
as smartphones and wearable devices, where hardware re-
sources (i.e., computation and memory) are limited and en-
ergy efficiency is of utmost importance.

We further propose a new CNN pruning algorithm with
the goal to minimize overall energy consumption with
marginal accuracy degradation. Unlike the previous prun-
ing methods, it directly minimizes the changes to the out-
put feature maps as opposed to the changes to the filters
and achieves a higher compression ratio (i.e., the number of
removed weights divided by the number of total weights).
With the ability to directly estimate the energy consumption
of a CNN, the proposed pruning method identifies the parts
of a CNN where pruning can maximally reduce the energy
cost, and prunes the weights more aggressively than previ-
ously proposed methods to maximize the energy reduction.

In summary, the key contributions of this work include:

• Energy Estimation Methodology: Since the number
of weights or operations does not necessarily serve as a
good metric to guide the CNN design toward higher en-
ergy efficiency, we directly use the energy consumption
of a CNN to guide its design. This methodology is based
on the framework proposed in [21] for realistic battery-
powered systems, e.g., smartphones, wearable devices,
etc. We then further extend it to model the impact of data
sparsity and bitwidth reduction. The corresponding en-
ergy estimation tool is available at [23].

• Energy-Aware Pruning: We propose a new layer-by-
layer pruning method that can aggressively reduce the
number of non-zero weights by minimizing changes in
feature maps as opposed to changes in filters. To max-
imize the energy reduction, the algorithm starts pruning
the layers that consume the most energy instead of with
the largest number of weights, since pruning becomes
more difficult as more layers are pruned. Each layer is
first pruned and the preserved weights are locally fine-
tuned with a closed-form least-square solution to quickly
restore the accuracy and increase the compression ratio.
After all the layers are pruned, the entire network is fur-
ther globally fine-tuned by back-propagation. As a result,
for AlexNet, we can reduce energy consumption by 3.7×
after pruning, which is 1.7× lower than pruning with the
popular network pruning method proposed in [8]. Even

for a compact CNN, such as GoogLeNet, the proposed
pruning method can still reduce energy consumption by
1.6×. The pruned models will be released at [23]. As
many embedded applications only require a limited set
of classes, we also show the impact of pruning AlexNet
for a reduced number of target classes.

• Energy Consumption Analysis of CNNs: We evalu-
ate the energy versus accuracy trade-off of widely-used
or pruned CNN models. Our key insights are that (1)
maximally reducing weights or the number of MACs in
a CNN does not necessarily result in optimized energy
consumption, and feature maps need to be factored in, (2)
convolutional (CONV) layers, instead of fully-connected
(FC) layers, dominate the overall energy consumption
in a CNN, (3) deeper CNNs with fewer weights, e.g.,
GoogLeNet and SqueezeNet, do not necessarily consume
less energy than shallower CNNs with more weights,
e.g., AlexNet, and (4) sparsifying the filters can pro-
vide equal or more energy reduction than reducing the
bitwidth (even to binary) of weights.

2. Energy Estimation Methodology

2.1. Background and Motivation

Multiply-and-accumulate (MAC) operations in CONV
and FC layers account for over 99% of total operations in
state-of-the-art CNNs [3, 17, 19, 24], and therefore domi-
nate both processing runtime and energy consumption. The
energy consumption of MACs comes from computation
and memory accesses for the required data, including both
weights and feature maps. While the amount of compu-
tation increases linearly with the number of MACs, the
amount of required data does not necessarily scale accord-
ingly due to data reuse, i.e., the same data value is used for
multiple MACs. This implies that some data have a higher
impact on energy than others, since they are accessed more
often. In other words, removing the data that are reused
more has the potential to yield higher energy reduction.

Data reuse in a CNN arises in many ways, and is de-
termined by the shape configurations of different layers.
In CONV layers, due to its weight sharing property, each
weight and input activation are reused many times accord-
ing to the resolution of output feature maps and the size of
filters, respectively. In both CONV and FC layers, each in-
put activation is also reused across all filters for different
output channels within the same layer. When input batch-
ing is applied, each weight is further reused across all input
feature maps in both types of layers. Overall, CONV lay-
ers usually present much more data reuse than FC layers.
Therefore, as a general rule of thumb, each weight and acti-
vation in CONV layers have a higher impact on energy than
in FC layers.

