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Abstract
Nash equilibria always exist, but are widely conjectured to require time to find that is exponential
in the number of strategies, even for two-player games. By contrast, a simple quasi-polynomial
time algorithm, due to Lipton, Markakis and Mehta (LMM), can find approximate Nash equilibria,
in which no player can improve their utility by more than ε by changing their strategy. The
LMM algorithm can also be used to find an approximate Nash equilibrium with near-maximal
total welfare. Matching hardness results for this optimization problem were found assuming
the hardness of the planted-clique problem (by Hazan and Krauthgamer) and assuming the
Exponential Time Hypothesis (by Braverman, Ko and Weinstein).

In this paper we consider the application of the sum-squares (SoS) algorithm from convex
optimization to the problem of optimizing over Nash equilibria. We show the first unconditional
lower bounds on the number of levels of SoS needed to achieve a constant factor approximation
to this problem. While it may seem that Nash equilibria do not naturally lend themselves to
convex optimization, we also describe a simple LP (linear programming) hierarchy that can find
an approximate Nash equilibrium in time comparable to that of the LMM algorithm, although
neither algorithm is obviously a generalization of the other. This LP can be viewed as arising
from the SoS algorithm at logn levels – matching our lower bounds. The lower bounds involve
a modification of the Braverman-Ko-Weinstein embedding of CSPs into strategic games and
techniques from sum-of-squares proof systems. The upper bound (i.e. analysis of the LP) uses
information-theory techniques that have been recently applied to other linear- and semidefinite-
programming hierarchies.
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1 Introduction

1.1 Motivation and background
Game theory, broadly speaking, seeks to explain the decision-making of interacting, self-
interested agents. Mathematically it can be seen as a generalization of optimization problems
in which the goal is to minimize or maximize some function. Instead each player wishes
to maximize its own payoff, which in general will depend on the actions of the other
players as well. The standard solution concept here is a Nash equilibrium, meaning a set
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22:2 Tight SoS-Degree Bounds for Approximate Nash Equilibria

of (uncoordinated) mixed strategies for which no player can unilaterally increase their own
payoff by changing strategy. Here “mixed strategy” means a probability distribution over
the basic “pure strategies” of the game and “uncoordinated” means that these distributions
are uncorrelated. A related notion is a “correlated equilibrium” where again players cannot
unilaterally improve their payoffs, but this time a “signal” random variable is broadcast to all
the players who are free to choose their strategy based on the common signal; e.g. consider
the role of a traffic light in suggesting that one car stop and another car drive.

As with optimization problems, the practical applicability of Nash equilibria and correlated
equilibria depend on their computational complexity. Nash’s 1950 existence theorem proved
that Nash equilibria exist under very general conditions [24, 25] but turning the proof
into an algorithm results in an exponential runtime. Indeed, finding a Nash equilibrium is
PPAD-complete, meaning that it is as hard as solving an abstract fixed-point problem [10].
If we instead consider the problem of maximizing a linear function (e.g. total payoff) over
the space of Nash equilibria then the problem becomes NP-complete [10]. The difference in
complexity (PPAD vs NP) reflects the fact that the former is a problem of searching for a
solution that is known to exist whereas the latter problem is to determine whether a solution
exists. Finding a correlated equilibrium, by contrast, can be achieved in poly time with
linear programming.

One could reasonably argue that exact Nash equilibria are implausible models of rational
behavior and that deviating from an equilibrium strategy might only happen in practice
when the benefit is greater than zero by some non-negligible amount. An ε-approximate
Nash equilibrium (aka. ε-ANE) is thus defined to be a set of uncorrelated strategies for
which no player can improve their payoff by more than ε by changing strategies. It turns
out that the complexity of finding ε-ANEs is significantly lower than that of exact Nash
equilibria. In 2003, Lipton, Markakis and Mehta [21] gave an algorithm for finding an ε-ANE
in quasipolynomial time, e.g. nO(log(n)/ε2) for two-player games where both strategy sets have
size n. Their algorithm was based on enumeration over a suitably chosen net of strategies.
This net-based framework has been refined in [2, 6] to yield PTASs in some special cases.
On the hardness side, Braverman, Ko and Weinstein [9] recently showed that finding the
best (i.e. highest total payoff) ε-ANE in no(logn) time would violate the Exponential Time
Hypothesis (ETH). (The ETH posits that 3-SAT instances on n variables require exp(Ω(n))
time.)

1.2 Main results
Our paper investigates ε-ANE from the perspective of convex optimization. Since the sets of
Nash equilibria and ε-ANE are not convex, it is not immediately obvious how to relate the
problem of finding an ANE to a convex optimization problem. To this end, we can consider
the convex hull of all ε-ANE, for a given set of payoff functions. Optimizing a linear function
over one of these sets is equivalent to optimizing a linear function over the set of ε-ANE.
Note that these sets can be far from the much-more-tractable set of correlated equilibria;
additionally, even though it is easy to test whether a strategy is an ε-NE, this does not
extend to a test for whether a strategy is in the convex hull of ε-ANE (and likewise for
Nash equilibria). Indeed, standard arguments mean that optimizing a linear function over or
testing membership in these sets have approximately the same complexity [13].

Our first main result is a no-go theorem for a family of approximation algorithms based on
semidefinite programming (SDP), called the sum of squares (SoS) hierarchy. In particular we
show that in order to achieve a constant-factor approximation for 0.1-ANE, one must go to a
level of at least Ω(logn/poly log logn) in the SoS hierarchy (where n is the size of the game).
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This translates to an SDP of size Ω(nlogn). Unlike all previous results on the hardness of
NE and ANE, our result is unconditional; i.e. does not depend on any assumptions about
the hardness of 3-SAT, planted clique or other problems. Our result is also surprising in
part because the best results for planted clique, an apparently comparable problem [16], only
extend to ruling out SDPs arising from the SoS hierarchy of size O(n4) [17].

I Theorem 1.1 (informal). Given a game of size N with payoffs bounded by a constant,
deciding whether either (1) there exists a Nash equilibrium with average payoff ≥ 1 or
(2) all 0.1-approximate Nash equilibria have average payoff at most δ requires at least
Ω(logN/poly log logN) levels in the SoS hierarchy.

Our proof makes use of a classic result of Grigoriev [12], showing hardness for the problem
3XOR in the SoS model. We use reductions (with some properties as discussed below) to
extend the hardness of 3XOR to ANE. There have been quite a few examples using reductions
to prove the hardness in the SoS model (e.g., [34, 27]). However, each proof requires slightly
different properties about reductions and there is no explicit unified framework for doing so.
We follow a recent result in [15], which aims to serve as one such framework to facilitate the
proof of hardness in the SoS model.

To obtain integrality gaps in the SoS model, one needs to show that (a) the SoS solution
believes the value is large up to some high level (degree), and (b) the true value is actually
small. To achieve (a), we follow the notion of low-degree reductions [15], in which one requires
the reductions preserve a SoS solution for the reduced problems with almost the same value
and a small amount of loss of the degree1. To achieve (b), we need the reductions to have
some kind of soundness.

Our specific reduction is a variant of the one used in proving the ETH-hardness of ANE
by Braverman, Ko and Weinstein [9], with tweaks to ensure it has low-degree, soundness, and
embedding properties. Our hardness analysis is also inspired by a recent result of ours [15]
that extends the SoS lower bounds to quantum information problems. This connection is
natural given the intimate relationship between [1] and quantum information, which serves
as the first step in the reduction of [9].

We also make use of the explicit construction of a two-player strategic game for which
the optimal payoff of a Nash equilibrium is related to the value of a constraint satisfaction
problem, in the second step of [9]. In their game, the two players each specify an assignment
to a subset of

√
n variables from the CSP, and receive a payoff if they are consistent with each

other and satisfy the clauses. There are further penalties that ensure that each player must
choose their subset close to uniformly at random. It is then proven that if the underlying
CSP is satisfiable, the optimal Nash equilibrium is an “honest” strategy, where both players
answer according to a fixed assignment to the variables. This establishes reductions with good
completeness and soundness from CSPs to HonestNash of optimizing over honest strategies
to this game. We prove that their reduction is also low-degree and pseudosolution-preserving,
which allows us to obtain an SoS hardness result for HonestNash.

