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ABSTRACT

The early stage design of large-scale engineering sys-
tems challenges design teams to balance a complex set of
considerations. Established structured approaches for opti-
mizing complex system designs offer strategies for achiev-
ing optimal solutions, but in practice sub-optimal system-
level results are often reached due to factors such as sat-
isficing, ill-defined problems or other project constraints.
Twelve sub-system and system-level practitioners at a large
aerospace organization were interviewed to understand the
ways in which they integrate sub-systems. Responses
showed sub-system team members often presented conser-
vative, worst-case scenarios to other sub-systems when ne-
gotiating a trade-off as a way of hedging their own future
needs. This practice of biased information passing, referred
to informally by the practitioners as adding “margins,” is
modeled with a series of optimization simulations. Three
“bias” conditions were tested: no bias, a constant bias and
a bias which decreases with time. Results from the sim-
ulations show that biased information passing negatively
affects both the number of iterations needed to reach and
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the Pareto optimality of system-level solutions. Results are
also compared to the interview responses and highlight sev-
eral themes with respect to complex system design practice.

1 Introduction

Large-scale engineering systems require design teams
to balance complex considerations using a wide range of
design and decision-making skills. Formal approaches for
optimizing complex systems offer strategies for arriving
at optimal solutions in situations where system integration
and design optimization are well-formulated. However, in
practice sub-optimal results are often reached at the system
level. This can be due to many factors: satisficing decision-
making [1], time or budget constraints or ill-defined prob-
lems [2].

Mathematical simulations are one type of tool used to
simulate design space exploration and optimization of com-
plex systems. They can be used to explore the impact of
the factors mentioned above. Simpson, et al. present a
wide range of problems that can be addressed through these
mathematical models and associated algorithms [3]. Simu-
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lations are also used to evaluate formal design approaches.
Sobieszczanski-Sobieski and Haftka’s survey [4] demon-
strates the range of applications in the aerospace industry.
Key components common to and studied by these simula-
tions are 1) the team structure or roles, 2) the form of the
information passed between sub-systems and 3) how each
sub-system makes decisions and trade-offs.

This paper presents results from a number of inter-
views conducted of sub-system and system-level practi-
tioners within one organization in the aerospace industry.
The interviews focused on how real-world human decision-
making process differed from formal design strategies. The
intent was to understand how subsystems would reach
agreement with each other as part of an overall system
design, and what strategies were used in deciding how to
share and pass information.

This study consists of two distinct phases. The first part
uses an interview-based methodology to develop insight
and describe the behavior of inter-disciplinary design teams
performing complex system design in the aerospace indus-
try. Based on the results of the interviews, the second part
utilizes formal multi-disciplinary optimization techniques
to simulate the described behavior of subsystems negotiat-
ing to a system-level optimum.

This study seeks to answer the following questions:

1. What strategies do real-world aerospace designers and
engineers use when negotiating design parameters with
other sub-systems?

2. What impact might these strategies have on system-
level optimality?

3. What impact might these strategies have on the speed
of system optimization?

Speed and optimality are important indicators for com-
paring optimization algorithms and can lead us to a better
understanding of the impact of the real-world strategies de-
scribed. Are these strategies an issue that should be consid-
ered and if so can we develop processes robust to this type
of behavior?

2 RELATED WORK

This paper draws on previous work in both formal
mathematical models of the design process as well as more
qualitative studies of team behavior. Perspectives from

both are used to gain insight into the effect of biased in-
formation passing.

2.1 Complex System Design Process Models

A rich body of literature exists investigating the mod-
eling of the complex system design process. Game The-
ory is one approach for modeling the multidisciplinary de-
sign process and was first proposed by Vincent [5] and
further developed by Lewis and others [6,7]. These tradi-
tional game theoretic approaches have further been com-
bined with Decision-Based Design [8] and adopted in a
broad range of design research [9-12] to become a promi-
nent framework for the study of multidisciplinary design
problems [13]. Game Theoretic design attempts to identify
a rational design (Nash Equilibrium [14]) given limits to
the amount and form of information being passed between
designers. The complex system design process can also be
viewed as a multi-objective optimization problem. Multi-
disciplinary Optimization (MDO) is one approach which
utilizes this philosophy [15]. MDO models often rely on a
system facilitator to make optimal trade-offs that will ben-
efit the overall system. Design researchers draw from this
literature to appropriately model their particular instance of
complex system design.