While data reuse serves as a good metric for comparing
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Figure 1. The energy estimation methodology is based on the framework proposed in [21], which optimizes the memory accesses at each
level of the memory hierarchy to achieve the lowest energy consumption. We then further account for the impact of data sparsity and
bitwidth reduction, and use energy numbers extrapolated from actual hardware measurements of [22] to calculate the energy for both
computation and data movement.

relative energy impact of data, it does not directly translate
to the actual energy consumption. This is because modern
hardware processors implement multiple levels of memory
hierarchy, e.g., DRAM and multi-level buffers, to amortize
the energy cost of memory accesses. The goal is to access
data more from the less energy-consuming memory levels,
which usually have less storage capacity, and thus mini-
mize data accesses to the more energy-consuming memory
levels. Therefore, the total energy cost to access a single
piece of data with many reuses can vary a lot depending on
how the accesses spread across different memory levels, and
minimizing overall energy consumption using the memory
hierarchy is the key to energy-efficient processing of CNNs.

2.2. Methodology

With the idea of exploiting data reuse in a multi-level
memory hierarchy, Chen et al. [21] have presented a frame-
work that can estimate the energy consumption of a CNN
for inference. As shown in Fig 1, for each CNN layer, the
framework calculates the energy consumption by dividing
it into two parts: computation energy consumption, Ecomp,
and data movement energy consumption, Edata. Ecomp is
calculated by counting the number of MACs in the layer
and weighing it with the energy consumed by running each
MAC operation in the computation core. Edata is calculated
by counting the number of memory accesses at each level of
the memory hierarchy in the hardware and weighing it with
the energy consumed by each access of that memory level.
To obtain the number of memory accesses, [21] proposes
an optimization procedure to search for the optimal number
of accesses for all data types (feature maps and weights)
at all levels of memory hierarchy that results in the low-
est energy consumption. For energy numbers of each MAC
operation and memory access, we use numbers extrapolated
from actual hardware measurements of the platform target-
ing battery-powered devices [22].

Based on the aforementioned framework, we have cre-
ated a methodology that further accounts for the impact of
data sparsity and bitwidth reduction on energy consump-
tion. For example, we assume that the computation of a
MAC and its associated memory accesses can be skipped

completely when either of its input activation or weight
is zero. Lossless data compression is also applied on the
sparse data to save the cost of both on-chip and off-chip data
movement. The impact of bitwidth is quantified by scaling
the energy cost of different hardware components accord-
ingly. For instance, the energy consumption of a multiplier
scales with the bitwidth quadratically, while that of a mem-
ory access only scales its energy linearly.

2.3. Potential Impact

With this methodology, we can quantify the difference
in energy costs between various popular CNN models and
methods, such as increasing data sparsity or aggressive
bitwidth reduction (discussed in Sec. 5). More importantly,
it provides a gateway for researchers to assess the energy
consumption of CNNs at design time, which can be used
as a feedback that leads to CNN designs with significantly
reduced energy consumption. In Sec. 4, we will describe an
energy-aware pruning method that uses the proposed energy
estimation method for deciding the layer pruning priority.

3. CNN Pruning: Related Work

Weight pruning. There is a large body of work that aims
to reduce the CNN model size by pruning weights while
maintaining accuracy. LeCun et al. [4] and Hassibi et al. [5]
remove the weights based on the sensitivity of the final ob-
jective function to that weight (i.e., remove the weights with
the least sensitivity first). However, the complexity of com-
puting the sensitivity is too high for large networks, so the
magnitude-based pruning methods [6] use the magnitude
of a weight to approximate its sensitivity; specifically, the
small-magnitude weights are removed first. Han et al. [7, 8]
applied this idea to recent networks and achieved large
model size reduction. They iteratively prune and globally
fine-tune the network, and the pruned weights will always
be zero after being pruned. Jin et al. [9] and Guo et al. [10]
extend the magnitude-based methods to allow the restora-
tion of the pruned weights in the previous iterations, with
tightly coupled pruning and global fine-tuning stages, for
greater model compression. However, all the above meth-



ods evaluate whether to prune each weight independently
and do not account for correlation between weights [11].
When the compression ratio is large, the aggregate impact
of many weights can have a large impact on the output; thus,
failing to consider the combined influence of the weights on
the output limits the achievable compression ratio.

