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Abstract
This paper presents a computational design methodology that integrates generative (architectural) and analytical
(engineering) procedures into a simultaneous design process. By combining shape grammars and graphic statics,
the proposed methodology enables: 1) rapid generation of diverse, yet statically equilibrated discrete structures; 2)
exploration of various design alternatives without any biases toward pre-existing typologies; 3) customization of the
framework for unique formulations of design problems and a wide range of applications; and 4) intuitive, bidirectional
interaction between the form and forces of the structure through reciprocal diagrams. Design tests presented in
this paper illustrate the creative potential of the proposed approach, and demonstrate the possibility for unbiased
explorations of richer and broader design spaces during early stages of design, with much more trial and less error.
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Introduction

Most commonly used parametric tools in architectural design
provide extensive geometric freedom in absence of structural
performance, while engineering analysis software mandates
pre-determined forms before it can perform any numerical
analysis. Digital models generated by architects typically
have to be abstracted and re-modelled by an engineer in a
file format that is appropriate for numerical analysis software
in order to evaluate static equilibrium. This trial-and-error
process is not only time intensive, but it also hinders
free exploration beyond standard designs. Furthermore, this
setup makes it difficult to explore multiple designs at once.
While the rapidly advancing capabilities of computational
tools have empowered architects to generate almost any
form, and engineers to analyze almost any structure, it has
not enabled designers to easily generate and explore new
structural forms or typologies. More meaningful investment
of the computational resources that are available today may
be in investigating new structural possibilities, rather than
developing better or faster ways of analyzing what may be
inherently bad forms.

There is a need for a computational design methodology
that can not only generate forms, but simultaneously process
structural information so that the outcome does not need
to be constantly remodeled and checked with numerical
analysis software. In order to explore a wide range of diverse
alternatives during early stages of design, computational
power along with controlled randomness can be used
to aid the designer in unbiasedly exploring alternative
solutions that are unexpected, visually interesting and yet
performatively adequate.

Background

Parametric structural design: optimality over
diversity
In the conventional parametric modelling paradigm, forms
are generated and controlled by parameters or variables.
Similarly, in computational design and optimization of struc-
tures, the objective function is mathematically formulated
and numerical parameters are clearly defined. This means
that the design space contains all possible solutions to a given
problem, but only includes variations of one particular, pre-
determined typology.

Within the parametric design space, sophisticated topol-
ogy optimization methodologies have been developed to
generate solutions that are not only efficient in their per-
formance, but also interesting in its topology. One of the
most commonly used approaches in topology optimization
is based on the Solid Isotropic Material with Penalization
(SIMP) model1;2, also known as continuum topology opti-
mization. In this approach, elements of resulting designs
can have any cross-sectional shape, size and connectivity
(Figure 1(b)). The results are significantly unconventional
in its shape and topology. However, its practical usefulness
in an architectural scale is substantially limited because of
challenges regarding fabrication and construction of contin-
uously connected members with varying depths.
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Figure 1. (a) A simple design problem, with solutions
generated by: (b) continuum topology optimization; and (c)
ground structures method.

Alternative method for continuum topology optimization
is the ground structures approach, where the optimization
process is conducted using a mass array of discrete members
and the cross-sectional areas of members as optimization
parameters. Sizing optimization is iteratively executed,
and members with smallest sectional areas are gradually
eliminated and subsequently guides the structure towards an
optimal layout1–6. Unlike continuum topology optimization,
the final designs using this approach are already discretized
but often with hundreds of overlapping members (Figure
1(c)). The ground structure method relies on a large number
of design parameters, and the designer often needs to
subjectively simplify the initial setup which significantly
influences the results.

While powerful in finding a single optimal topology
for a given problem, these methods are not capable of
rapidly generating a wide range of diverse topologies for
comparative design evaluations or explorations. In addition,
architectural design objectives are often difficult to integrate
into optimization algorithms that are mathematically
constructed. Furthermore, resulting designs offer no intuitive
platform through which a designer can interactively
modify the structure for further design and study. In
general, parameter-based topology optimization methods are
differently formulated approaches that eventually result in
similar optimal designs as demonstrated in Figure 1. During
early stages of design, a parametric structural design space
does not contain the wide range of design possibilities that
the designer may want to consider7.