Design research has also considered uncertainty and its
propagation through complex systems. Takamatsu used the
concept of formal design margins to manage risk through-
out the complex system design process [16]. Margins are
often defined as probabilistic estimates of the uncertainty
of design parameters relative to either worst-case estimates
or performance goals. Formal design margins are one re-
placement for heuristic margins and intuition previously
used by design teams. Thunnissen proposed methods for
determining these margins and using them to manage risk
tolerances [17]. Other reseachers have demonstrated the
range of applications of these concepts in supporting com-
plex system design [18, 19].

2.2 Key components of Formal Models

Simulations based on these formal models have al-
lowed researchers to observe the effect of changes, at an
abstract level, in team structure, information passed and in-
dividual decision-making on performance metrics such as
the speed and accuracy of the optimization. Key compo-
nents examined in these studies which are common to many
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of the formal models such as MDO and Game Theoretic are
1) the team structure or roles (i.e. the direction and order
in which information is passed), 2) the form of the infor-
mation passed between subsystems (such as point design
and local sensitivities) and 3) how each subsystem makes
decisions and trade-offs.

Yi, et al. [20], Honda, et al. [21] and Martins, et
al. [15] compared different team structures in both Game
Theoretic and MDO approaches. Information passing has
been studied from both a robustness perspective [22] and
the effect of the amount of information on system perfor-
mance [23]. Collopy outlines a strategy for reaching an op-
timal design based on passing of gradient information [24].
Lewis and Mistree presented a Game Theoretic approach
where each agent is involved in the decision-making part of
the optimizing task. Agents made decisions using a com-
promise decision support problem [25]. Robust design also
explores using uncertainty models in the decision-making
process [26]. Limits to the decision-making process have
also been described by researchers investigating bounded
rationality [27]. In doing this type of analysis, researchers
have suggested best practices for design processes.

2.3 Team Behavior

This paper focuses on the second set of components in-
volving information passing. There is a rich body of litera-
ture on how communication on a human level affects team
performance from organizational behavior, psychology and
sociology. Because system design is commonly performed
by teams, the most relevant research in this area tests fac-
tors which affect team success across an array of interdis-
ciplinary problems. Nardi and Whittaker [28] emphasize
the need for a shared team understanding for social com-
munication. They investigated the importance of face-to-
face communication in distributed design situations. Simi-
larly, networking in the physical space of collocated teams
has been shown to be an important determinant for design
quality [29]. Team communication is also addressed in the
area of team cognition. Cooke and Gorman [30] demon-
strate several measures using communications as a method
for understanding the team decision-making process and its
ability to accomplish high-level processing of information
and reach an optimal decision. This paper draws on these
works to provide a framework for understanding and mod-
eling team communication in a more effective manner.

2.4 Negotiation in Complex System Design
Negotiation in the context of engineering design is a
topic with contributions from a variety of fields including
design research, management science, economics and psy-
chology. Smith and Eppinger [31] present a method uti-
lizing a Work Transformation Matrix to help design teams
identify controlling features of a physical design and sub-
systems that will require more iterations than others. Yas-
sine and Braha [32] present a method using an informa-
tion exchange model to help subsystems represent com-
plex task relationships better when negotiating. Yassine,
etal. [33] examines the phenomena of information hiding
in complex system design. This occurs when local sub-
system optimization and system-level optimization occur
asynchronously and information gained from the local de-
velopment is hidden from the system-level process. Klein,
et al. [34] model the effect of the team or network struc-
ture on the negotiations during the complex system design
process. Di Marco, et al. [35] examined the effect of indi-
vidual team member culture on the negotiation process in
complex system design teams. This paper draws on these
sources to help model the negotiation between subsystems.