Filter pruning. Rather than investigating the removal
of each individual weight (fine-grained pruning), there is
also work that investigates removing entire filters (coarse-
grained pruning). Hu et al. [12] proposed removing filters
that frequently generate zero outputs after the ReLU layer
in the validation set. Srinivas et al. [13] proposed merging
similar filters into one. Mariet et al. [14] proposed merg-
ing filters in the FC layers with similar output activations
into one. Unfortunately, these coarse-grained pruning ap-
proaches tend to have lower compression ratios than fine-
grained pruning for the same accuracy.

Previous work directly targets reducing the model size.
However, as discussed in Sec. 1, the number of weights
alone does not dictate the energy consumption. Hence, the
energy consumption of the pruned CNNs in the previous
work is not minimized.

To address issues highlighted above, we propose a new
fine-grained pruning algorithm that specifically targets
energy-efficiency. It utilizes the estimated energy provided
by the methodology described in Sec. 2 to guide the pro-
posed pruning algorithm to aggressively prune the layers
with the highest energy consumption with marginal impact
on accuracy. Moreover, the pruning algorithm considers the
joint influence of weights on the final output feature maps,
thus enabling both a higher compression ratio and a larger
energy reduction. The combination of these two approaches
results in CNNs that are more energy-efficient and compact
than previously proposed approaches.

The proposed energy-efficient pruning algorithm can be
combined with other techniques to further reduce the en-
ergy consumption, such as bitwidth reduction of weights
or feature maps [15, 25, 26], weight sharing and Huffman
coding [8], student-teacher learning [27], filter decomposi-
tion [28, 29] and pruning feature maps [30].

4. Energy-Aware Pruning
Our goal is to reduce the energy consumption of a given

CNN by sparsifying the filters without significant impact
on the network accuracy. The key steps in the proposed
energy-aware pruning are shown in Fig. 2, where the input
is a CNN model and the output is a sparser CNN model with
lower energy consumption.

In Step 1, the pruning order of the layers is determined
based on the energy as described in Sec. 2. Step 2, 3 and
4 removes, restores and locally fine-tunes weights, respec-
tively, for one layer in the network; this inner loop is re-
peated for each layer in the network. Pruning and restoring
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Figure 2. Flow of energy-aware pruning.

weights involve choosing weights, while locally fine-tuning
weights involves changing the values of the weights, all
while minimizing the output feature map error. In Step 2, a
simple magnitude-based pruning method is used to quickly
remove the weights above the target compression ratio (e.g.,
if the target compression ratio is 30%, 35% of the weights
are removed in this step). The number of extra weights re-
moved is determined empirically. In Step 3, the correlated
weights that have the greatest impact on reducing the output
error are restored to their original non-zero values to reach
the target compression ratio (e.g., restore 5% of weights).
In Step 4, the preserved weights are locally fine-tuned with
a closed-form least-square solution to further decrease the
output feature map error. Each of these steps are described
in detail in Sec. 4.1 to Sec. 4.4.

Once each individual layer has been pruned using Step 2
to 4, Step 5 performs global fine-tuning of weights across
the entire network using back-propagation as described in
Sec. 4.5. All these steps are iteratively performed until the
final network can no longer maintain a given accuracy, e.g.,
1% accuracy loss.

Compared to the previous magnitude-based pruning ap-
proaches [6–10], the main difference of this work is the in-
troduction of Step 1, 3, and 4. Step 1 enables pruning to
minimize the energy consumption. Step 3 and 4 increase
the compression ratio and reduce the energy consumption.

4.1. Determine Order of Layers Based on Energy

As more layers are pruned, it becomes increasingly dif-
ficult to remove weights because the accuracy approaches
the given accuracy threshold. Accordingly, layers that are
pruned early on tend to have higher compression ratios than
the layers that follow. Thus, in order to maximize the over-



all energy reduction, we prune the layers that consume the
most energy first. Specifically, we use the energy estima-
tion from Sec. 2 and determine the pruning order of layers
based on their energy consumption. As a result, the layers
that consume the most energy achieve higher compression
ratios and energy reduction. At the beginning of each outer
loop iteration in Fig. 2, the new pruning order is redeter-
mined according to the new energy estimation of each layer.