Grammar-based design

A grammar-based approach can be used in place of the
conventional parameter-based design paradigm in order to
broaden the design space. Grammar-based design, also
known as shape grammars, uses a set of geometric rules
to automate form generations and transformations that are
guided by a desired logic, style or objective8. It has
been used frequently in an architectural context to not
only analyze existing design styles and languages, but
also to generate new ones. The potential applicability of
shape grammars to other fields such as engineering was
demonstrated by Mitchell, who incorporated functional
attributes and structural criteria to grammar rules in the form
of functional grammars9. While robust in concept, functional
grammars relies on combinatorial variation of standardized
structural elements, and can not be used for generating and
exploring new structural typologies.

Structural grammars

Application of shape grammars in structural engineering
has been made most notably by a method called shape
annealing. Shape annealing is a generate-and-evaluate
method that combines shape grammars10 with simulated
annealing11. Shape annealing iteratively applies a series
of geometric grammar rules to transform a structure,
and uses a stochastic search algorithm to guide the
transformation process to satisfy an optimization criterion12.
Applied in context of structural engineering, shape annealing
can be used to generate various geometric forms that
are not only structurally feasible but also address other
design objectives13. Shea has demonstrated a variety
of structural design applications using shape annealing,
including generative design of roof trusses14;15, spatial
domes16 and transmission towers17;18.

While successful in generating unconventional designs
that satisfy practical objectives, shape annealing relies on
grammar rules that are entirely geometric without any
embedded structural information, therefore a numerical
analysis of the entire structure is required after every step of
the process. In addition, all transformations are regulated by
a stochastic optimization algorithm, which means that unless
the selected grammar rule and its subsequent transformation
improves the overall performance of the structure, the
algorithm will continue to search for on that does. Shape
annealing is ultimately an optimization driven method that
outputs one solution for each computational run, and it is
resource-intensive to generate large quantities of diverse
designs at once for comparative analysis.

Alternatively, shape grammars can be used to explore
trans-typological structures, by randomly mix-and-matching
elements of different structural typologies7;19. A wide range
of unexpected yet structurally equilibrated solutions can be
found using a small kit of pre-defined parts and a simple set
of grammar rules. However, such mix-and-match approach
is limited by the set of typologies that are pre-defined by
the user, and can only address specific building or structural
typologies.

Graphic statics

Graphic statics is a graphical method of computing forces
and equilibrium for discrete structures under axial loads20.
It is based on the construction of two reciprocal diagrams21:
the form diagram that describes the topology and geometry
of the structure, and the force diagram that represents
equilibrium of that structure through closed polygons
constructed from vector representation of forces. Because
forces are graphically computed, no further numerical
analysis is required to verify the equilibrium of the
structure’s internal forces.

Combined with modern day computational platforms,
interactive applications such as Active Statics22, eQui-
librium23, Constraint-based Graphic Statics24 and Rhino-
VAULT25 have shown how graphic statics can become a
powerful design tool by automating the drawing process,
and enabling real-time interaction between the reciprocal
diagrams.
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Figure 2. Conceptual overview of integrating shape grammars
and graphic statics.

Combining grammars and graphic statics
Shape grammars and graphic statics have been explored
previously in the field of structural design, but never in
combination. When shape grammars and graphic statics
are combined, several key benefits emerge. First, geometric
rules can have direct relationship with corresponding
force diagrams so that any transformation results in
equilibrium. Because local and global equilibriums are
always guaranteed, randomness can be introduced during
the generation process to explore design diversity. Second,
because force diagrams are constructed in parallel with
every transformation, there is no need for numerical analysis
during or after the generation process to verify equilibrium.
In addition, the grammar rules have no boundary-specific
parameters, which enables the method to be applied to
a wide range of design problems. Lastly, the graphical
representation and evaluation of equilibrium offer explicit,
bidirectional interaction between the geometry of the
structure and its internal forces, which may potentially lead
to new insights and better understanding of the design
problem. By harnessing the intelligent, generative potency of
shape grammars, and the computational graphic statics that
can transform forces into equilibrated forms, architecture
and structure can be integrated more seamlessly during
conceptual design.