However, this game is not convenient for obtaining hardness for ApproximateNash,
since not all honest strategies are in fact Nash equilibria. The problem is that Alice and
Bob are punished for honest strategies that do not satisfy clauses. Additionally, the game
depends on underlying CSP. We fix both problems at once by giving Alice and Bob a payoff

1 This roughly refers to the “Vector Completeness” in [34] and “SoS Completeness” in [27]. It explicitly
requires the existence of a mapping that is a polynomial of low-degree, which maps a SoS solution of
the original problem to a SoS solution of the reduced one.
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22:4 Tight SoS-Degree Bounds for Approximate Nash Equilibria

simply for answering consistently, independent of the clauses. We then offload all dependence
on clause structure into our objective function.2 Our objective function is 0 whenever Alice
or Bob output sets of variables that do not contain enough clauses and otherwise equals the
fraction of satisfied clauses. Maximizing this objective function over ε-ANE is then roughly
equivalent to maximizing the number of satisfied clauses, which completes our reduction.

Our second main result is a linear programming (LP) lift of NE with dimension nO(log(n)/ε2),
matching our above lower bound. We describe lifts formally in Section 4, but intuitively
an approximate lift of dimension D is a polytope in RD whose projection onto some lower-
dimensional space includes all Nash equilibria, but ideally not too many additional points.
In Section 4 we prove the following theorem (more formally stated in Theorem 4.1).

I Theorem 1.2 (informal). Consider a two-player game with strategy sets of size n1, n2
and payoffs in [−1, 1]. There exists a polytope in RD with D = exp(O(log(n1) log(n2)/ε2))
such that its projection onto Rn1n2 contains all Nash equilibria and is contained in the ε-
neighborhood of the convex hull of all ε-ANE. This polytope has an explicit efficient description,
so that we can find an ε-ANE in time poly(D); or if f is an efficiently computable concave
function, we can estimate its maximum value over the NE efficiently.

The same result holds for m-player games where each player has a strategy set of size n
if we set D = exp(O(m3 ln2(n)/ε2)).

In fact, the set of correlated equilibria can already be seen as an LP relaxation of Nash
equilibria, since Nash equilibria can be alternately defined as correlated equilibria that are
product distributions. This relaxation can be useful [28], but in general correlated equilibria
can be far from Nash equilibria. Our lift can be thought of as a systematic hierarchy of
successive refinements of the set of correlated equilibria. Inspired by [31, 7], our idea is
to replace the player Bob with k replicas: Bob-1, Bob-2, . . ., Bob-k. We will impose the
constraint that the strategies of Alice and Bob-j form a correlated equilibrium, even when
conditioned on the strategies of Bobs-1, . . . , j − 1. This approach prevents Alice from being
simultaneously correlated with all of the Bobs. Indeed, if Alice were correlated with Bob-1,
then conditioning on his strategy would reduce Alice’s entropy. Continuing in this way we
find that Alice must have low correlation with most of the Bobs, implying that if we choose
j randomly from {1, . . . , k} and condition on the random strategies of Bobs-1, . . . , j − 1,
then the resulting distribution on Alice and Bob-j will be nearly product. This means the
resulting correlated equilibrium can be easily rounded to an ε-ANE.

The LP we obtain can be viewed as arising from the SoS hierarchy at level logN , with
the omission of the positive semidefinite constraint. Thus, our analysis of the LP also implies
that SoS is able to solve approximate ApproximateNash to constant accuracy at level
logN , matching our SoS lower bound.

Our LP relaxation is not the first approximation algorithm for ANE. In fact, a nearly
identical runtime was achieved by Lipton, Markakis and Mehta in 2003 [21] using an
algorithm that exhaustively searched over a set of sparse strategies. Using Chernoff bounds
it is possible to show that any NE can be approximated in this way. By now we have seen
a series of examples where net-based algorithms and LP/SDP hierarchies give very similar
approximation guarantees, often in the regime of PTASs or quasipolynomial-time algorithms.
These examples are summarized in Table 1 of [8] and include (1) optimizing polynomials over

2 This has the advantage of making our results compatible with the framework of extension complexity,
where one considers a polytope of feasible solutions (e.g. the matching polytope) that is independent of
the function being maximized.
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the simplex, (2) optimizing polynomials over the unit sphere, (3) free two-player games, (4)
unique games, (5) small-set expansion and (6) optimizing linear functions over unentangled
quantum states (see [8] for specific references). Despite this series of coincidences, it is still an
open question to find a common explanation of the performance of both types of algorithms.
Indeed our algorithm differs from that of LMM in ways that suggest there is no obvious way
to map one onto the other. If there is a sparse NE then LMM will find it, while our algorithm
may not. On the other hand, while both algorithms can freely add linear constraints (e.g. on
the total payoff), only ours can add convex constraints, such as maximizing entropy. Indeed,
if there exists an NE with entropy ≥ c log(n) then our algorithm will always find a nearby
ε-ANE with entropy ≥ (c−O(ε)) log(n), while by construction, LMM will only find ε-ANE
with entropy ≤ log log(n/ε) +O(1). We further compare the algorithms in Section 5.

1.3 Open problems
Extension complexity. Our results show limitations on approximating Nash equilibria
using the SoS hierarchy. But what about more general SDPs? Is it possible to find
an nΩ(logn) lower bound on the extension complexity of ε-ANE? The approach of Lee,
Raghavendra, and Steurer [20] does not apply directly here because our problems do not
have the same self-embedding property that CSPs do. However, it seems likely that the
[20] framework can be extended to cover ε-ANE.
Special cases. While our results address the complexity of ε-ANE in the worst case,
there are many special cases where it should be possible to find more efficient convex
relaxations. Under various conditions on the payoff matrices, net-based algorithms can
run more quickly [2, 6]. Without any further modification, our algorithm is already more
effective when Alice has low entropy in all correlated equilibria. This condition can be
checked quickly (since correlated equilibria form a polytope and entropy is a concave
function) but appears incomparable to the conditions under which [21, 2, 6] outperform
their worst-case guarantees. More generally we would like to know scenarios under which
our algorithms or variants of them can perform significantly better.
Semidefinite and convex constraints. A related question is whether SDP or other convex
constraints give additional benefits not already captured by LP hierarchies. We could also
add concave objective functions, such as entropy maximization. Do these have further
application?
Search vs. optimization. A major theme in work on the complexity of finding Nash
equilibrium is the distinction between NP and PPAD. PPAD is an example of TFNP
(“total function NP”) which is the class of search problems for which an answer is
guaranteed to exist and can be efficiently verified. All known algorithms for finding Nash
equilibria can also perform (or approximate) the optimization versions of the problem, and
the extension complexity model (by contrast with earlier hardness-based lower bounds)
collapses the difference between the search and optimization versions. Is there a natural
computational model which separates the complexity of these tasks?
Densest subgraph. Techniques for proving upper and lower bounds on the complexity
of the approximate Nash equilibrium problem have also been applied to the problem of
finding the densest k-subgraph of a given graph. The lower bound of [16] rules out a PTAS
for additive approximations to this problem on bipartite graphs, while the algorithm
of [6] achieves a quasipolynomial algorithm. Can we match these results in the SoS or
extension complexity settings? One barrier is that the hardness of [16] uses a reduction
from the planted clique problem, for which SoS lower bounds are not as well understood
as they are for CSPs.

CCC 2016
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1.4 Overview
In Section 2, we introduce some basic definitions and give a more technical overview of our
contribution. In Section 3, we prove a lower bound on SoS relaxations for the set of two-player
approximate Nash equilibria. Following this, in Section 4, we introduce an LP relaxation for
approximate Nash that matches our lower bound as well as handling multiplayer games, and
in Section 5, we compare its performance to the LMM algorithm. The appendices contain
further background on SoS proofs (Appendix A), reductions for SDPs (Appendix B ) and
information theory (Appendix C).

2 Definitions and Preliminaries

2.1 Games
Consider a two-player game with strategy sets [n1], [n2] and payoff vectors f1, f2 ∈ Rn1n2 . A
Nash equilibrium is a pair of probability distributions p1 ∈ ∆n1 , p2 ∈ ∆n2 such that

〈ex ⊗ p2, f1〉 ≤ 〈p1 ⊗ p2, f1〉 ∀x ∈ [n1] (2.1a)
〈p1 ⊗ ey, f2〉 ≤ 〈p1 ⊗ p2, f2〉 ∀y ∈ [n2] (2.1b)

Here [n] = {1, . . . , n}, ∆n = {p ∈ Rn : p(x) ≥ 0,
∑
x p(x) = 1}, ex is the vector with a one in

position x and zeroes elsewhere and p⊗ q is the vector with x, y entry equal to p(x)q(y).
Nash proved that (2.1) always has a solution (known as a Nash equilibrium, or NE), but

finding one is known to be PPAD-complete (or NP-complete in some cases when additional
constraints or optimizations are added) [10] . For this reason, it is natural to consider instead
approximate NE. Assume for the rest of the paper that maxi maxx |fi(x)| ≤ 1. We say that
the distributions p1, p2 (or equivalently the joint distribution p1 ⊗ p2) are an ε-approximate
NE (or ε-ANE) if they satisfy

〈ex ⊗ p2, f1〉 ≤ 〈p1 ⊗ p2, f1〉+ ε ∀x ∈ [n1] (2.2a)
〈p1 ⊗ ey, f2〉 ≤ 〈p1 ⊗ p2, f2〉+ ε ∀y ∈ [n2] (2.2b)

From these expressions, we can see that the problem of optimizing over Nash equilibria is
a polynomial optimization problem, where the variables are the probabilities p and q. The
constraints are the simplex constraints and the Nash conditions ((2.2)).

