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ABSTRACT 

Frameworks for modeling the communication and 
coordination of subsystem stakeholders are valuable for the 
synthesis of large engineering systems. However, these 
frameworks can be resource intensive and challenging to 
implement. This paper compares three frameworks, 
Multidisciplinary Design Optimization (MDO), traditional Game 
Theory, and a Modified Game Theoretic approach on the form 
and flow of information passed between subsystems. This paper 
considers the impact of "complete" information sharing by 
determining the effect of merging subsystems. Comparisons are 
made of convergence time and robustness in a case study of the 
design of a satellite. Results comparing MDO in two- and three-
player scenarios indicate that, when the information passed 
between subsystems is sufficiently linear, the two scenarios 
converge in statistically indifferent number of iterations, but 
additional "complete" information does reduce variability in the 
number of iterations. The Modified Game Theoretic approach 
converges to a smaller region of the Pareto set compared to 
MDO, but does so without a system facilitator. Finally, a 
traditional Game Theoretic approach converges to a limit cycle 
rather than a fixed point for the given initial design. There may 
also be a region of attraction for convergence for a traditional 
Game Theoretic approach. 

1. INTRODUCTION 
As engineered systems become increasingly sophisticated, 

the number of subsystem stakeholders required to bring a system 
to market will continue to increase. For example, in the early 

20th century, Ford’s Model T car was composed of roughly 
700 unique parts. In contrast the modern automobile has more 
parts in its radio alone and the Boeing 777 has over 3,000,000 
unique parts provided by over 300 different suppliers [1]. 
Similarly, drive-by-wire technology originally developed for 
the space shuttle has now trickled down to automobiles [2]. 

The design and development of a large-scale, complex 
engineering system demands collaboration among 
stakeholders with expertise in a diverse set of fields. There are 
a number of approaches that consider collaboration at a system 
level by modeling stakeholders, the subsystems they are 
responsible for, and the trade-offs that might be made between 
these stakeholder subsystems. Key considerations in selecting 
a particular modeling approach are 1) the way information is 
shared among subsystems, and 2) the particular form of the 
information that is passed in a system. This paper examines 
both of these issues for three strategies for information sharing 
and system optimization, including Multidisciplinary Design 
Optimization (MDO), a Game Theoretic approach, and a new, 
Modified Game Theoretic approach introduced by Honda, et 
al [3].  

MDO is well known in the field of system design [4, 5]. 
In traditional MDO, a human system-level facilitator allocates 
resources to each individual subsystem. The facilitator then 
brokers trade-offs between subsystems so that they may 
acquire necessary resources. However, no information is 
directly shared between subsystems themselves. This process 
of centralized trade-offs continues until the system converges 
to a solution. 
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In a traditional Game Theoretic Approach, subsystems are 
represented by "players" who play a particular "game" that 
follows specific rules. There is no central, system-level 
facilitator. Instead, information is shared among subsystems 
directly. In this paper, it is assumed that the rules of play dictate 
a sequential and iterative protocol in which subsystem 
stakeholders each optimize their own subsystem by changing 
variables they control and holding constant the variables they do 
not control.  This approximates a non-cooperative protocol. 

A Modified Game Theoretic approach is similar to a 
traditional Game Theoretic approach except in the form of 
information it passes between subsystems. In a traditional 
approach, information that is passed between subsystems takes 
the form of a single set of parameters, or a “point design.” If 
rational decisions are made at each iteration, the final design will 
generally converge to a Nash equilibrium.1 In contrast, the 
modified approach uses a gradient form for passed information, 
and previous work suggests that this will increase the likelihood 
of convergence to a subset of the Pareto Frontier. 

The research questions posed here grow out of an 
observation that in teams that design large-scale systems,  some 
subsystems may share much of the same information and so may 
be considered highly coupled [6]. It is then logical to merge such 
closely coupled subsystems into a single subsystem that can be 
modeled using a traditional Game Theoretic approach. It also 
becomes possible to create a “hybrid” approach in which MDO 
is applied to subsystems that are merged using either a Game 
Theoretic or Modified Game Theoretic approach. For example, 
in an MDO approach a system facilitator could allocate 
resources between subsystem A and a merged subsystem 
consisting of subsystems B and C.  However, subsystems B and 
C could then follow a Game Theoretic approach through a 
cooperative game to sub-allocate resources. 