4.2. Remove Weights Based on Magnitude

For a FC layer, Yi ∈ Rk×1 is the ith output feature map
across k images and is computed from

Yi = XiAi + Bi1, (1)

where Ai ∈ Rm×1 is the ith filter among all n filters
(A ∈ Rm×n) with m weights, and Xi ∈ Rk×m denotes
the corresponding k input feature maps, Bi ∈ R is the ith

bias, and 1 ∈ Rk×1 is a vector where all entries are one.
For a CONV layer, we can convert the convolutional oper-
ation into a matrix multiplication operation, by converting
the input feature maps into a Toeplitz matrix, and compute
the output feature maps with a similar equation as Eq.(1).

To sparsify the filters without impacting the accuracy,
the simplest method is pruning weights with magnitudes
smaller than a threshold, which is referred to as magnitude-
based pruning [6–10]. The advantage of this approach is
that it is fast, and works well when a few weights are re-
moved, and thus the correlation between weights only has a
minor impact on the output. However, as more weights are
pruned, this method introduces a large output error as the
correlation between weights becomes more critical. For ex-
ample, if most of the small-magnitude weights are negative,
the output error will become large once many of these small
negative weights are removed using the magnitude-based
pruning. In this case, it would be desirable to remove a
large positive weight to compensate for the introduced error
instead of removing more smaller negative weights. Thus,
we only use magnitude-based pruning for fast initial prun-
ing of each layer. We then introduce additional steps that
account for the correlation between weights to reduce the
output error due to the magnitude-based pruning.

4.3. Restore Weights to Reduce Output Error

It is the error in the output feature maps, and not the
filters, that affects the overall network accuracy. Therefore,
we focus on minimizing the error of the output feature maps
instead of that of the filters. To achieve this, we model the
problem as the following `0-minimization problem:

Ãi = arg min
Âi

∥∥∥Ŷi −XiÂi

∥∥∥p
p
,

subject to
∥∥∥Â∥∥∥

0
6 q, i = 1, ..., n,

(2)

where Ŷi denotes Yi −Bi1, ‖·‖p is the p-norm, and q is the
number of non-zero weights we want to retain in all filters.

p can be set to 1 or 2, and we use 1. Unfortunately, solv-
ing this `0-minimization problem is NP-hard. Therefore, a
greedy algorithm is proposed to approximate it.

The algorithm starts from pruned filters Ă ∈ Rm×n, ob-
tained from the magnitude-based pruning in Step 2. These
filters are pruned at a higher compression ratio than the tar-
get compression ratio. Each filter Ai has the correspond-
ing support Si, where Si is a set of the indices of non-zero
weights in the filter. It then iteratively restores weights until
the number of non-zero weights is equal to q, which reflects
the target compression ratio.

The residual of each filter, which indicates the current
output feature map difference we need to minimize, is ini-
tialized as Ŷi −XiĂi. In each iteration, out of the weights
not in the support of a given filter Si, we select the weight
that reduces the `1-norm of the corresponding residual the
most, and add it to the support Si. The residual then is up-
dated by taking this new weight into account.

We restore weights from the filter with the largest resid-
ual in each iteration. This prevents the algorithm from
restoring weights in filters with small residuals, which will
likely have less effect on the overall output feature map er-
ror. This could occur if the weights were selected based
solely on the largest `1-norm improvement for any filter.

To speed up this restoration process, we restore multiple
weights within a given filter in each iteration. The g weights
with the top-g maximum `1-norm improvement are chosen.
As a result, we reduce the frequency of computing resid-
ual improvement for each weight, which takes a significant
amount of time. We adopt g equal to 2 in our experiments,
but a higher g can be used.

4.4. Locally Fine-tune Weights

The previous two steps select a subset of weights to pre-
serve, but do not change the values of the weights. In this
step, we perform the least-square optimization on each filter
to change the values of their weights to further reduce the
output error and restore the network accuracy:

Āi,Si
= arg min

Âi,Si

∥∥∥Ŷi −Xi,Si
Âi,Si

∥∥∥2
2
, Āi,SC

i
= 0, (3)

where the subscript Si means choosing the non-pruned
weights from the ith filter and the corresponding columns
from Xi. The least-square problem has a closed-form solu-
tion, which can be efficiently solved.