We consider also correlated equilibria, first proposed by Aumann in 1974 [3]. Let qXY
denote a probability distribution in ∆n1n2 . Then we say that q is a correlated equilibrium if
q satisfies the following analogue of (2.1):∑

y∈[n2]

q(x, y)(f1(x′, y)− f1(x, y)) ≤ 0 ∀x, x′ ∈ [n1] (2.3a)

∑
x∈[n1]

q(x, y)(f2(x, y′)− f2(x, y)) ≤ 0 ∀y, y′ ∈ [n2] (2.3b)

Since (2.3) is an LP, we can find correlated equilibria efficiently; i.e. in time poly(n1, n2).
While our hardness results will focus on the two-player case, we also describe algorithms

for finding ε-ANE for games with more than two players. Consider an m-player game, where
the players have strategy sets S1 = [n1], . . . , Sm = [nm] (with S = S1 × · · · × Sm), and
payoff tensors f1, . . . , fm ∈ Rn1 ⊗ · · · ⊗Rnm . This means that if players use mixed strategies
p1 ∈ ∆n1 , . . . , pm ∈ ∆nm , then player i receives payoff

〈p1 ⊗ · · · ⊗ pm, fi〉 =
∑

x=(x1,...,xm)∈S

p1(x1) · · · pm(xm)fi(x).
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Let N :=
∏m
i=1 ni. A distribution p ∈ ∆N is a correlated equilibrium if∑

x−i∈S−i

p(xi, x−i)(fi(x′i, x−i)− fi(xi, x−i)) ≤ 0 ∀i ∈ [m],∀xi, x′i ∈ Si. (2.4)

Here the notation S−i indicates the strategy set S1× · · · ×Si−1×Si+1× · · ·Sm of all players
except player i, and similarly x−i := (x1, . . . , xi−1, xi+1, . . . , xm). A Nash equilibrium is a
correlated equilibrium that is also a product distribution: i.e. such that p = pX1 ⊗ · · · ⊗ pXm .

2.2 Norms
Define the 1-norm and ∞-norm of vectors to be

‖v‖1 :=
∑
x

|v(x)| and ‖v‖∞ = max
x
|v(x)|.

For two probability distributions p, q, the 1-norm distance ‖p−q‖1 is also called the variational
distance, because of the following special case of Hölder’s inequality:

〈v, w〉 ≤ ‖v‖1‖w‖∞ with equality holding iff v = λw for λ ≥ 0. (2.5)

2.3 Optimization
Both our upper and lower bounds apply to relaxations of the convex optimization problem
ApproximateNashε. The promise version of this problem is as follows:

I Definition 2.1. The problem (a, b)−ApproximateNashε,m(f) is to determine, given a
game G over m players, where each player has at most n deterministic strategies, and a
function h (called the “externality”) mapping strategies to real numbers, whether either

there exists an exact Nash equilibrium strategy for G for which h ≥ a, or
for every ε-approximate Nash equilibrium to G, h is at most b.

given the promise that one of these cases holds. Here b < a are constant parameters. As an
important special case, we write ApproximateNashε to refer to the case when m = 2.

3 SoS Lower Bound

Braverman et al. [9] show a reduction from 3SAT to approximate Nash equilibrium, which
shows hardness for this problem conditional on ETH. We are able to use their reduction
to show an unconditional hardness result for the SoS hierarchy for approximate Nash.
We follow the approach of [15], who show how to SoS hardness for several continuous-
variable optimization problems arising in quantum information. The proof consists of two
steps: a pseudo-solution-preserving reduction from 3XOR over n variables to the intermediate
optimization problem HonestNash over {±1}n, followed by a reduction from HonestNash
to approximate ApproximateNash. The following schematic diagram illustrates this:

3XOR =⇒ HonestNash =⇒ ApproximateNash.

The problem HonestNash is a polynomial optimization problem over the boolean
hypercube {±1}n. The objective function hφ(x) is the total expected externality of two
players in a particular strategic game, whose strategies are specified by the input variables
x; the externality function is induced by a CSP instance φ. We consider the strategic
game introduced by [9], for which this objective function is a polynomial of degree Õ(

√
n).

This game, in turn, is based on a free game introduced by [1].

CCC 2016
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3.1 Framework of Deriving SoS Lower Bounds
Our proof makes extensive use of reductions between optimization problems. Here, we will
briefly give definitions of some useful notions, while we defer a full description to Appendix B.
Throughout this section, we will use the so-called ±1 notation for boolean variables: that is,
we encode FALSE as 1 and TRUE as −1.

We derive all of our integrality gaps from the following foundational result of Grigoriev
for the problem 3XOR (defined in Section B.3):

I Proposition 3.1 (Theorem 3.1 of [5], due to Grigoriev). For any ε > 0, for every n

there exists a 3XOR instance Φn with n variables and m = O(n/ε2) clauses, such that
OPT(Φn) ≤ 1

2 + ε, but there exists a degree-Ω(n) value-1 pseudo-solution Ẽ.
Here “value 1” means that for every clause xixjxk = aijk, it holds that Ẽ[(xixjxk −

aijk)p(x)] = 0 for all polynomials p(x) with degree at most d− 3.

The instance of Φn produced by Grigoriev has a constraint graph which is a good expander.
However, there is no upper bound on the degree of the constraint graph, i.e. the number of
clauses each variable can participate in. We remedy this issue by transforming the instance
to an instance Φ′n of the problem 3XOR+EQ, where we allow both 3XOR constraints and
equality constraints between pairs of variables.

I Proposition 3.2. For every n, there exists an instance Φ′n of 3XOR+EQ on O(n) variables
where the constraint graph is (δn, α)-expanding and has degree at most d, for constants
δ < 1, α > 1, d, such that the maximum fraction of clauses satisfiable is ω(Φ′n) ≤ 1

2 + ε.
Furthermore, there exists a degree-Ω(n), value-1 pseudo-solution to Φ′n. That is, there exists
a pseudo-expectation operator Ẽ[·] with degree D = Ω(n), such that Ẽ[C(x)q(x)] = 1 for every
clause C(x) in the instance Φ′n and every polynomial q(x) with degree deg(C(x)q(x)) ≤ D.

Proof. We start with the instance Φn in Proposition 3.1, and then apply the degree reduction
procedure of [29] to produce the new instance Φ′n. This procedure consists of replacing
each high-degree variable in the original instance with many copies, connected by equality
constraints laid out according to an expander graph. It is shown in [29] that this procedure
has constant soundness, so ω(Φn) ≤ 1

2 + ε for some constant ε. Now, to produce the
desired pseudosolution, we define Ẽ[p(x)] for any polynomial p(x) to be what we get by
first identifying all of the replicated variables with each other, and then evaluating the
pseudoexpectation according to the operator Ẽ[·] produced by Proposition 3.1. J

3.2 Consistent Sample Game
Inspired by the construction in [9], we now present a game called the Consistent Sample
Game, whose Nash equilibria will be easy to characterize. As a warm-up, consider the
following simple game

I Definition 3.3 (Consistent Bit Game). The consistent bit game is a two-player strategic
game, where Alice and Bob are each allowed to play a single bit 0 or 1. They win if they
their bits agree and lose otherwise.

It is easy to see that this game has exactly two Nash equilibria: either Alice and Bob both
play 0, or both play 1. Our consistent sample game is a scaled up version of this game,
where Alice and Bob have access to n-bit strings. However, the strategies they play consist
of assignments to a subset of the variables of size

√
n. To force the players to choose their

subsets with close to uniform probability, we also add a zero-sum uniformity test. This test
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and its analysis are one of the main technical contributions of [9], and fortunately we will be
able to mostly reuse their analysis without change.