The questions posed here include: 
• How does a two subsystem, hybrid MDO approach compare 

with a three subsystem MDO approach in terms of 
performance? 

• How do traditional Game Theoretic and Modified Game 
Theoretic Approaches compare?  

• How does a hybrid MDO approach compare with a 
Modified Game Theoretic Approach? 

2. RELATED WORK 
In order to facilitate communication between subsystem 

stakeholders, a variety of frameworks have been created to 
model system and subsystem level communication and 
coordination. While MDO models include an all-at-once 
approach [4], we focus in this work on models that operate upon 
some sort of system decomposition structure.  

Although centralization of decisions and models has distinct 
advantages, it is more common place in complex systems design 
to utilize a decomposition structure – hierarchical and 

                                                 
1 In this case, the Nash Equilibrium is a design solution in which no 

designer can improves his subsystem unless other subsystems also change their 
designs. 

nonhierarchical being two of the primary structures, to 
centralize the design of complex systems. There are various 
approaches to determining the decomposition structure 
including object decomposition, aspect decomposition, 
sequential decomposition, and model based decomposition 
[7]. Our approach follows traditional space mission design 
approach and decomposes system by the disciplines. i.e. each 
subsystem requires different expertise to design. 

Once a decomposition structure is determined, then a 
communication and coordination model is necessary.  This 
model will provide protocols and formulations for critical 
system solution mechanics including objective function 
formulation, intra- and inter-subsystem communication 
protocol, design variable control, and convergence conditions. 
There are a number of protocol models including Analytic 
Target Cascading (ATC) [8], Concurrent Subspace 
Optimization (CSSO) [9, 10], Bilevel Integrated System 
Synthesis (BLISS) [11] and Collaborative Optimization (CO) 
[12]. 

Analytic Target Cascading has been proven to guarantee 
that a distributed system converges and that the converged 
value is a globally optimal solution [8]. Additionally, its 
hierarchy allows for traceability of the design process and 
provides for integration of marketing and business systems 
while establishing clear relationships between design 
subsystems [13]. The main advantage of CO is that it does not 
require system analysis, but multidisciplinary feasibility may 
not be satisfied. Thus, some intermediate designs could be 
infeasible. CSSO guarantees both individual and 
multidisciplinary feasibility at each iteration, but requires all 
disciplines to indirectly share of all constraints. Unlike other 
MDO formulation, BLISS keeps common variables as 
constants at a lower level, and optimizes only common 
variables at an upper level. This BLISS formulation is similar 
to how NASA/Jet Propulsion Laboratory’s Advanced Projects 
Design Team (Team X) [14, 15] designs aerospace mission 
optimization.  

While system models based on MDO principles provide 
effective frameworks to handle large-scale systems, they 
typically require significant coordination, consensus, and 
communication. Without high levels of these formalities, a 
complex design problem could simply become a distributed 
design problem where each subsystem stakeholder would 
solve their own optimization problem while making certain 
assumptions about other subsystems.  Game theoretical system 
models lend themselves well to modeling these distributed 
design problems where no formal coordination mechanism or 
communication infrastructure exists.  

The simplest game theoretic model is the non-cooperative 
model, which assumes that subsystems operate in semi-
isolation, only exchanging their optimized design solutions. 
Variable control is uniquely allocated to the subsystems – 
there is no design variable sharing. Convergence and solution 
quality become the primary issues in this type of model.   

While an equilibrium for this model is guaranteed under 
mixed solutions [16], the solution process might not always 
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converge to it. Vincent [17] studied this issue using simple two 
designer - two design variable problems.  Other researchers then 
developed a number of game theoretical constructs to study 
these types of decentralized design problems and their resulting 
solution quality [18-20]. Studies on system convergence include 
the development of conditions for convergence or divergence in 
simple two subsystem problems [21], and systems when there 
are more than two subsystems controlling multiple design 
variables [22]. In addition, the level of nonlinearity has been 
extended [23] using nonlinear control theory concepts to predict 
relative domains of attraction for each Nash equilibrium 
solution. While most of this foundation work dealt with 
sequential models, work by Smith and Eppinger demonstrated a 
similar principle for models with simultaneous execution .  