4.5. Globally Fine-tune Weights

After all the layers are pruned, we fine-tune the whole
network using back-propagation with the pruned weights
fixed at zero. This step can be used to globally fine-tune the
weights to achieve a higher accuracy. Fine-tuning the whole
network is time-consuming and requires careful tuning of
several hyper-parameters. In addition, back-propagation



can only restore the accuracy within certain accuracy loss.
However, since we first locally fine-tune weights, part of
the accuracy has already been restored, which enables more
weights to be pruned under a given accuracy loss tolerance.
As a result, we increase the compression ratio in each it-
eration, reducing the total number of globally fine-tuning
iterations and the corresponding time.

5. Experiment Results
5.1. Pruning Method Evaluation

We evaluate our energy-aware pruning on AlexNet [3],
GoogLeNet v1 [17] and SqueezeNet v1 [18] and compare
it with the state-of-the-art magnitude-based pruning method
with the publicly available models [8].1 The accuracy and
the energy consumption are measured on the ImageNet
ILSVRC 2014 dataset [31]. Since the energy-aware pruning
method relies on the output feature maps, we use the train-
ing images for both pruning and fine-tuning. All accuracy
numbers are measured on the validation images. To esti-
mate the energy consumption with the proposed methodol-
ogy in Sec. 2, we assume all values are represented with
16-bit precision, except where otherwise specified, to fairly
compare the energy consumption of networks. The hard-
ware parameters used are similar to [22].

Table 1 summarizes the results.2 The batch size is 44 for
AlexNet and 48 for other two networks. All the energy-
aware pruned networks have less than 1% accuracy loss
with respect to the other corresponding networks. For
AlexNet and SqueezeNet, our method achieves better re-
sults in all metrics (i.e., number of weights, number of
MACs, and energy consumption) than the magnitude-based
pruning [8]. For example, the number of MACs is reduced
by another 3.2× and the estimated energy is reduced by an-
other 1.7× with a 15% smaller model size on AlexNet. Ta-
ble 2 shows a comparison of the energy-aware pruning and
the magnitude-based pruning across each layer; our method
gives a higher compression ratio for all layers, especially for
CONV1 to CONV3, which consume most of the energy.

Our approach is also effective on compact models. For
example, on GoogLeNet, the achieved reduction factor is
2.9× for the model size, 3.4× for the number of MACs and
1.6× for the estimated energy consumption.

5.2. Energy Consumption Analysis

We also evaluate the energy consumption of popular
CNNs. In Fig. 3, we summarize the estimated energy con-
sumption of CNNs relative to their top-5 accuracy. The re-
sults reveal the following key observations:

1The proposed energy-aware pruning can be easily combined with
other techniques in [8], such as weight sharing and Huffman coding.

2We use the models provided by MatConvNet [32] or converted from
Caffe [33] or Torch [34], so the accuracies may be slightly different from
that reported by other works.

• Convolutional layers consume more energy than
fully-connected layers. Fig. 4 shows the energy break-
down of the original AlexNet and two pruned AlexNet
models. Although most of the weights are in the FC lay-
ers, CONV layers account for most of the energy con-
sumption. For example, in the original AlexNet, the
CONV layers contain 3.8% of the total weights, but con-
sume 72.6% of the total energy. There are two reasons for
this: (1) In CONV layers, the energy consumption of the
input and output feature maps is much higher than that
of FC layers. Compared to FC layers, CONV layers re-
quire a larger number of MACs, which involves loading
inputs from memory and writing the outputs to memory.
Accordingly, a large number of MACs leads to a large
amount of weight and feature map movement and hence
high energy consumption; (2) The energy consumption
of weights for all CONV layers is similar to that of all
FC layers. While CONV layers have fewer weights than
FC layers, each weight in CONV layers is used more fre-
quently than that in FC layers; this is the reason why the
number of weights is not a good metric for energy con-
sumption – different weights consume different amounts
of energy. Accordingly, pruning a weight from CONV
layers contributes more to energy reduction than prun-
ing a weight from FC layers. In addition, as a network
goes deeper, e.g., ResNet [19], CONV layers dominate
both the energy consumption and the model size. The
energy-aware pruning prunes CONV layers effectively,
which significantly reduces energy consumption.