I Definition 3.4 (Consistent Sample Game). For a given size n, the consistent sample game
Gn,k,`,d is specified by the following:

The set of Alice’s possible pure strategies consists of: all tuples (S, s) consisting of a
subset S of k variables and an assignment s to these variables, and all subsets Y of ρ

√
n

variables. We refer to the former as “tuple strategies” and the latter as “subset strategies.”
The set of Bob’s possible pure strategies consist of: all tuples (T, t) consisting of a subset
T of ` variables and an assignment t to the variables in T , and all subsets Z of ρ

√
n

clauses. We likewise refer to these two types of strategies as “tuple strategies” and “subset
strategies.”
The payoff matrix has a block structure. If both players play with tuple strategies (S, s)
and (T, t), the payoff for Alice is 1, and the payoff for Bob is

f ′(S, T, s, t) =
{
βT f(S, T, s, t) if |S ∩N (T )| > d

10(ε∗)2

0 otherwise
,

where the notation N (T ) denotes the neighbors of the variables in T in the constraint
graph, i.e. the set of clauses involving variables in T . Here, f(S, T, s, t) is 1 if there are
no inconsistencies in Alice and Bob’s assignments to the variables and 0 otherwise, and
βT ≡ 1

Pr[|S∩N (T )|> d
10(ε∗)2 ] .

If Alice plays with a tuple strategy (S, s) and Bob plays with a subset strategy Z, then
if S ∩ Z 6= ∅, Bob receives a payoff of K and Alice receives −K. Likewise, if Bob plays
with a tuple strategy (T, t) and Alice plays with a subset strategy Y , then if T ∩ Y 6= ∅,
Alice receives a payoff of K and Bob receives −K.
If both players play with a subset strategy, they both receive a payoff of 0.

In the above, K > 1 and ε∗ < 1
2 are constant parameters, and ρ = (ε∗)/(c2 ·K) where c2 is

an appropriately chosen constant.

As in Braverman et al., we choose k and ` to be Θ(
√
n). The parameter d is equal to

the degree of the constraint graph of the CSP φ, which we will use later to construct our
externality function. Henceforth, we will denote the game simply by Gn. An important
difference between our game and the one in Braverman et al. is that in our construction,
when both players use tuple strategies, Alice always receives a payoff of 1.

We now define a Boolean optimization problem HonestNash by considering a restricted
subset of strategies which we call “honest strategies.” We assume a fixed CSP instance φ
that is known to both players.

I Definition 3.5. For every x ∈ {±1}n, we define the honest strategy according to x for Gn
by the following prescription

Alice follows a mixed strategy: she chooses her subset of variables S to be k/3 clauses
chosen uniformly at random from φ, and her assignment s to be that given by x.
Bob also follows a mixed strategy: he chooses his subset T of ` variables uniformly at
random from φ, and his assignment t to be that given by x.

I Definition 3.6. For every 3XOR instance φ, the problem HonestNashφ is a Boolean
optimization problem maxx∈{±1}n hφ(x), where the objective function hφ(x) is the expected
value of the following externality function over the honest strategy induced by x (note that
in an honest strategy, Alice and Bob always play tuple strategies):
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The externality is 1 if both players’ assignments are consistent with each other and all of
Alice’s assignments satisfy their respective clauses in φ.
The externality is 0 otherwise.

This objective function is a degree-O(
√
n) polynomial in the variables x.

To see why the function hφ is a degree O(
√
n) polynomial, note that h can be written as

an average of terms, where each term corresponds to the externality for a specific choice of
S and T . This is a boolean function depending on only the O(

√
n) variables that appear

in S and T . So the whole function hφ(x) can be written as a sum of terms for each S, T ,
each of which has degree O(

√
n). Below in the proof of theorem 3.8, we will give an explicit

expression for hφ(x).

I Theorem 3.7. If φ is satisfiable, then there exists an honest strategy for Gn that is an exact
Nash equilibrium, and achieves expected externality 1. Moreover, there are fixed constants
δ, ε∗ < 1/2 independent of ε, such that if at most (1 − δ)-fraction of the clauses of φ are
satisfiable, then all ε∗-approximate Nash equilibria for Gn have expected externality at most
O(ε).

Proof. This is the main result of [9]; we need to argue that is preserved under our modification
of the payoff function. Because of the similarity between our proof and theirs, we only sketch
our proof. For the completeness case, the desired Nash equilibrium is simply the honest
strategy playing according to the satisfying assignment of φ. The argument presented in
Lemma 3.2 of [9] goes through without change.

For the soundness, we again follow the proof strategy of [9]. In particular, we note that
the proof of Lemma 3.4, which states that all Nash equilibria must choose the subsets S, T
with roughly uniform probability over the clauses in φ, holds unchanged with our payoff
function. Thus, we can reproduce the argument of Lemma 3.5 with our modified payoff
function, to upper bound Bob’s externality by O(ε). Moreover, the same argument applied
to our payoff function upper-bounds Alice’s externality by O(ε). Thus, we obtain an average
payoff of O(ε) as desired. J

I Theorem 3.8. For φ be the 3XOR+EQ instance from Proposition 3.2, there exists a
degree-Ω(n) pseudosolution to HonestNash with externality hφ achieving value 1.

Proof. Let Ẽ[·] be the degree-Ω(n) pseudoexpectation operator associated with a value-1
pseudosolution for our 3XOR+EQ instance φ. (Such a pseudosolution exists by proposi-
tion 3.2.) We claim that this yields a value-1 pseudosolution for HonestNash. To prove this,
let us examine the objective function fφ(x) for this problem. First, define the polynomial

AND(x1, x2, . . . , xk) = 1 + 1
2k−1 (1− x1)(1− x2) . . . (1− xk)

This polynomial evaluates to −1 when all of the input variables are −1, and 1 otherwise.
Next, we define a polynomial function for gC(x) for each clause C = axixjxk:

gC(x) = 1− 1
2(xixjxk − a)2

This evaluates to −1 when the clause is satisfied and 1 otherwise. By our definition of honest
strategies, the consistency tests always pass with probability 1. So the objective function
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fφ(x) is a function of just the clauses {C1, · · · , Ck} appearing in the random sets of variables
S and T :

fφ(x) = 1
2 −

1
2 E
S
E
T
βT AND(gC1(x), gC2(x), . . . , gCk(x)) = 1

2 −
1
2k E

S

k∏
i=1

(1− Ci(x)).

Here the expectations are taken over the uniform distribution over sets S, T of the appropriate
size. Note that k = Θ(

√
n). Now, we know that Ẽ′[Ci(x)q(x)] = 0 for all q(x) such that

deg(q(x)) ≤ d where d = Ω(n). Therefore,

Ẽ′[AND(gC1(x), gC2(x), . . . , gCk(x))] = 1.

So Ẽ′[fφ(x)] = ES ET βT = 1. J

3.3 Embedding HonestNash in ApproximateNash
We now pass from HonestNash to ApproximateNash by broadening the space of strategies
searched over to include all mixed strategies, not just honest ones. In order to preserve our
SoS lower bound, it will help to show that every feasible point of HonestNash corresponds
to a feasible point of ApproximateNash achieving exactly the same value.

I Theorem 3.9. Every honest strategy for Gn is a Nash equilibrium.

Proof. First, we will show that there is no incentive for either player to switch to another
tuple strategy. We will then invoke the soundness analysis of Braverman et al. [9] to show
that there is no incentive to switch to subset strategies either.

For tuple strategies, there are two cases the consider. First, let’s suppose we fix Alice’s
strategy and allow Bob’s strategy to deviate. Bob’s payoff depends only on whether Alice’s
clauses are satisfied, and whether Alice and Bob are inconsistent on any variables. If Bob
were to deviate from the honest strategy, the number of satisfied clauses would be unaffected,
and the chance of inconsistencies can only go up. So Bob has no incentive to deviate. Now, if
we fix Bob’s strategy and allow Alice to deviate, note that Alice’s payoff is always 1 regardless
of which strategy she chooses, so she has no incentive to deviate either.

Now, we need to show that neither party has an incentive to switch to a subset strategy.
We will use the following fact, which is shown in the course of the proof of Lemma 3.2 of [9].

I Fact 3.10. Suppose Alice plays honestly and Bob plays with a (deterministic) subset
strategy Z. Then Bob’s expected payoff is upper bounded by

v = K E
S∼U

1(S ∩ Z 6= ∅) ≤ 2
0.9 · c2

.

So for c2 > 2/(0.9ε∗), Bob has no incentive to deviate. A symmetric argument applies to
Alice. J

We note that the previous theorem would be false in the original version of the game given
by [9], without the modification to Alice’s payoff. This is because for any honest assignment
to the variables with 3XOR value at least 1

2 + ε, Alice can find some subset S′ of
√
n clauses

that are perfectly satisfied by that assignment. So Alice will always have an incentive to
switch to the deterministic strategy that always answers with S′: this strategy would achieve
a payoff of 1 for Alice. We are able to remove this incentive by making Alice’s payoff 1
independent of her choice of strategy.
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It turns out that the preceding argument to show that each honest strategy is a Nash
equilibrium can be itself converted into a sum of squares proof. This enables us to “lift” the
SoS pseudosolution we constructed for HonestNash to one for ApproximateNash, and
achieve our main lower bound.