Methodology

Conceptual overview
The proposed methodology generates designs by iteratively
applying a series of randomly chosen generative rules to a
structure that remains in static equilibrium at every step.
The conceptual overview of the computational setup is
illustrated in Figure 2. Generally, the shape grammars engine
is responsible for choosing grammar rules, deciding where
to apply them and creating the geometry. Graphic statics
ensures equilibrium and functions as visualizer and evaluator
for all procedures to be performed by the shape grammar
engine. In this paper, several key benefits of computational
graphic statics is exploited:

• solving global and local equilibrium
• direct materialization of force vectors into the

geometry of the structure using the reciprocal
relationship between form and force diagrams

Assembly

Node
Force

Member

21

4

3

R1

P

R2

Figure 3. Four basic elements of the methodology

• simplification of the extended Maxwell rule using
graph interpretation of the form diagram to evaluate
stability of the structure (see section: Structural
feasibility criteria)

• seamless integration with the approximation of the
structure’s total load path for performative evaluation
(see section: Evaluation metric)

• use of multiple possible configurations of force
polygons as randomness generator

• visualization of the structure’s internal forces
• bi-directional control of the form and force diagrams

for post-generation design modifications and explo-
rations without breaking the structure’s equilibrium

Elements
The proposed methodology operates on four types of
computational classes: 1) a Force class that is a vector, with
a type parameter (applied, reaction or temporary), direction
value (+1 for compression or -1 for tension) and magnitude;
2) a Node class that includes a coordinate, state parameter
(active or inactive), type parameter (support, load, float, end,
corner or inner), and a list of Forces acting on that node;
3) a Member class that is a line, with information about its
internal force; and 4) an Assembly class that includes a list
of Nodes, list of Members, the overall system state (start,
go, close or end), and other information about the entire
structure. The four class elements are summarized in Figure
3.

In this paper, italicized words will be used to refer to an
object class in the programming environment of the proposed
methodology. For example: the word “force” simply refers
to its literal definition. A Force is a custom programming
object that is a digital representation of an actual force, with
several layers of parameters and information as described in
the previous paragraph.

Assumptions
To develop this methodology, the following key assumptions
are made:

1. All structures begin with user-defined or automatically
computed reaction Forces that are in global equilib-
rium with the applied Forces.

2. This paper only considers discretized truss-like
structures, and flexural (bending) stresses onto
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Figure 4. (a) Equilibrium of a typical Node with an applied load
P and Members M1 and M2; and (b) the use of a temporary
Force (shown in red, dotted arrows) to equilibrate a Node
without any Members.

bar elements are not considered. Therefore, all
connections are hinges, or pins.

3. Crossing of members is allowed.
4. The buckling capacity of each member and of the

structure is not analyzed in this study However,
buckling considerations can be incorporated as a
global constraint if desired. In order to impose this
constraint, the user will need to make preliminary
decisions on material, section sizes and shapes of the
Members. Then, the individual rules can determine the
maximum allowed length of a member according the
Force that it is operating on.

5. All geometric operations are based on local equilibra-
tions of Forces of a Node.

Concept 1: temporary Forces
For a Node of a discrete structure to be in a state of static
equilibrium, the sum of the force vectors acting on that
Node must equal zero. In two-dimensional graphic statics,
equilibrium is verified when the force vectors form a closed
polygon20;21;26. If the geometry of the structure at a Node
is already known as shown in the form diagram Γ of
Figure 4(a), the force polygon construction for that Node
is simple, and the equilibrium can be easily verified with
the corresponding force diagram, Γ∗. However, when the
structure at a Node is not yet known, the Node can be
equilibrated with a temporary Force, shown as a dotted red
arrow (Figure 4(b)).

Similarly, if a structure is assumed to be in global static
and rotational equilibrium, the sum of the external force
vectors (applied loads and reactions) must equal zero by
forming a closed global force polygon (Figure 5(a)). This
means that regardless of the geometry of the structure that
is in static equilibrium, the sum of all internal force vectors
(including any temporary Forces) also equals zero, as shown
in the force diagram Γ∗ of Figure 5(b).