2.5 Problem Selection

A key issue in validating and understanding results
of simulations of the design process is the selection of
test problems. Coello, et al. [36] categorize the types of
multi-objective optimization test problems and provide an
overview of existing test suites. This work is part of a larger
body of literature addressing many of the issues involved in
developing appropriate test suites [37]. It should be noted
that test suites can be useful for comparing and evaluating
optimization algorithms but may not be representative of
algorithm performance on real-world problems. In order to
gain the maximum insight from the simulations a test suite
should be comprised of a variety of types of problems. This
paper draws from several sources to incorporate as many
different types of test problems as possible.

2.6 Research Gap

This paper focuses on the interactions between sub-
systems in complex system design. Current literature ei-
ther focuses on improving mathematical formulations of
formal models of the design process or developing quali-
tative frameworks of team behavior. This paper seeks to
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bridge the gap between the two and use the power of both
approaches to gain a better understanding of how subsys-
tems interact in complex system design tasks. In particular,
this study hopes to both improve the effectiveness of the
simulations by more realistically modeling the social com-
ponent of human behavior and to improve the qualitative
frameworks by quantifying the estimated effect of the hu-
man factors.

3 Phase 1: Interviews with Practitioners
3.1 Interview Methods

The interview phase consisted of twelve interviews
with lead subsystem designers and system integrators
within a large aerospace organization. Subsystem design-
ers were drawn from a diverse set of sub-systems such as
structures, propulsion, avionics, guidance and navigation
control, materials and manufacturing, systems integration,
operations, liquid engines, and testing.

Each interview consisted of an hour of open-ended
discussion on system integration management and inter-
subsystem communication. The primary question asked
was, “How do you manage the integration of your sub-
system with other sub-systems?”” Biographical information
such as job title and description were also recorded. The
interviews were not recorded due to confidentiality. Notes
were taken separately by two investigators. Select quotes
and themes from the interviews are presented below. These
concepts were incorporated into and informed the second
phase of the study.

3.2 Interview Results
Finding #1: Structure of Negotiations

The interviewees describes a number of modes of in-
teracting with other sub-systems. The notable finding is
that their patterns of interactions could be characterized
fairly well in the formal terminology of MDO and Game
Theoretic models depending on the level of agreement be-
tween the sub-systems. The basic mode of negotiation fol-
lowed a Game Theoretic model, with sub-system designers
connecting with their counterparts in other sub-systems to
manage trade-offs on an informal level. Larger disputes
were negotiated following an MDO model with disagree-
ments between sub-systems settled by a committee of up-
per management.

All ten sub-system designers mentioned direct personal
relationships as a conduit for negotiation with designers in
the other sub-systems they interfaced with regularly. One
example of this type of negotiation is the “volume enve-
lope” mechanism. One sub-system set “envelopes” or vol-
umes other sub-systems could use as a volume constraint
early in the design process. If another sub-system needed
more space, the sub-system designer first went to sub-
system designers of nearby envelopes to reach a compro-
mise on the volume needed.

A similar negotiation happened with respect to power
requirements. Power requirements for one sub-system
were negotiated between the appropriate level of sub-
system designer early on and then adjustments and compro-
mises were made throughout the process. This is facilitated
by the placement of personnel near each other. Engineers
from other sub-systems have offices or “sit” in the relevant
sub-system office suite.