I Theorem 3.11. There exists a constant ε∗ < 1
2 such that for any constant ε < 1

2 , there
exists a game Gn of size N = O(n

√
n) and externality function h such that the expected

value of h is at most ε over all ε∗-Nash equilibria. At the same time, there is a degree-
Ω(logN) pseudosolution that satisfies all the Nash equilibrium constraints for Gn and achieves
externality value 1.

Proof. Choose Gn to be the consistent sample game, and take the externality function h
to be the one induced by the 3XOR+EQ instance from Proposition 3.2. Then it follows
from Theorem 3.7 that the expected value of h is at most ε over all ε∗-Nash equilibria.
Now, to construct the pseudosolution, first, let us define a polynomial formulation of the
problem ApproximateNash. Our variables will be p(S,s), representing the probability that
Alice plays the tuple strategy (S, s); pY , representing the probability that Alice plays the
subset strategy Y ; q(T,t) representing the probability that Bob plays the tuple strategy (T, t),
and qZ representing the probability that Bob plays the subset strategy Z. Let Ẽ[·] be the
pseudosolution for HonestNash derived in Theorem 3.8, which is defined up to degree
D = Ω(

√
n). We need to lift this to a pseudoexpectation Ẽ′[·] on variables p, q. We do

so as follows: when evaluating a pseudoexpectation Ẽ′[p . . . pq . . . q] of a monomial term,
first perform the following substitutions, and then evaluate the resulting polynomial in x
according to Ẽ[·]:

Replace pY or qZ with 0 (this is because honest strategies have no support over subset
strategies).
Replace p(S,s) by ca AND(xS1 = s1, . . . , xSk = sk), where ca is the probability of Alice
choosing the subset S. This term evaluates to ca if the assignment in s matches the
assignment in x, and 0 otherwise.
Likewise, replace q(T,t) by cb AND(xT1 = t1, . . . , xTk = tk), where cb is the probability of
Bob choosing the subset T .

This pseudoexpectation “automatically” satisfies the positive semidefinite constraint, since
it arises from a valid pseudoexpectation for x. Moreover, under the substitution process,
the degree of a polynomial can only increase by a multiplicative fact of at most O(

√
n), so

Ẽ′[·] is defined up to degree Ω(D/
√
n) = Ω(

√
n). It remains to check that it satisfies the

Nash constraints, and gives a high objective value for the externality function. To check the
former, we need to show that the pseudoexpectation of the advantage gained by switching
to any other strategy, multiplied by any squared polynomial, is non-positive. First, let us
consider Bob. Suppose Bob switches to a tuple strategy (T ′, t′). The advantage gained can
be written as

advantage =
∑

(S,s),(T,t)

p(S,s)q(T,t)(f(S,s),(T ′,t′) − f(S,s),(T,t)). (3.1)

The term f(S,s),(T,t) checks whether the assignments s and t are consistent, so it is a degree-
O(
√
n) polynomial in the variables x (essentially the AND of a number of equality checks).

We want to check that

Ẽ′[advantage · P 2(p, q)] ≤ 0

for an arbitrary polynomial P (p, q). By the construction of the honest strategies, all (S, s, T, t)
in the support of the strategy are consistent and so Ẽ′[(f(S,s),(T,t) − 1)Q(p, q)] = 0 for any
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such (S, s, T, t) and any polynomial Q(p, q). Another way to see this is that any inconsistent
tuples (S, s, T, t) should disagree on some bit xi, meaning that one AND term contains a
1 + xi and the other AND term contains a 1− xi. In this case

Ẽ′[p(S,s)q(T,t)Q(p, q)] = Ẽ[(1− xi)(1 + xi)Q′(x)] = 0

where Q′(x) is some other polynomial of x1, . . . , xn and the last equality comes from the
x2
i = 1 constraint satisfied by the original pseudoexpectation Ẽ. Thus the second term in

(3.1) always evaluates to Ẽ′[P 2] under the pseudoexpectation. On the other hand we claim
the first term is ≤ Ẽ′[P 2]. Here the constraint AND2 = 1 is implied by the x2

i = 1 constraints,
thus we have the SOS proof

1−AND = 1− 2 AND + AND2

2 = (1−AND)2

2 ≥ 0.

This implies that Ẽ[AND2 P 2] ≤ Ẽ[P 2], as desired.
Next, suppose Bob switches to a subset strategy Z. Then his advantage is

advantage =
∑

(S,s),(T,t)

p(S,s)q(T,t)(f(S,s),Z − f(S,s),(T,t)). (3.2)

Note that the first term in the difference is independent of s. Indeed the second term is
as well, since f(S,s),(T,t) = 1 whenever p(S,s)q(T,t) are not constrained to equal 0 by our
construction. Thus we can rewrite the advantage as

advantage =
∑
S,T

pSqT (K1(S ∩ Z 6= ∅)− 1), (3.3)

with pS :=
∑
s p(S,s) and likewise for qT . We now claim that these terms factor out of a

pseudoexpectation; i.e. that

Ẽ′[pSP (p, q)] = Ẽ′[pS ] Ẽ′[P (p, q)] (3.4)

for any P (p, q) (and likewise for qT ). To see this observe that our substitution replaces pS
with∑

s1,...,sk

ca(1 + 1
2k−1 (1− s1x1)(1− s2x2) . . . (1− skxk)) = 2kca.

Thus for any polynomial P (p, q) we have

Ẽ′[advantage · P 2(p, q)] = Ẽ′[advantage] Ẽ′[P 2(p, q)]. (3.5)

The first term is nonpositive due to Fact 3.10 and the second term is nonnegative, as we
have argued above, because it equals Ẽ[P̃ 2(x)] for some polynomial P̃ and because Ẽ is a
pseudoexpectation.

We conclude that Ẽ′ satisfies the Nash equilibrium constraints. It achieves externality
value 1 because it inherits the property from Ẽ of satisfying all the 3XOR constraints. J

4 Approximate Nash equilibria via linear programming

In this section we will describe an LP hierarchy for ANE.
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We first introduce a new form of equilibrium, called an ε-correlated equilibrium. If p is a
correlated equilibrium for some m-player game f then we say it is an ε-correlated equilibrium
if

‖pX1...Xm − pX1 ⊗ · · · ⊗ pXm‖1 ≤ ε. (4.1)

Denote the set of Nash equilibria for game f by Nf , the ε-correlated Nash equilibria by Ñf,ε
and the ε-ANE by Nf,ε. Of course Nf = Nf,0 = Ñf,0. These will allow us to state a result
that will imply Theorem 1.2.

I Theorem 4.1.
1. Fix a two-player game f = (f1, f2) with strategy sets of size n1, n2 and all payoffs in

[−1, 1]. Let D = exp(O(ln(n1) ln(n2)/ε2)). There exists a polytope Pf ⊂ RD such that its
projection onto Rn1n2 , called Qf , satisfies

Nf ⊆ Qf ⊆ conv(Ñf,ε).

Pf is defined by poly(D) explicit constraints and thus we can test membership in it in
time poly(D).

2. Now fix an m-player game with strategy sets of size n1, . . . , nm and payoffs in [−1, 1].
Choose positive integers k1, . . . , km. Then the same result holds with D = nk1

1 n
k2
2 · · ·nkmm

and

ε =

√√√√2
∑

1≤i<j≤m

ln(ni)
kj

max
i∈[m]
x∈S

|fi(x)|. (4.2)

If we specialize to n1 = · · · = nm =: n then we can take D = exp(O(m3 ln2(n)/ε2))

I Corollary 4.2. Use the same parameters as in Theorem 4.1 and let h be an efficiently
computable concave function such that |h(p)−h(q)| ≤ η‖p−q‖1 for p, q any pair of probability
distributions over joint strategies. Then given some threshold T and in time DO(η2) we can
distinguish between the cases

maxp∈Nf h(p) ≥ T ; or
maxp∈Nf,ε h(p) ≤ T − ε. (We could equivalently replace this with maxp∈Ñf,ε h(p) ≤ T − ε.)

Corollary 4.2 follows from Theorem 4.1 and the fact that optimizing over a convex set
has a poly-time reduction to the problem of testing membership in that set [13, Theorem
4.3.2 and Remark 4.2.5].

4.1 Proof for two players
While the two-player proof is a special case of the multiplayer proof, and uses very similar
ideas, the notation is much simpler and it is a good warmup to the general case.