• Deeper CNNs with fewer weights do not necessarily
consume less energy than shallower CNNs with more
weights. One network design strategy for reducing the
size of a network without sacrificing the accuracy is to
make a network thinner but deeper. However, does this
mean the energy consumption is also reduced? Table 1
shows that a network architecture having a smaller model
size does not necessarily have lower energy consump-
tion. For instance, SqueezeNet is a compact model and a
good fit for memory-limited applications; it is thinner and
deeper than AlexNet and achieves a similar accuracy with
50× size reduction, but consumes 33% more energy. The
increase in energy is due to the fact that SqueezeNet uses
more CONV layers and the size of the feature maps can
only be greatly reduced in the final few layers to preserve
the accuracy. Hence, the newly added CONV layers in-
volve a large amount of computation and data movement,
resulting in higher energy consumption.

• Reducing the number of weights can provide lower
energy consumption than reducing the bitwidth of
weights. From Fig. 3, the AlexNet pruned by the pro-
posed method consumes less energy than BWN [15].
BWN uses an AlexNet-like architecture with binarized
weights, which only reduces the weight-related and



Table 1. Performance metrics of various dense and pruned models.

Model Top-5
Accuracy

# of Non-zero
Weights (×106)

# of Non-skipped
MACs (×108)1

Normalized
Energy (×109)1,2

AlexNet (Original) 80.43% 60.95 (100%) 3.71 (100%) 3.97 (100%)
AlexNet ([8]) 80.37% 6.79 (11%) 1.79 (48%) 1.85 (47%)
AlexNet (Energy-Aware Pruning) 79.56% 5.73 (9%) 0.56 (15%) 1.06 (27%)

GoogLeNet (Original) 88.26% 6.99 (100%) 7.41 (100%) 7.63 (100%)
GoogLeNet (Energy-Aware Pruning) 87.28% 2.37 (34%) 2.16 (29%) 4.76 (62%)
SqueezeNet (Original) 80.61% 1.24 (100%) 4.51 (100%) 5.28 (100%)
SqueezeNet ([8]) 81.47% 0.42 (33%) 3.30 (73%) 4.61 (87%)
SqueezeNet (Energy-Aware Pruning) 80.47% 0.35 (28%) 1.93 (43%) 3.99 (76%)

1 Per image.
2 The unit of energy is normalized in terms of the energy for a MAC operation (i.e., 102 = energy of 100 MACs).
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Figure 3. Accuracy versus energy trade-off of popular CNN models. Models pruned with the energy-aware pruning provide a better
accuracy versus energy trade-off (steeper slope).

Table 2. Compression ratio1 of each layer in AlexNet.

[8] This Work
# of

Classes 1000 1000 100 10
(Random)

10
(Dog)

CONV1 16% 83% 86% 89% 89%
CONV2 62% 92% 97% 97% 96%
CONV3 65% 91% 97% 98% 97%
CONV4 63% 81% 88% 97% 95%
CONV5 63% 74% 79% 98% 98%

FC1 91% 92% 93% ∼100% ∼100%
FC2 91% 91% 94% ∼100% ∼100%
FC3 74% 78% 78% ∼100% ∼100%

1 The number of removed weights divided by the number of
total weights. The higher, the better.

computation-related energy consumption. However,
pruning reduces the energy of both weight and feature
map movement, as well as computation. In addition, the
weights in CONV1 and FC3 of BWN are not binarized
to preserve the accuracy; thus BWN does not reduce the
energy consumption of CONV1 and FC3. Moreover,
to compensate for the accuracy loss of binarizing the
weights, CONV2, CONV4 and CONV5 layers in BWN
use 2× the number of weights in the corresponding lay-
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Figure 4. Energy consumption breakdown of different AlexNets in
terms of the computation and the data movement of input feature
maps, output feature maps and filter weights. From left to right:
original AlexNet, AlexNet pruned by [8], AlexNet pruned by the
proposed energy-aware pruning.

ers of the original AlexNet, which increases the energy
consumption.