Despite this extensive body of work in system-level 
modeling, some research gaps remain. In particular, limited 
work has been conducted to compare MDO with Game 
Theoretic approaches, or to assess the role of the form of 
information passed between subsystems.  This work seeks to fill 
that gap in research.  

3. METHODS AND CASE STUDY 
This study investigated four scenarios which are 

summarized in Table 1. 
 
TABLE 1. SYSTEM-LEVEL MODELING SCENARIOS 

INVESTIGATED IN THIS STUDY 
Scenario Modeling 

approach
Representation

1 MDO

2 “Hybrid”
MDO-Game 
theoretic

3 Traditional 
Game 
Theoretic

4 Modified 
Game 
Theoretic

Scenario Modeling 
approach

Representation

1 MDO

2 “Hybrid”
MDO-Game 
theoretic

3 Traditional 
Game 
Theoretic

4 Modified 
Game 
Theoretic

System 
Facilitator

Sub 1 Sub 2 Sub 3

System 
Facilitator

Sub 1 Sub 2 Sub 3

System 
Facilitator

Sub 1 Sub 2           Sub 3

System 
Facilitator

Sub 1 Sub 2           Sub 3

Sub 1 Sub 2            Sub 3Sub 1 Sub 2            Sub 3

Sub 1 Sub 2            Sub 3Sub 1 Sub 2            Sub 3

Current design 
& Gradient

Current design 
& Gradient

Current design 

Current design & Gradient

 
 
MDO, a traditional Game Theoretic Approach, and a 

modified Game Theoretic Approach are applied to various 
scenarios drawn from the same case study of a satellite design 
problem. This satellite design problem and subsystem models 
are the Firesat satellite example given in Wertz and Larson’s 
Space Mission Analysis and Design (SMAD) [24] but have been 
adapted to include a higher fidelity power subsystem model. 

Rather than implementing approximately 16 subsystems 
required for full scale Aerospace Mission Design as in Team 
X, only 4 subsystems (Orbital, Payload, Power, and 
Propulsion) were implemented and it was assumed that the 
other subsystems are parametric functions of those 4 
subsystems. Parameters such as inclination angle, initial 
altitude, and mission duration are treated as constants. 

3.1 Individual Subsystem Models 

3.1.1 Orbital Subsystem 
The orbital subsystem determines changes in velocity 

(ΔV ) as function of the operating altitude ( h ).  
 
ΔV = φorb(h)     (1) 

 
The model assumes that this particular satellite uses 

coplanar orbital transfer with no orbit plane change.  Finally, 
this ΔV  includes orbital transfer from initial orbit to 
operating orbit, altitude maintenance, and deorbit transfer. The 
objective of this subsystem is to determine an appropriate 
altitude that minimizes ΔV  given a particular satellite’s 
image goals. 

3.1.2 Payload Subsystem 
The payload of this Firesat satellite design captures 

infrared images of the Earth in order to determine locations of 
forest fires. Thus, the main objective for this design problem is 
to minimize the ground resolution of given a certain payload 
mass and power. The basic functionality of payload is: 

 
[M pl , Ppl ] = φ pl (GR,h)    

(2)
 

 
where M pl  is mass of payload, Ppl  

is power of payload, GR  
is ground resolution, and h  is the operating altitude. This 
model assumes that the operating wavelength and the width of 
the square detector is kept constant. Note that ground 
resolution is typically a design variable as well as a design 
objective for typical payload formulations. In other words, a 
typical payload designer optimizes the ground resolution or 
other image quality index while keeping mass and power 
within a certain design budget.  