First we observe that any ε-correlated equilibrium q can be rounded to an ε-approximate
NE by replacing q with the pair of marginal distributions qX , qY , i.e.

qX :=
∑

x∈[n1],y∈[n2]

〈ex ⊗ ey, q〉ex and qY :=
∑

x∈[n1],y∈[n2]

〈ex ⊗ ey, q〉ey . (4.3)

Call this “marginal rounding.”
In general marginal rounding can produce pairs of strategies that are far from equilibria.

One situation in which it works well is when q is already nearly of product form; i.e. when
‖q − qX ⊗ qY ‖1 is small.
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I Lemma 4.3. If q is a correlated equilibrium then (qX , qY ) is an ε-approximate NE for

ε = ‖q − qX ⊗ qY ‖1 ·max{‖f1‖∞, ‖f2‖∞}. (4.4)

Proof. From (2.5) we have

〈q − qX ⊗ qY , f1〉 ≤ ‖q − qX ⊗ qY ‖1 ‖f1‖∞ ≤ ε.

Combining with (2.3a) yields (2.2a). Repeating the argument for f2 yields (2.2b). J

To obtain uncorrelated q, we will consider a variant of correlated equilibria in which there
are k copies of player 2 for some positive integer k. If q ∈ ∆n1nk2

then we can interpret q as
a probability distribution on random variables X,Y1, . . . , Yk. We use the abbreviations:

Y<j := Y1, . . . , Yj−1

Y>j := Yj+1, . . . , Yk

Y−j := Y<j , Y>j

For y<j ∈ [n2]j−1, let qXYjY<j=y<j be the distribution on XYj obtained by conditioning on
Yi = yi for i < j. Explicitly

q
XYj
Y<j=y<j (x, yj) = qXY≤j (x, y<j , yj)∑

x′,y′
j
qXY≤j (x′, y<j , y′j)

. (4.5)

Now define the “k-extendable relaxation” of NE to be the following LP:

q ∈ ∆n1nk2
(4.6a)

q
XYj
Y<j=y<j satisfies (2.3) ∀j ∈ [k],∀y<j ∈ [n2]j−1 such that qY<j (y<j) > 0 (4.6b)

This is a linear program since (4.6b) is equivalent to the following uglier-but-manifestly-linear
conditions:∑

x∈[n1]
yj∈[n2]

y>j∈[n2]k−j

q(x, y)(f1(x′, yj)− f1(x, yj)) ≤ 0 ∀x′ ∈ [n1],∀j ∈ [k],∀y<j ∈ [n2]j−1 (4.7a)

∑
x∈[n1]
yj∈[n2]

y>j∈[n2]k−j

q(x, y)(f2(x, y′j)− f2(x, yj)) ≤ 0 ∀yj ∈ [n2],∀j ∈ [k],∀y<j ∈ [n2]j−1 (4.7b)

In other words, we ask for a distribution on XY1 . . . Yk such that each XYj are in a
correlated equilibrium even when conditioned on the actions of Y<j . To see that this is
indeed a relaxation, observe that if p1, p2 is a NE, then q = p1 ⊗ p⊗k2 is a valid solution to
(4.6). Along with Nash’s theorem, this also implies that the LP is always feasible.

The rounding algorithm is as follows.
1. Enumerate over all j ∈ [k] and y<j ∈ [n]j−1.
2. For each j, y<j , let p1 = qXY<j=y<j and p2 = q

Yj
Y<j=y<j .

3. Output the (p1, p2) that is an ε-ANE for the lowest value of ε.
In the final step, we are using the fact that given p1, p2, it is easy to find the smallest value
of ε for which (p1, p2) is an ε-ANE.

I Theorem 4.4. The above procedure returns a
√

2 ln(n1)
k -approximate NE.
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Thus, setting k = 2 ln(n1)/ε2 yields an algorithm that finds an ε-ANE and runs in time
poly(mnk) = exp(O(ln(n1) ln(n2)/ε2)). To prove Theorem 4.4 we will need a few basic facts
from information theory, reviewed in Appendix C.

Proof of Theorem 4.4. Let qXY1...Yk be a solution of (4.6). Observe that

ln(n1) ≥ H(X)q ≥ I(X;Y1 . . . Yk)q =
k∑
j=1

I(X;Yj |Y1 . . . Yj−1). (4.8)

Introduce the abbreviations α = (j, y<j) for y<j ∈ [n2]j−1 and qα = qXYj |Y<j=y<j . Then we
can rewrite (4.8) as

E
j∈[k]

E
y<j∼qY<j

I(X;Y )qα ≤
ln(n1)
k

. (4.9)

Thus there is a choice of α = (j, y<j) for which I(X;Y )qα ≤
ln(n1)
k . By Pinsker’s inequality

(specifically (C.3)), we have

‖qXYα − qXα ⊗ qYα ‖1 ≤
√

2 ln(n1)
k

. (4.10)

Finally (4.6b) forces qα to be a valid correlated equilibrium so we can use Lemma 4.3 to
obtain that (qXα , qYα ) is a

√
2 ln(n1)

k -approximate NE. J

In the above algorithm, we could have chosen j, y<j randomly instead of enumerating over
all possibilities. However, this would not improve the asymptotic runtime. We also could have
replaced (4.6b) with the stronger constraint that qXYjY−j=y−j is a correlated equilibrium, with
no asymptotic increase in run-time, but also without any provable performance improvement.

4.2 Proof for multiplayer games
We can quantify the distance of a distribution p to a product distribution by using the
multipartite mutual information (which was first proposed in 1954, but has since been
reinvented multiple times [23, 35, 22]

I(X1 : · · · : Xm)p :=
m∑
i=1

H(Xi)p −H(X1 . . . Xm)p (4.11a)

= D(pX1...Xm‖pX1 ⊗ · · · ⊗ pXm) (4.11b)

=
m∑
i=2

I(X<i : Xi)p (4.11c)

Due to (4.11b) and Pinsker’s inequality (see (C.1) in Appendix C), we can use the multipartite
mutual information to bound the distance of a distribution to product:

‖pX1...Xm − pX1 ⊗ · · · ⊗ pXm‖1 ≤
√

2I(X1 : · · · : Xm). (4.12)

To define the relaxation we will need to introduce some more notation. Let k1, . . . , km
be positive integers that we will choose later. Define ~k = (k1, . . . , km) and ~n = (n1, . . . , nm).
Introduce random variables Y ji with i ∈ [m] and j ∈ [ki]. Let ~n~k := [n1]k1 × · · · × [nm]km
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and let q ∈ ∆~n~k be a distribution on Y := (Y 1
1 , . . . , Y

nm
m ). Define Φ~k = [k1]× · · · × [km]. If

φ = (φ1, . . . , φm) ∈ Φ~k, then we define

Y φ := Y φ1
1 . . . Y φmm

Y
φ<j
<j := Y φ1

1 . . . Y
φj−1
j−1

Y <φ := Y <φ1
1 . . . Y <φmm

Y
<φ−j
−j := Y <φ1

1 . . . Y
<φj−1
j−1 Y

<φj+1
j+1 . . . Y <φmm

Yj := Y 1
j . . . Y

kj
j

It will also be convenient to define

~n<φ := [n1]φ1−1 × · · · × [nm]φm−1

and likewise for ~nφ, ~n≥φ, etc. We can now define the LP relaxation:

q ∈ ∆Ñ (4.13a)

q
Yφ
Y<φ=y<φ is a correlated equilibrium ∀φ ∈ Φ~k,∀y<φ ∈ ~n

<φ (4.13b)

Again the constraint (4.13b) is only defined when we condition on an event with positive
probability.

The rounding algorithm is similar to the bipartite case:
1. Enumerate over all φ ∈ Φ~k and y<φ ∈ [n1]φ1−1 × · · · [nm]φm−1.
2. For each φ, y<φ, let

p =
m⊗
i=1

q
Y
φi
i

Y<φ=y<φ .