• A lower number of MACs does not necessarily lead
to lower energy consumption. For example, the pruned
GoogleNet has a fewer MACs but consumes more en-
ergy than the SqueezeNet pruned by [8]. That is because
they have different data reuse, which is determined by the
shape configurations, as discussed in Sec. 2.1.
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Figure 5. The impact of reducing the number of target classes on
the three metrics. The x-axis is the number of target classes. 10R
and 10D denote the 10-random-class model and the 10-dog-class
model, respectively.
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Figure 6. The energy breakdown of models with different numbers
of target classes.

From Fig. 3, we also observe that the energy consump-
tion scales exponentially with linear increase in accuracy.
For instance, GoogLeNet consumes 2× energy of AlexNet
for 8% accuracy improvement, and ResNet-50 consumes
3.3× energy of GoogLeNet for 3% accuracy improvement.

In summary, the model size (i.e., the number of weights
× the bitwidth) and the number of MACs do not directly
reflect the energy consumption of a layer or a network.
There are other factors like the data movement of the fea-
ture maps, which are often overlooked. Therefore, with the
proposed energy estimation methodology, researchers can
have a clearer view of CNNs and more effectively design
low-energy-consumption networks.

5.3. Number of Target Class Reduction

In many applications, the number of classes can be sig-
nificantly fewer than 1000. We study the influence of re-
ducing the number of target classes by pruning weights on
the three metrics. AlexNet is used as the starting point. The
number of target classes is reduced from 1000 to 100 to 10.
The target classes of the 100-class model and one of the
10-class models are randomly picked, and that of another
10-class model are different dog breeds. These models are
pruned with less than 1% top-5 accuracy loss for the 100-
class model and less than 1% top-1 accuracy loss for the
two 10-class models.

Fig. 5 shows that as the number of target classes reduces,
the number of weights and MACs and the estimated energy
consumption decrease. However, they reduce at different
rates with the model size dropping the fastest, followed by
the number of MACs the second, and the estimated energy
reduces the slowest.

According to Table 2, for the 10-class models, almost

all the weights in the FC layers are pruned, which leads to
a very small model size. Because the FC layers work as
classifiers, most of the weights that are responsible for clas-
sifying the removed classes are pruned. The higher-level
CONV layers, such as CONV4 and CONV5, which contain
filters for extracting more specialized features of objects,
are also significantly pruned. CONV1 is pruned less since it
extracts basic features that are shared among all classes. As
a result, the number of MACs and the energy consumption
do not reduce as rapidly as the number of weights. Thus, we
hypothesize that the layers closer to the output of a network
shrink more rapidly with the number of classes.

As the number of classes reduces, the energy consump-
tion becomes less sensitive to the filter sparsity. From the
energy breakdown (Fig. 6), the energy consumption of fea-
ture maps gradually saturates due to data reuse and the
memory hierarchy. For example, each time one input activa-
tion is loaded from the DRAM onto the chip, it is used mul-
tiple times by several weights. If any one of these weights
is not pruned, the activation still needs to be fetched from
the DRAM. Moreover, we observe that sometimes the spar-
sity of feature maps decreases after we reduce the number
of target classes, which causes higher energy consumption
for moving the feature maps.

Table 2 and Fig. 5 and 6 show that the compression ratios
and the performance of the two 10-class models are simi-
lar. Hence, we hypothesize that the pruning performance
mainly depends on the number of target classes, and the
type of the preserved classes is less influential.

6. Conclusion
This work presents an energy-aware pruning algorithm

that directly uses the energy consumption of a CNN to
guide the pruning process in order to optimize for the best
energy-efficiency. The energy of a CNN is estimated by
a methodology that models the computation and memory
accesses of a CNN and uses energy numbers extrapolated
from actual hardware measurements. It enables more ac-
curate energy consumption estimation compared to just us-
ing the model size or the number of MACs. With the esti-
mated energy for each layer in a CNN model, the algorithm
performs layer-by-layer pruning, starting from the layers
with the highest energy consumption to the layers with the
lowest energy consumption. For pruning each layer, it re-
moves the weights that have the smallest joint impact on the
output feature maps. The experiments show that the pro-
posed pruning method reduces the energy consumption of
AlexNet and GoogLeNet, by 3.7× and 1.6×, respectively,
compared to their original dense models. The influence of
pruning the AlexNet with the number of target classes re-
duced is explored and discussed. The results show that by
reducing the number of target classes, the model size can be
greatly reduced but the energy reduction is limited.
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