Compromises are also facilitated by engineers desig-
nated as leads for integrating subsystems. These engineers
are representatives from the different sub-systems and ne-
gotiate at a more formal level during planned meetings. A
three level structure of negotiation was proposed by several
of the designers. The lowest level is within the sub-system;
this happens routinely on a daily basis and focuses on op-
timizing the sub-system and setting requirements. Most of
the negotiation of tolerances and requirements happens at
a cross-cutting second level. Two engineers independently
estimated that 80-90% of issues raised were resolved at this
level. The third level involves upper management and a
formal conflict resolution process. For example, a disagree-
ment between two sub-systems which could not be resolved
at either of the two lower levels could be brought before the
weekly chief engineers meeting and a panel of upper man-
agement would then make a decision. These levels were
described by multiple participants as “down and in” and
“up and out” exemplifying the correlation between level of
formality and interaction within or without the team.

The higher level of resolution follows a MDO model
of negotiation. Sub-systems no longer negotiate between
themselves, but bring it to a system integrator who makes
a decision. This view was supported in the interviews with
the system integrators. One system integrator described his
role as “finding problems and fixing them.” Another differ-
ence between the self-reporting on the levels was the for-
mality. The levels increase in formality with the third level
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requiring documentation of the conflict and a presentation
of both sides of the issue before a panel of upper managers.
All such third level conflicts are tracked throughout the pro-
cess and system integrators are required to resolve them at
different major milestones. This is in stark contrast with the
informality of the second level at which sub-system design-
ers simply make changes by talking to another sub-system
designer. Estimates for the relative amount of problems
which reached the third level ranged from 2 to 5%. All sub-
system designers expressed their trust in the upper manage-
ment board to resolve conflicts in an optimal way.

Finding #2: Biased Information Passing Over Time

Another aspect of negotiation that arose in the inter-
views was the concept of biased information passing. The
phrase “margins” was used by interviewees to refer to the
practice of reporting “conservative” parameters to other
sub-systems during the negotiation process. Their defini-
tion of “margins” is distinct from the formal definition of
risk or performance margins detailed in the related work
section. In these cases, the “conservative” estimates of
the parameters are used as a negotiation tool between sub-
systems and do not necessarily reflect the level of uncer-
tainty attached to the design parameter. The phrase “keep-
ing something in my back pocket” was used independently
by a majority of the sub-system designers to describe this
issue. For example, one sub-system designer highlighted
the use of conservative estimates in the development of
the budget for a previous project. The sub-system built
an extra 30% cushion into their budget estimate as insur-
ance against future budget cuts. The cushion consisted
of budget off-ramps or extra tests and tasks that were not
strictly necessary and could be cut easily near the end of the
project. This structure was due to the sub-system designers
belief they would be later asked to cut down their budget,
thus the higher budget at the outset offsetting future losses.
One interviewee reported that conservative estimates were
one factor which contributed to cost overruns and negative
consequences for the project. A similar practice was used
with parameters that interfaced between sub-systems such
as mass, volume and estimated time to completion of a task.
One of the engineers reported that estimated mass was re-
ported with a 30% cushion at the outset, which was reduced
over time to 10% near the final design review to allow for
negotiation.

It should be noted that this practice is not necessar-
ily sub-optimal, and can lead to highly robust systems.
However, many of the participants felt that the practice
had some negative effects. The most common example
raised was both parties being conservative in a negotia-
tion and reaching a highly sub-optimal compromise. Some
sub-system designers believed large design decisions, such
as the switch in the overall structure of one project to a
substantially different architecture, were based on overly-
conservative estimates and led to major cost overruns. Sys-
tem integrators also discussed the difficulty in obtaining ac-
curate information from sub-systems. One system integra-
tor discussed how conservative estimates in both the inputs
as well as the system models used by the sub-systems led
to cost and schedule failures. They also reported the use of
formal risk mitigation procedures which can be inaccurate
when presented with conservative inputs.

4 Phase 2: Simulations of Real-world Behavior
4.1 Simulation Structure

The simulation phase consisted of the development of
a series of MDO simulations aimed at recreating and quan-
tifying the themes introduced in the interview process. The
main purpose of the simulation phase was to simulate the
behavior of “margins” or biases and quantify the effect on
system optimization. Simulations were performed on a
two-player system to simplify initial calculations.