Concept 2: graphic statics enforced rules
Because temporary Forces are initially used to enforce
the internal equilibrium, the temporary Forces can then be
used to generate the geometry of the structures that are
subsequently in equilibrium. Specific geometric generations
or transformations can be formulated as a rule that operates
on the magnitudes and orientations of temporary Forces
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Figure 5. (a) Global equilibrium of external Forces (applied
loads shown in blue, reactions in green, global force polygons
with gray fills); and as a corollary, (b) the equilibrium of internal
Forces (in this instance, just temporary Forces shown as red,
dotted arrows).
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Figure 6. (a) a free Node in equilibrium; and (b) three simple
rules showing how equilibrated structure can be generated
using the temporary Force.

at a Node. Figure 6 shows three examples of elementary
rules that can generate new Members and Nodes by using
the temporary Force of a floating Node. Force diagrams
are scaled by 200% for clarity. Thick black lines represent
Members that are in compression, and thin black lines as
Members in tension.

Concept 3: Node types
Six different types of Nodes are used in this paper (Figure
7). Any Node with a temporary Force is in an “Active”
state, and can be selected for the application of a rule. In
shape grammars, rules have a Left-Hand Side, or LHS (the
shape prior to the rule application) and Right-Hand Side, or
RHS (the shape after the rule application)8;10;27;28. Typically,
a shape recognition procedure is necessary to recognize
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Figure 7. Six different types of Nodes: (a) support; (b) load; (c)
float; (d) end; (e) corner; and (f) inner

the shapes and evaluate the state of LHS. However, the
Node type as a class attribute is used as LHS and RHS in
the proposed approach, and therefore no additional shape
recognition procedure is necessary.

Concept 4: controlled randomness as diversity
This paper introduces controlled randomness to explore
topological diversity in three different ways: 1) the sequence
of force polygon construction (Figure 8(a)); 2) randomness
of rule and the location to apply the rule (Figure 8(b)),
and 3) variance of rule parameters (Figure 10). First, given
a set number of forces that are in equilibrium, there are
multiple ways of constructing a simply-connected structure
in equilibrium with all the forces. Figure8(a) shows three
possible forms generated from the same set of forces in
equilibrium by altering the order of forces during the force
polygon construction. In Figure 8(b), same rule is applied at
different subset of forces, which result in forms with different
topologies.

Constraints
Generative grammars can be a powerful tool in discovering
and exploring new structural typologies. However, without
intelligent constraints, the rules may be too broad and
generate forms that have limited practical feasibility. In
addition, the grammar rules can potentially be applied
recursively, or repeated uncontrollably without an end.
The following strategies are used to control the automated
generation.

• Set reasonable ranges of angles for the initial pinned
support reactions. Within this range, the initial angles
can be either manually defined by the user, or
automatically selected.
• Set reasonable local bounds for rule parameters, such

as minimum and maximum angles or lengths.
• Set global termination conditions, such as generation

count and recursion control mechanisms.

Framework

Workflow
Unlike most conventional engineering tools, this methodol-
ogy begins without a starting geometry. First, the user sets
up the problem by defining the magnitudes and locations of

applied loads, and solving the reaction forces by completing
the global force diagram (Figure 9(a) and 5(a)). The user then
chooses the rules to apply, and weights for each rule, which
defines how likely it is for that rule to be randomly selected
to be applied (Figure 9(b)). Finally, the user defines how
many options to produce (Figure 9(c)). Results can be further
diversified by modifying the following global parameters: 1)
minimum number of rule applications for each generation;
2) rule sensitivity towards the beginning, the middle or the
end of the generation cycle; 3) termination conditions; and
4) random seed.

Rules
The eight rules used for generating designs in this paper
are summarized in Figure 10. Geometric rules incorporate
structural logic and information, and equilibrium is always
verified by constructing the force diagrams. While the
precise values of the parameters are randomly determined,
it is constrained by user-defined lower and upper bounds.

Grammar (automatic generation algorithm)
Figure 11 summarizes the grammar portion of the
computational framework: the automatic random generation
algorithm. Steps 1 and 2a are where the user sets up the
design problem. Then, the initial Assembly is constructed in
step 2b. Steps 3a through 3e, where the algorithm randomly
chooses a Node to apply a random rule, are repeated until the
system reaches a terminating condition defined by the user.
Once the terminating condition is reached, the structure then
enters the finalizing phase, where Rule 6 is applied until no
temporary Forces remain.