3. Output the p that is an ε-ANE for the lowest value of ε.

I Theorem 4.5. The above procedure returns an ε-approximate NE, where

ε =

√√√√2
∑

1≤i<j≤m

ln(ni)
kj

max
i∈[m]
x∈S

|fi(x)|. (4.14)

Proof. We begin by bounding

E
φ∈Φ~k

I(Y φ1
1 : · · · : Y φmm |Y <φ)p (4.15a)

= E
φ∈Φ~k

m∑
j=2

I(Y φ<j<j : Y φjj |Y
<φ)p using (4.11c) (4.15b)

=
m∑
j=2

E
φ−j

E
φj
I(Y φ<j<j : Y φjj |Y

<φj
j Y

<φ−j
−j )p writing φ = (φj , φ−j) (4.15c)

=
m∑
j=2

E
φ−j

1
kj
I(Y φ<j<j : Yj |Y

<φ−j
−j )p chain rule (C.6) (4.15d)

≤
m∑
j=2

ln(n1 · · ·nj−1)
kj

=
∑

1≤i<j≤m

ln(ni)
kj

(4.15e)
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Thus there exists a φ and a y<φ for which

I(Y φ1
1 : · · · : Y φmm )p

Y<φ=y<φ
≤

∑
1≤i<j≤m

ln(ni)
kj

. (4.16)

Set qX1...Xm := p
Y
φ1

1 ...Y φmm
Y <φ=y<φ . Then (4.12) implies that

‖pX1...Xm − pX1 ⊗ · · · ⊗ pXm‖1 ≤

√√√√2
∑

1≤i<j≤m

ln(ni)
kj

= ε. (4.17)

Enumerating over all φ will find a φ satisfying (4.16) and thereby also (4.17). (While this
suffices for our purposes, note that concavity of the square root means that (4.17) holds in
expectation even if φ and y<φ is randomly chosen.) By an easy generalization of Lemma 4.3,
we conclude that the marginal distributions of p form an ε-approximate Nash equilibrium. J

I Corollary 4.6. For an m-player game where each player has a strategy set of size n and
maxi∈[n] maxx∈S |fi(x)| ≤ 1, an ε-ANE can be found in time exp(O(m3 ln2(n)/ε2)).

Proof. Set kj = κ
√
m− j in Theorem 4.5 for κ to be chosen later. The error is

≤

√√√√2
m∑
j=1

(m− j) ln(n)
κ
√
m− j

≤
√

2m3/2 ln(n)
κ

.

For this to be ≤ ε, we set κ = 2m3/2 ln(n)
ε2 . The size of the LP is

nk1+...+km = exp

ln(n)κ
m∑
j=1

√
m− j

 ≤ exp
(

2m3 ln2(n)
ε2

)
,

and the run-time of the algorithm is polynomial in this dimension. J

5 Comparison to the LMM algorithm for approximate NE

Lipton, Markakis and Mehta [21] gave a method to find an ε-ANE in quasipolynomial time;
specifically exp(O(log(n1) log(n2)/ε2)). Their strategy was to prove that for any NE (p1, p2),
there exists an ε-ANE (p̂1, p̂2) of the form

p̂1 = 1
|SX |

∑
x∈SX

ex and p̂2 = 1
|SY |

∑
y∈SY

ey (5.1)

for some multisets SX , SY satisfying |SX | = d12 log(n2)/ε2e, |SY | = d12 log(n1)/ε2e. (Their
paper states a bound that is slightly worse when n1 and n2 are far apart, but it is not hard
to improve their analysis here.) Indeed, SX , SY can be obtained by randomly sampling from
p1, p2 respectively. Such SX , SY can be found deterministically by checking (2.2) for all
possible choices of SX , SY . This requires time

O(n|SX |1 n
|SY |
2 ) ≤ O(exp(24 log(n1) log(n2)/ε2)),

which matches the performance of our algorithm up to the constant term in the O().
In the multiplayer case, let us consider for simplicity the case of m players each with n

strategies. Here LMM find that an ε-ANE exists with all probabilities integer multiples of 1/k
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with k = 3m2 ln(m2n)/ε2. The resulting runtime is O(nmk) = exp(O(m3 ln(n) ln(mn)/ε2)).
Our run-time is essentially the same, but with the ln(mn) term replaced by a ln(n) term.
(However, we note that when m � n the algorithm of [4] achieves a better runtime of
exp(O(m(ln(n) + ln(m)))).)

Our algorithm can be used to achieve a slightly different and stronger notion of approxi-
mation than [21]. Specifically, it could be used to output an ε-correlated equilibrium. By
Lemma 4.3, this can be used to obtain an ε-ANE, but the reverse direction is not known.

On the other hand, if a Nash equilibrium exists with small support, then LMM will find
it exactly. It does not appear that our method would take advantage of the existence of
small-support Nash equilibria. Our method would outperform its worst-case bounds under a
somewhat different condition: if Alice’s strategy had low entropy in all correlated equilibria.
Fortunately, this can be checked quickly, since correlated equilibria form a polytope and
entropy is a concave function that we can maximize efficiently using standard techniques.
Unfortunately, this condition does not seem to be a very natural one. As mentioned in the
introduction, both methods are compatible with maximizing linear objective functions (LMM
works because a Chernoff bound can also be used to show the value of the objective function
can be approximated by sparse solutions), but only our method works for maximizing general
concave functions, such as entropy. Entropy maximization has been discussed before in the
context of games [14], but we are not aware of algorithmic implications of this.

Our algorithm also has the disadvantage (compared with LMM) of requiring quasipolyno-
mial space, whereas LMM requires only polynomial space. On the other hand, it is possible
that our LP could be approximately solved using the multiplicative weights method to reduce
this space requirement.
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A Polynomial Optimization and Sum-of-Squares Proofs

In this section, we lay out the basics of the sum-of-squares (SoS) optimization algorithms.
They were introduced in [33, 26, 30, 18] and reviewed in [19, 5].

A.1 Polynomials
Let R[x] := R[x1, . . . , xn] be the set of real-valued polynomials over n variables, and let R[x]d
be the subspace of polynomials of degree ≤ d. The set of polynomials R[x]d can be viewed
as
⊕

d′≤d′ Symd′ Rn, where Symd′ V denotes the symmetric subspace of V ⊗d′ .

A.2 Polynomial optimization
Given polynomials f, g1, . . . , gm ∈ R[x], the basic polynomial optimization problem is to find

fmax := sup
x∈Rn

f(x) subject to g1(x) = · · · = gm(x) = 0. (A.1)

Equivalently we could impose inequality constraints of the form g′i(x) ≥ 0 but we will not
explore this option here.

A.3 Sum-of-Squares (SoS) proofs
Although (A.1) is in general NP-hard to compute exactly, the SoS hierarchy is a general
method for approximating fmax from above. This complements simply guessing values of x or
(ρ,X) which provides lower bounds on fmax when they satisfy the constraints. A SoS proof
is a bound that makes use of the fact that p(x)2 ≥ 0 for any p ∈ R[x]. In particular, a SoS
proof that f(x) ≤ c for all valid f is a collection of polynomials p1, . . . , pk, q1, . . . , qm ∈ R[x]
such that

c− f =
k∑
i=1

p2
i +

m∑
i=1

qigi. (A.2)
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Observe that the RHS is ≥ 0 when evaluated on any x satisfying gi(x) = 0, ∀i; for this reason,
we refer to (A.2) as a Sum-of-Squares (SoS) proof, in particular, a proof that c− f(x) ≥ 0
whenever gi(x) = 0 for all i. This is a degree-d SoS proof if each term p2

i and qigi is in
R[x]d. Finding an SoS proof of degree ≤ d can be done in time nO(d)mO(1) using semidefinite
programming [19].

If we find the minimum c for which (A.2) holds, then we obtain a hierarchy of upper
bounds on fmax, referred to as the SoS hierarchy or the Lasserre hierarchy. Denote this upper
bound by fdSoS. Given mild assumptions on the constraints g1, . . . , gm one can prove that
limd→∞ fdSoS = fmax [19]. The tradeoff between degree d and error (fdSoS − fmax) is the key
question about the SoS hierarchy. We can also express this tradeoff by defining degsos(c− f)
to be the minimum d for which we can find a solution to (A.2). Note that degsos has an
implicit dependence on the g1, . . . , gm.

A.4 Pseudo-expectations

We will work primarily with a dual version of SoS proofs that have an appealing probabilistic
interpretation. A degree-d pseudo-expectation Ẽ is an element of R[x]∗d (i.e. a linear map
from R[x]d to R) satisfying

Normalization. Ẽ[1] = 1.
Positivity. Ẽ[p2] ≥ 0 for any p ∈ R[x]d/2.

We further say that Ẽ satisfies the constraints g1, . . . , gm if Ẽ[giq] = 0 for all i ∈ [n] and all
q ∈ R[x]d−deg(gi). Then SDP duality3 implies that

fdSoS = max{Ẽ[f ] : Ẽ is a degree-d pseudo-expectation satisfying g1, . . . , gm}. (A.3)

The term “pseudo-expectation” comes from the fact that for any distribution µ over Rn
we can define a pseudo-expectation Ẽ[f ] := Ex∼µ[f(x)]. Thus the set of pseudo-expectations
can be thought of as the low-order moments that could come from a “true” distribution µ or
could come from a “fake” distribution. Indeed an alternate approach (which we will not use)
proceeds from defining “pseudo-distributions” that violate the nonnegativity condition of
probability distributions but in a way that cannot be detected by looking at the expectation
of polynomials of degree ≤ d [20].