The interview results suggested that the organization’s
design team uses a sequential design optimization architec-
ture, also known as fixed-point iteration [39]. In this por-
tion of the study a series of optimization simulations were
created to mimic this design process. Only a two-player
system was considered for demonstration of the core con-
cept. The two-player system consisted of two subsystems
each with their own objective function. Optimization was
performed sequentially with the first subsystem optimizing
its design parameters and then passing point design infor-
mation to the second subsystem. The second subsystem
then minimized its design parameters based on this infor-
mation. The second subsystem then passed point design
information back to the first subsystem completing a single
system iteration. This is presented in Figure 1.

The concept of biases is introduced in the passing of
point design information between subsystems. The sim-
ulations were performed in three different conditions: no
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Figure 1. System schematic for one iteration

bias, static bias and decreasing bias. In the first condition
no bias was used and point design information was passed
normally as in traditional MDO processes. In the static
bias condition, the point design information was multiplied
by 1.3 during the transfer to the other subsystem to reflect
an added bias of 30%. This number was chosen based
on the estimates reported in the interviews. Each subsys-
tem was in effect biasing the information passed by 30%
in the same direction at every iteration. In the decreasing
bias condition, the bias was decreased after each system
iteration. The design point information was multiplied by
b=13—.lifori=0,1,2,3... & b > 1. This again reflects
information reported during the interview process. Subsys-
tem designers reported the bias was decreased 30% to 0%
in 10% increments at each design review.

These three conditions were simulated on a test suite of
two-objective problems drawn from Multi-objective Evo-
lutionary Algorithms by Coello, et al. [36] and from a test
suite proposed by Deb, et al. [37]. This test suite was cho-
sen for its variety in the type of problems provided. It is
well-understood that test suites do not necessarily reflect
real-world behavior. However, when comparing algorithms
test suites can be used to provide a base level of compari-
son. This was important in this study to allow for compari-
son between the three conditions.

Comparison between the different conditions was
made along two metrics, optimality and speed. These are
two common metrics used for comparing algorithms [36].
Optimality was measured using the Euclidean distance of
the final system design from the Pareto Frontier after sat-
isfying the stopping condition. The stopping condition
was defined as either convergence for both subsystems
f1(i) = fi(i—1); f2(i) = f(i— 1) or reaching a Nash Equi-
librium f;(i) = fi(i —2); f2(i) = f2(i —2). The Pareto
Frontier for these test problems was often given as an ana-
lytical solution in the test suite. If not available, the Pareto
Frontier was calculated using the MATLAB Genetic Algo-
rithm function GAmultiobj. Speed was measured by the
number of iterations until the stopping condition was met.

The minimization of each subsystem was performed us-
ing the MATLAB optimization function f_min_con with the
interior-point algorithm.

Several parameters were varied at each condition. A
variety of starting points were tested for each condition and
test problem to check for robustness to initial conditions.
The order of sequential optimization was also varied for
each testing condition. This checked whether having the
first or second subsystem optimize first in each system iter-
ation changed the behavior of the system. The system op-
timization behavior was then analyzed to determine what
the effect of each testing condition was on the performance
metrics. The behavior was also compared to the specific
problem characteristics such as types of constraints and ob-
jective functions. This analysis is presented in the results
and discussion sections.

4.2 Simulation Results

Simulations were performed on a test suite of prob-
lems from Evolutionary Algorithms by Coello et al. as
well as from the test suite provided in Deb, et al. [37]. So-
lution paths for Multi-Objective Problem 4 (MOP4) under
the three test conditions are presented as they display be-
havior exhibited by many of the test problems. MOP4 was
chosen as the display case for two reasons: 1) the number
of iterations was relatively small and 2) the Pareto Frontier
and solution space had the same order of magnitude. These
characteristics make MOP4 easy to visualize.