Example generation
Figure 12 shows an example problem, and the full generation
sequence. Step-by-step explanation of the generation is
described here.

Results
In this section, the proposed methodology is tested on several
design scenarios to demonstrate how this approach can be
used to generate a wide range of diverse discrete structures
for various problems.

Implementation
The proposed methodology was implemented using
Rhinoceros29, Grasshopper30 and Python31 scripting
language. Within the Rhinoceros interface, each iteration
instantaneously generates: 1) corresponding force diagrams
for every Node, 2) a complete force diagram for the entire
structure, if possible (to be discussed in detail in section:
Real-time interaction with results), 3) a form diagram with
clear labels, and 4) rule history, information and evaluation
metrics for the shown design. Visual representation of the
forces, the evaluation metric, and the rule history which
summarizes how the structure was derived, enable clearer
understanding of the structure and informs better design
decisions more quickly. The rule history, which records
all the parameters that were used to generate the current
iteration, is an important feature that enables reproducibility
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Figure 9. The workflow of the proposed methodology.

of the same iteration during later stages in design, when
more information about the boundary conditions and the
project in general, may be available.

Structural feasibility criteria
In order to assess the general structural feasibility of the
designs generated using the presented method, its stability
needs to be checked. By using the extended Maxwell rule,
various states of a structure’s equilibrium with different
degrees of static and kinematic (in)determinacy can be

evaluated32;33:

k −m = b− 2n+ r, (1)

with k the number of independent states of self-stress, m
the number of inextensible mechanisms, b the number of
bars, n the number of nodes, and r the number of kinematic
restraints at the supports. Using graphic statics, equation (1)
can be simplified and used as a convenient way to check for
the stability of designs. As in Algebraic Graph Statics34, the
form diagram in graphic statics can be interpreted as a graph
(Figure 13). Since all external forces (k in equation (1) as
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applied forces, r in equation (1) as support restraints) are
represented in this graph interpretation of the form diagram,
the equation (1) can be simplified to34:

k −m = e− 2vi, (2)

with e the number of edges or members and vi the number
of internal vertices in the form graph. Values of m and k
can be calculated by using the equilibrium matrix of the
structure35. In general, if k = 0, no states of self-stress exists
and the structure is unstable. During the design generation
process, penalty scores can be enforced to sort or eliminate
such designs.

All designs shown are in static equilibrium with the
specified load cases. However, there are Nodes and Members
that would be unstable under different loading conditions.
Zero-force Members, which are shown as dashed lines in
this paper, are added in order to prevent these potential
instabilities by acting as a temporary tensile or compressive
Members. In the designs presented, these instabilities
generally occur at Nodes where applied loads are present.
Zero-force Members are automatically added at these Nodes,
connecting them to either the next closest Node with an
applied load, or a support Node.

Evaluation metric
While unbiased generation and exploration of diverse
designs is the key objective of the proposed approach, the
designs still need an evaluation metric through which they
can be objectively compared from a structural performance
point of view. The performance metric used in this paper is
based on an approximation of the total volume of structural
material, or equivalently the total load path36. Assuming
constant internal stress at its optimal or final iteration state,
the total volume or load path can be calculated as follows in
terms of the locations of the nodes in the force diagram, x37:

min
x
V = min

x

1

σ

∑
|Pi| · Li (3)

where V represents the total load path or volume of the
structure, σ is a constant that represents the allowable stress,
Pi is the internal force and Li is the length of the ith member,
respectively. In reciprocal form and force diagrams used in
graphic statics, member i with length Li in the form diagram
has a corresponding line in the force diagram of length L̂i

that is proportional to the force Pi in the member. Using
form and force diagrams in graphic statics, equation 3 can
be rewritten as follows38:

min
x
V = min

x

1

σ

∑
L̂i · Li (4)

Using graphic statics, the total load path of the structure can
be computed easily by multiplying the length of the member
in the form diagram, and the length of the corresponding
force vector which is provided by the force diagrams.