A.5 The boolean cube

Throughout this work, we will be interested in the special case of pseudo-expectations over
the boolean cube {±1}n. This set is defined by the constraints x2

i − 1 = 0, i = 1, . . . , n, and
thus we say that Ẽ is a degree-d pseudo-expectation over {±1}n if for any variable xi and
polynomial q of degree at most d− 2,

Ẽ[(x2
i − 1)q] = 0. (A.4)

This means we can define Ẽ entirely in terms of its action on multilinear polynomials.

3 Certain regularity conditions (e.g. the Archimedean condition) are needed for strong duality to hold;
for more details, see section 6.2 of [19]. These conditions hold in particular when the feasible set is a
subset of the Boolean hypercube, which is the only setting we use in this paper.
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B Framework of Deriving Lower Bounds

In this section, for the sake of completeness, we demonstrate our framework of deriving sum-
of-squares (SoS) or semidefinite programming (SDP) lower bounds for optimization problems
formulated in [15]. To this end, we formalize the familiar notions of optimization problem, SDP
relaxations and integrality gaps. Then we show general methods for reducing optimization
problems to each other as well as mapping integrality gaps for one problem/relaxation pair
to another.

B.1 Optimization problems and integrality gaps
To prove a hardness result for an optimization problem, we would like to find instances
where the SoS hierarchy and other SDP relaxations fail. These examples are known as
“integrality gaps,” where the terminology comes from the idea of approximating integer
programs with convex relaxations. For our purposes, an integrality gap will be an example of
an optimization (maximization) problem in which the true answer is lower than the output of
the SDP relaxation. To achieve this, we need to demonstrate a feasible point of the SDP with
a value that is larger than the true answer. These feasible points are called pseudo-solutions,
and we will define them for any polynomial optimization problem as follows.

I Definition B.1 (Pseudo-Solution). Let A be a polynomial optimization problem. Let
ΦAm ∈ ∆A

m be an instance of optimization A for some m. A degree-d value-c pseudo-solution
for ΦAm is a degree-d pseudo-expectation Ẽ satisfying the constraints of PAn such that

Ẽ[ΦAm(x)] ≥ c

A single degree-d value-c pseudo-solution for an instance ΦAm implies the sum-of-squares
approach (up to degree d) believes the optimum value of ΦAm is at least c. If the true optimum
value of ΦAm is smaller than c, then such a pseudo-solution serves as an integrality gap for the
SoS approach, i.e. an example where the SoS hierarchy gives the wrong answer. To refute
the power of the SoS hierarchy, we need to establish such pseudo-solutions as well as small
true optimum values for any large m.

I Definition B.2 (integrality gap). Let A be any polynomial optimization problem. Let
d = d(n), c = c(n), s = s(n) be functions of n such that 0 ≤ s < c ≤ 1. A degree-d value-(c, s)
integrality gap for A is a collection of ΦAn ∈ ∆A

n for each n ≥ n0, s.t.
The true optimum value OPT(ΦAn ) ≤ s.
For each n ≥ n0, there exists a degree-d value-c pseudo-expectation Ẽn for ΦAn such that
Ẽn[ΦAn (x)] ≥ c.

B.2 Reduction between optimization problems
To obtain SoS lower bounds for optimization problems, it suffices to establish integrality
gaps. However, it is not clear how to obtain such integrality gaps in general, which might be
a challenging task by its own. Here, we formulate an approach to establish such integrality
gaps through reductions. Specifically, we start with some optimization problem with known
integrality gaps and reduce it to an optimization problem that we want to establish integrality
gaps.

I Definition B.3 (Reductions). A reduction RA⇒B from optimization problem A to opti-
mization problem B is a map from ∆A to ∆B ; i.e. R(ΦAn ) ∈ ∆B

n . It is called
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(sB , sA)-approximate if for any n and any ΦAn and its corresponding ΦBn = R(ΦAn ), we
have

OPT(ΦAn ) = max
x∈PAn

ΦAn (x) ≤ sA ⇒ OPT(ΦBn ) = max
x∈PBn

ΦBn (x) ≤ sB .

Here sA, sB are understood to be functions of n.
The parameters (sB , sA) can be considered soundness parameters of the reduction.

B.3 3XOR with integrality gap
In this section, we will introduce the source of all hardness we have for this paper, which
is the 3XOR problem first discovered by Grigoriev [12] and subsequently rediscovered by
Schoenebeck [32]. It is analogous to the proof that 3-SAT is NP-hard, from which other
hardness results can be derived by reducing those problems to 3-SAT. In our framework,
3XOR can be formulated as follows.

I Definition B.4 (3XOR). 3XOR is a boolean polynomial optimization problem with the
following restriction:

Instances: for any n, an instance is parameterized by a formula Φn that consists of
m = m(n) 3XOR clauses, the set of which denoted by C, on n boolean variables (i.e.,
each clause is xixjxk = aijk for some combination of (i, j, k) and xi, xj , xk ∈ {±1}.).
Thus, the objective function is

Φn(x) = 1
m

∑
(i,j,k)∈C

1 + aijkxixjxk
2 , x ∈ {±1}n.

Thanks to the x2
i = 1 constraints, these terms are equivalent to ones of the form (1 −

(xixjxk − aijk)2)/2.

Grigoriev’s result [12] (reformulated by Barak [5]) implies the following integrality gaps.
(Note that we have a slightly different formulation from [5] that is slightly stronger but
guaranteed by [12].)

I Proposition B.5 (Theorem 3.1 of [5], due to Grigoriev). For any ε > 0, for every n

there exists a 3XOR instance Φn with n variables and m = O(n/ε2) clauses, such that
OPT(Φn) ≤ 1

2 + ε, but there exists a degree-Ω(n) value-1 pseudo-solution Ẽ.
Here “value 1” means that for every clause xixjxk = aijk, it holds that Ẽ[(xixjxk −

aijk)p(x)] = 0 for all polynomials p(x) with degree at most d− 3.

In our framework, this implies a degree-Ω(n) value-(1, 1
2 +ε) integrality gap for the 3XOR

problem.

C Information Theory

Proof of the claims in this section can be found in any information-theory textbook, such as
[11]. For a distribution p ∈ ∆n define its entropy to be

H(p) = −
∑
x∈[n]

p(x) ln(p(x)).

It can be shown that 0 ≤ H(p) ≤ ln(n).
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Another basic quantity is the relative entropy, which is defined for a pair of distributions
p, q ∈ ∆n to be

D(p‖q) :=
∑
x∈[n]

p(x) ln
(
p(x)
q(x)

)
.

The relative entropy has some distance-like properties. For our purposes, we will need only
Pinsker’s inequality [11, Lemma 11.6.1]:

D(p‖q) ≥ 1
2‖p− q‖

2
1. (C.1)

For a distribution over several random variables e.g. pXY Z ∈ ∆n3 where X,Y, Z are
supported on [n], we write the entropy of the marginals using a notation that emphasizes
the variables rather than the distribution:

H(X)p := H(pX), H(XY )p := H(pXY ), H(XY Z)p := H(p), etc..

Using this notation we can define the mutual information between random variables X,Y
to be

I(X;Y )p := H(X)p +H(Y )p −H(XY )p.

It is straightforward to show that I(X;Y ) ≤ min(H(X), H(Y )). The mutual information is
a measure of correlation, as can be seen by the following alternate characterization:

I(X;Y )p = D(pXY ‖pX ⊗ pY ). (C.2)

This can be verified by a quick calculation. Combined with (C.1), we obtain

‖pXY − pX ⊗ pY ‖1 ≤
√

2I(X;Y )p. (C.3)

Finally we will make use of the conditional mutual information, defined to be

I(X;Y |Z)p := I(X;Y Z)p − I(X;Z)p. (C.4)

The term conditional mutual information refers to the alternate characterization of the
quantity I(X;Y |Z) as the mutual information of conditional distribution XY averaged over
all values of Z; i.e.

I(X;Y |Z)p =
∑
z

p(Z = z)I(X;Y )|pZ=z , (C.5)

where pZ=z(x, y) := p(x, y, z)/
∑
x′,y′ p(x′, y′, z).

We will also find it useful to repeatedly apply (C.4) to obtain the chain rule of mutual
information:

I(X;Y1 . . . Yk) =
k∑
j=1

I(X;Yj |Y1 . . . Yj−1). (C.6)
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