Results from all of the test problems for Euclidean dis-
tance and number of iterations are shown in Figure 2 and
Figure 3 respectively. The number of iterations was aver-
aged over 50 random starting points. The Euclidean dis-
tance to the Pareto Frontier was normalized by the Eu-
clidean distance between the Pareto maximum and mini-
mum [1]. A value of zero would indicate a solution di-
rectly on the Pareto Frontier and a value of 100% would
indicate a solution at the normalizing distance. In Figure 2
three of the problems have values above 100% of the nor-
malizing factor, their values are displayed in text boxes to
accommodate the spread in chart values. Solution paths
from the same starting point for MOP4 under the different
conditions are shown in the three figures below. The Pareto
Frontier on each plot is shown as circles. Figure 4 shows
the solution path for the no bias condition. Figure 5 shows
the solution path in the static bias condition with b = 1.3.
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The final system design in the static bias case was at 10%
of the normalized distance from the Pareto Frontier, while
the no bias and decreasing bias cases ended on the Pareto
Frontier. Figure 6 show the solution path in decreasing bias
case.
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Figure 5. Solution path in the static bias condition. b = 1.3

5 DISCUSSION

Several themes emerge from analysis of the results pre-
sented above. First, the interview data clearly demonstrates
the use of biases and in particular decreasing bias over
time between subsystems in the organization studied. All
of the negotiation structures in the organization, both for-
mal and informal, are susceptible to this type of error. The
framework used in the simulations is derived from this in-
formation. Second, the use of biases leads to both sub-
optimal and increased number of iterations in simulations.
Third, this behavior was observed across a variety of multi-
objective problem types and structures.

The use of a decreasing bias strategy was described
by almost all of the subsystem engineers and also by
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the system integrators as a possible cause of system sub-
optimality. In practice, subsystem engineers report that
they provide conservative, worst-case estimates of design
parameter and point design information in discussions with
other subsystems. Interviews indicated that this was due to
a desire to under-promise and over-deliver. It may have also
be driven by a competition for resources such as personnel
and money between the different subsystems. Decreasing
biases is one strategy for ensuring the sub-system has the
resources it needs to complete the required tasks and be ro-
bust to unexpected design constraints.

This can be an effective strategy at the subsystem
level, but the simulations demonstrated that it may lead to
system-level issues. For example, Figure 4 shows the fi-
nal system design to be directly on the Pareto Frontier. In
Figure 5, the final system design found using the static
bias strategy from the same starting point is further away
from the Pareto Frontier and clearly less optimal. The de-
creasing bias condition shown in Figure 6 did not lead to
sub-optimal results but did take more iterations. Although
commonly used to compare optimization algorithms, the
number of iterations is also an important metric when con-
sidering the design process. An increased number of it-
erations reflects a longer overall design process and time
is an important resource in any design project. For exam-
ple, time constraints can be viewed as constraining a design
team to a fixed number of design iterations. A team using
the decreasing bias strategy may reach a less optimal result
given the same number of iterations when compared to a

team using no biases, especially if the number of iterations
required to reach the Pareto Frontier is large. However,
given an infinite amount of time and other resources, the
decreasing bias strategy actually may be preferable to the
no bias case because it reaches the same level of optimality
and the “refinement” period near the end gives the design
team more confidence that they are still in the feasible re-
gion.

The system response to the test conditions demon-
strated in MOP4 was similar across many of the test suite
problems tested. Figure 2 shows how in most of the prob-
lems the static bias condition was less optimal than the no
bias and decreasing bias conditions. In the two problems
which do not fit this pattern, MOP6 and DTLZ7, the struc-
ture of the problem caused the optimization algorithm to
find the edge of the design space in a single iteration. The
boundary of the design space was also on the Pareto Fron-
tier. Thus all conditions found this point and the optimality
of the final system design of these problems was insensitive
to changes in the bias.