2D results
Figure 14 and Figure 15 show the application of the
methodology in six different planar design scenarios. For
each scenario, the simplest solution that can be derived
using the fewest number of Members is shown on top
left, which will be used as the benchmark for comparison.
The upper row for each scenario shows the top four
performing solutions out of 40 iterations. All designs have
performances that are approximately within 20% of the
benchmark solution, which is given a normalized score of
1.00. The normalized scores for these top four performing
solutions are shown in blue.

For each design scenario, four additional designs chosen
by the authors are also shown. These designs are presented
to showcase significant amount of diversity that can be
explored, which may often be desirable even at the
sacrifice of a small amount of efficiency. For reference and
comparative evaluation, the normalized score for these four
additional solutions are also provided in magenta. For clarity,
Members in compression are highlighted in blue, and tension
in red. All designs presented are generated assuming fully
stressed design.
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Figure 14. Application of the methodology on various design scenarios: (a) span-like structure; (b) vertical cantilever structure; and
(c) vertical, wall-like structure.
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Figure 15. Application of the methodology on various design scenarios: (d) radial, compression structure; (e) horizontal cantilever;
and (f) horizontal cantilever in two directions
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Figure 10. Summary of rules and parameters.

Real-time interaction with results
In addition to a wide range of topological diversity,
the proposed methodology also provides the user with
bidirectional control between the form and force diagrams,
and enable direct manipulation of the designs. This
interactivity is possible only if the following condition
is satisfied. Any form diagram Γ can be interpreted as
an abstracted mathematical graph, which is a network of
vertices and edges. In traditional graphic statics, a complete
force diagram for a form diagram can be constructed only
if the form diagram can be drawn as a planar graph34. A
graph is planar, if it can be redrawn in the plane without any
crossing edges39.

The example design in Figure 16 has crossing edges in
its initial form diagram Γ. However, Γ can be redrawn as
a planar graph P (Γ), while maintaining the connectivity

Start

Initialize

Setup

Assembly state?
!= “Go”

== “Go”

Assembly state?
!= “Go”

== “Close”

Assembly state?
!= “Close”

== “End”

End

Finalize

Generate Structure

User-defined
support parameters

User-defined
rule parameters

User-defined
termination conditions

Bidirectional user 
interaction with form 

and force diagrams

User-defined
grammar parameters

Global Equilibrium

Generate initial Assembly

Pick random Node

Apply Rule 0 : check setup

Get possible rules

Apply random rule

Record history

Update Assembly

Update Assembly

Apply Rule 6 : resolve remaining 
forces and close structure

Visualize force diagrams, rule 
history and evaluation metrics

Formulate boundary conditions 1

2a

3a

3b

3c

3d

3e

4b

5

4a

2b

2c

Figure 11. Framework of the automatic random generation
algorithm.

of Γ. By using the internal Member force magnitudes and
directions provided by Γ, and the new clockwise ordering
of Members around each Nodes in P (Γ), a complete force
diagram Γ∗ can be constructed. The red vertices in Γ∗ can
be moved around to modify the topology of the structure
in real time as the user desires, without breaking the
structure’s equilibrium. For a thorough technical overview
of constructing complete force diagrams from form diagrams
with crossing edges, please refer to Van Mele and Block34.

Construction of the complete force diagram is essential
for both interaction and evaluation, because it enables
the user to freely modify the form or the force diagram
to explore design refinements while constantly enforcing
equilibrium. In addition, the complete force diagram offers
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Figure 16. The form diagram Γ, of a solution to the span-like structure problem in Figure 14(a). If Γ is planar, Γ can be redrawn as
a planarized graph P(Γ) such that none of the edges are crossing. Using traditional graphic static conventions for constructing
reciprocal force diagrams, Γ and P(Γ) can be used to construct the complete force diagram for the entire structure, Γ∗

P

(a) (b)

e5

e1

e4 e3

e6

v1

v2v3 e7

e2

Figure 13. (a) A simple structure with one applied load P , one
pinned support on the left and one roller support on the right;
and (b) graph interpretation of the structure, with seven edges
(e = 7) and three internal vertices (vi = 3). This particular
structure is statically determinate and stable, with m = 0 and
k = 1.

a snap shot view of the internal forces of the structure,
and more specifically their relative magnitudes. This visual
feedback greatly improves the user’s creative intuition,
overall understanding of the solutions and the behavioral
consequences of the changes being made.

Exploration of rule parameters
Several global and local parameters can be modified to
explore design alternatives, as well as trade-offs between
various constraints. Parameters described in this section
relate specifically to the span-like structure scenario in
Figure 14(a). In each of the following three parameter
explorations, the performance scores are normalized to the
first design shown on the left.

Global parameter 1: reaction angles Because the support
reaction vectors are determined before the automatic random
generation begins, a variety of possible solutions with
varying shapes and performances can be explored by setting
a reasonable bound for this reaction angle parameter for
pinned supports, as illustrated in Figure 17. Conversely, the
reaction angles can be altered after a design has been chosen
to improve the performance. This parameter is most closely
related to the boundary conditions of the supports, and how
much horizontal reaction a support can withstand.

Global parameter 2: generation count Generation count
defines the maximum number of rules that can be applied
in a generation. Figure 18 shows three similar structures
with varying generation counts. The generation count can
be increased if more members with reduced magnitudes
of internal stresses may be required, or more geometric
variation and expression within a design are desired.

Rule parameters Figure 19 shows the effect that rule
parameter variations can have on the results. The lower and
upper bounds for the angle range of Rule 3 was changed
for each generation. While increasing the range of possible
angles does not necessarily improve the performance, the
larger angles may be necessary for constructability of joints.
Similarly, modifying the parameters for other rules will result
in drastically diverse designs.

Practical applications
While the proposed methodology allows exploration of
diverse design possibilities during conceptual design, the
results will need to be interpreted and refined by the
architect and the engineer in order to develop the design
with more detail and rigor during later stages in design.
In order to develop designs that are topologically unique
and interesting, and yet somewhat regular for practical and
constructability considerations, global constraints such as
symmetry can be enforced prior to the design generation.
Figure 20 demonstrates how a simple span problem can
be decomposed into smaller problems to enforce global
symmetry in the designs to be generated. Using global
symmetry constraints, Figure 21 illustrates how three designs
selected by the authors can be developed into realistic, yet
significantly different and unexpected roof structures.

Extending rules into 3D
The presented methodology can also be used to generate
free-form spatial structures in 3D, with slight modifications
to Rule 5. All other rules work in both 2D and 3D. Rule 5 is
an important rule that closes the structure by incrementally
consolidating temporary Forces. In 2D, Rule 5 performs
this operations by finding the intersection of the lines of
action (LOA) of two temporary Forces of two different
Nodes. This intersection is where a new Node is created,

Prepared using sagej.cls
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Figure 21. Sample designs with symmetry enforced, resulting in more practically applicable designs 40;41.

and new Members are created by connecting this new Node
with the initial two Nodes. As a result, two temporary
Forces are consolidated into one temporary Force. In 2D,
the intersection of LOAs can be easily computed since all
vectors and geometries are coplanar. However, LOAs in 3D
are likely to be non-coplanar, in which case there is no
intersection point and hence no equilibrium.

Figure 22 illustrates an extension of Rule 5 in 3D, where
three temporary Forces can be reduced to two temporary
Forces by using a temporary plane A that is coplanar with
LOA of the selected temporary Force. This plane ensures that
every set of three Forces acting on a single Node lie in the
same plane, which is a preliminary condition for equilibrium
of a Node. While there are infinite number of planes that
could be used to complete this spatial operation, this strategy
ensures that the resulting Members are within reasonable
lengths. This strategy is applicable to all cases except
when the three or more temporary Forces are all parallel

orientation, which may be solved trivially by equilibrating
the three Forces with any two Members and two Forces.

Design example in 3D

Using the 3D extension of Rule 5, free-form spatial
structures in equilibrium can be generated as shown in
Figure 23. The spatial configuration of the design is highly
complex and intricate, which would be extremely difficult to
create manually by either sketching or drawing. Automated
creation of three-dimensional equilibrium has tremendous
design potential in discovering new possible structural forms
for complex spatial problems that cannot easily be projected
and visualized onto a 2D plane, as in most traditional graphic
statics applications.
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1) Three non-coplanar Members, and their 
corresponding temporary Forces F1, F2 and 
F3.

4) Using o as the origin, opm as the z-axis, and 
LOA1 as the x-axis, create plane A. 
Intersection of LOA2 and LOA3 with plane A 
creates Nodes n4 and n5, respectively.