The system response demonstrated in MOP4 was also
similar to many of the other test problems with respect to
the number of iterations needed to reach a stopping con-
dition. The number of iterations needed in the decreas-
ing bias case was also higher than in the other two cases
for most of the test problems. Problems whose objective
functions were conic, such as MOP5, MOP7, MOPCI1, and
MOPC3, the behavior was more sporadic. Although it is
unclear exactly how the conic structure caused the differ-
ences in behavior, the optimization algorithms used many
iterations refining the final system design near the Pareto
Frontier in the overlap of the two conic sections. The rel-
ative size of the static bias to the size of the overlap may
have producing a stopping condition either before reaching
this refinement stage, such as in MOPS, or kept it in the re-
finement stage longer as in MOP7, MOPCI1, and MOPC3.

In practice, subsystem engineers also reported that sub-
optimal irreversible design decisions were made early in
the design process based on biased information from other
subsystems. For example, a complicated and expensive
structure may be designed and integrated into many subsys-
tems based on mass constraints that are reported early on.
The scale of the effect is due not only the highly-connected
nature of the subsystems but also the non-linear nature of
the subsystem response to design inputs. Small changes in
inputs can have large effects on performance and cost.
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This study was limited by several factors. The simula-
tions were performed over a large number of problem types
in the two test suites used. However, test suite problems do
not necessarily accurately represent algorithm behavior in
real-world problems. As such it is difficult to determine
what the exact meaning of the increase in the distance from
the Pareto Frontier or the increase in the number of itera-
tions. However, this simulation does reflect insights pro-
vided by the interviewees. This study also only describes
behavior reported by members of one organization. The
information may not be representative of all design teams
working on engineering complex systems.

Finally, this study presents results of a simplified two-
player system. Since the two-player case shows that biased
information affects the quality of design outcome, it could
be argued that biased information passing in a multi-player
system would also have adverse affects on design outcome.
However, since the information passing model developed
in this study cannot be directly adapted to a multi-player
system, these results may not indicate trends in simulations
of larger systems. The sub-optimal system-level results
reported in the interviews may not be directly or wholly
due to biased information passing. The two-player system
model is an initial step in expanding the concept of infor-
mation biasing to larger systems. For a multi-agent system,
a more complex model would need to be developed. The
team structure, or how and in what order the subsystems
communicate the biased information, would need to be de-
fined. The majority of problems in the test suite used in this
study can be easily extended to a multi-agent system. In ad-
dition, there may be issues of computational complexity or
time with very large multi-agent systems.

6 CONCLUSIONS AND FUTURE WORK

Results demonstrated use of biased information pass-
ing throughout the organization studied at the subsystem
level. This reportedly led to sub-optimal system-level re-
sults. Simulations of three conditions: no bias, fixed bias
and decreasing bias showed significant changes in system
behavior with the addition of biases. Two types of errors
were observed regarding speed and optimality.

1. What strategies do real-world aerospace designers and
engineers use when negotiating design parameters with
other sub-systems?

Practitioners interviewed reported using both MDO
and Game Theoretic structures for negotiating trade-
offs between sub-systems. Lower-level negotiations
were done informally in a Game Theoretic structure,
while higher-level negotiations were done formally in
front of upper management committees. Interviewees
also reported the use of biased information passing be-
tween sub-systems during negotiations at all levels.

2. What impact might these strategies have on system-
level optimality?

Although the size of the effect was problem-dependent,
biased information passing negatively effected system-
level optimality across all problem types tested. Solu-
tions that resulted from strategies incorporating fixed
biased information passing negatively affected system-
level optimality to a high degree. Solutions resulting
from strategies incorporating a decreasing bias had the
same level of optimality as those with no bias.

3. What impact might these strategies have on the speed
of optimization?

The speed as measured by number of system iterations
was not affected by the use of a fixed bias in most
test problems. However, a decreasing bias strategy in-
creased the number of iterations significantly and the
amount increased for more complex problem types.

Future work should involve investigating more organi-
zations to see if the use of biased information passing as
defined in this study is widespread. Secondly, the simula-
tions investigating the size of the effect were simplified to
two-player systems. Future work should involve simula-
tions of larger systems as well as real-world problems.
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