5) By using Rule 4, two new Members are 
created to connect n1 with n4 and n5. Nodes n4 
and n5 are temporarily equilibrated with 
temporary Forces F4

t and F5
t. 

6) By connecting n2 with n4, and n3 with n5, 
additional two Members are created, and only 
two temporary Forces (F4 and F5) remain. 

2) Choose random temporary Force (F1 in this 
example). On LOA2 and LOA3, find the 
closest points to LOA1 (p2 and p3, 
respectively). 

3) Find midpoint (pm) between p2 and p3. The 
point that is closest to pm on LOA1, is o. 

Figure 22. Extension of Rule 5 in 3D.

(a) (b) (c)

Figure 23. A 3D example of a free-form spatial structure generated using the methodology: (a) the form; (b) 3D diagram of global
equilibrium; and (c) 3D diagram of local equilibrium for each Node.

Prepared using sagej.cls



Lee et al. 15

Conclusions

Contributions
This paper introduced a grammar-based design methodology
as an alternative to the conventional parametric design
paradigm, which is limited in topological diversity and
often leads to expected solutions. The following specific
contributions were presented.

Structural design with more trial and less error By
incorporating forces during the form generation process,
the resulting designs are guaranteed to be in equilibrium
for the specified loading conditions. Therefore, no further
numerical analysis is required to check equilibrium. Reduced
coordination time between architects and engineers allows
exploration of better and more interesting ideas faster
and more efficiently. While most numerical analysis tools
provide quick feedback on performance, they do not
inform the designer with any guidance for improving
future designs. On the other hand, graphic statics instantly
generates clear visualization of forces, which results in
clearer understanding of the structure’s internal forces. As
a result, the user’s intuition of the relationship between form
and forces is improved, and better decisions will be made
more quickly as the project progresses.

Unbiased exploration of new design spaces With auto-
mated generation by the computer which is guided by the
design goals input by the human designer, diverse solutions
can be generated that simply would not be conceivable
manually by a human designer with a pencil or a mouse.
The purpose of this approach is not to replace the human
designer, but rather use the computerized automation to
enable the designer to spend more time exploring new forms
than analyzing one in detail. In addition, the automated
generation of multiple topologies at once not only increases
the creative capacity of the designer, but also leads to new
insights and better understanding of the design problem
itself.

Beyond reciprocity: generative graphic statics The recip-
rocal relationship between form and forces in graphic statics
generally means that one has to be created before the other
can be drawn. Therefore, traditional computational graphic
statics tools only work with pre-set problems and functions
mostly as an interactive analysis or visualization tool. By
combining graphic statics with shape grammars, the form-
finding capabilities of graphic statics can be used to generate
equilibrium structures. Most previous work done on shape
grammars require a shape to preexist before any rule can be
applied. However, the rules presented in this paper are based
on Nodes and are not dependent on any preceding shapes or
geometries. Therefore, the methodology is flexible enough
to be applied to a variety of design problems, and is able
to generate structures without any prescribed topologies or
preferences.

Future work
There are several important directions for future work.
Firstly, global parameters could be improved to gain a better
control of the overall generation process, including more
intelligent ways in which the rules are chosen and where

they are applied. Secondly, post-processing of generated
structures could be performed by applying additional rules
that locally deconstruct the model and then rebuild it.
Also, more detailed or material-specific constraints, buckling
constraints, minimizing overlapping members and self
weight could be incorporated in future extensions of this
research. Furthermore, because all designs shown in this
paper are also statically equilibrated only for the defined load
case, it will be important to develop a procedure to control
possible mechanisms and local instabilities, especially for
spatial structures. Lastly, while this paper focused on rules
based on the form diagram, rules can also be developed for
the force diagram42, which will further enrich the structural
design possibilities using graphic statics.

Closing remark
Overall, this new methodology demonstrates the validity
in combining and applying shape grammars and graphic
statics together to various engineering design problems.
The general versatility and customizability of the presented
approach, and the speed at which it can generate mass
quantities of unconventional and yet statically equilibrated
structures, greatly improves possibilities for creative yet
performance-focused explorations during early stages of
conceptual structural design.
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