3.1.3 Power Subsystem 
The power subsystem is responsible for designing solar 

panels and the secondary battery in this example. It is assumed 
that the power required by payload already includes a certain 
power margin for the payload. The power subsystem’s 
objective is to minimize the mass of the subsystem while 
meeting a required power output and an eclipse condition: 

 
 M pow = φpow(Ppl ,h)

   (3)
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Where powM  is the mass of the power subsystem. The power 
subsystem requires the operating altitude information to 
determine the average daylight and the maximum eclipse 
duration. 

3.1.4 Propulsion Subsystem 
The propulsion subsystem determines the required 

propellant and thruster mass as a function of payload mass, 
power subsystem mass, and required ΔV . The propulsion 
function is: 

 
[ , ] ( , . )prop thrust prop pl powM M M M Vφ= Δ

 (4)
 

 
where M prop  is the mass of the propellant and Mthrust  is the 
mass of the thruster.  Most initial satellite designs allocate a 
given mass for each subsystem as a percentage of initial payload 
mass. This model utilizes that factor and assumes that the mass 
of other subsystems are 128.6% of payload mass. A mass margin 
of 25% for the dry mass (mass excluding propellant) and 15% 
design margin for propellant mass have been included. The 
objective of the propulsion subsystem is to minimize the total 
mass of the system including these margin values. 

Because the Propulsion subsystem requires mass data from 
all other subsystems, the output from this subsystem could also 
be the total system mass. For design optimization, this output 
removes the need to have a system engineer as an integration 
facilitator. Thus, a more appropriate Propulsion subsystem 
functionality can be given by: 

 
M tot = φ prop ( M pl , M pow ,ΔV)    (5)

 

3.2 MDO, Traditional Game Theoretic, and Modified 
Game Theoretic Formulations 

The traditional approach for aerospace mission design 
involves the following steps [25]: 

 
1. Determine orbital design (usually based on human 

expertise); 
2. Design a payload given orbital choice; 
3. Using payload and orbital design, optimize spacecraft 

bus; 
4. If design is not satisfactory, return to step 1 or 2 and 

change orbital or payload design. 
 

Given that the Orbital and Payload subsystems are highly 
coupled, they have been combined into single subsystem for this 
case study.   

The most critical system attributes for this satellite design 
are image quality (ground resolution), total system mass (loaded 
mass), and cost.  The system mass is critical in that the value of 
total system mass is directly related to cost. In this study, the 
cost of the satellite is not considered because cost and reliability 

models for most subsystems were not available. Furthermore, 
cost is considered during the last phase of design at Mission 
Design Laboratory (MDL) at NASA Goddard Space Flight 
Center [6].  Thus, cost is not a traded parameter during the 
early engineering design phase, though it is generally traded 
later on. Therefore the two objectives of this case study are the 
minimization of the ground resolution and total system mass. 

Scenario 1: MDO with three subsystems 
There are many possible MDO formulations for this 

satellite design problem. One key decision for implementing 
MDO is determining appropriately shared design variables.  
There are at least two logical choices for shared design 
variables for this case study. One possible set of design 
variables are [M pl ,Ppl ,ΔV ]  and another possible set is 

[GR, h]  and [M pl ,Ppl ,ΔV ,GR,h] . Because a payload 
designer tries to optimize ground resolution while keeping the 
spacecraft bus feasible, [M pl ,Ppl ,ΔV ]  is a reasonable 
choice for the system design variables.  

To fit into this particular design formulation, the Payload 
and Orbital subsystems are combined and redefined as 
follows: 

 
GR,h⎡⎣ ⎤⎦ = f1( M pl , Ppl ,ΔV )    (6) 

 
To convert from φorb and φpl  

into f1 , the subsystem will 
solve the following optimization problem. 

Find GR  and h  that maximizes GR  and subject to the 
following constraints: 

 

[

(

, ] ( )

)

,pl pl pl

pl pl

pl pl

orb

M

M

P

P GR h

M

P

Vh

φ

φ

≤

=

≤

Δ≤

   (7) 

 
Note that this f1  is a pseudo-inverse of orbφ  and plφ . Also 

note that f1  is not a bijection because the optimization 

problem is infeasible for many [M pl , Ppl ,ΔV ]  combinations. 

However, this formulation does mimic the role of payload 
designers during the Satellite design. Also, unlike some of the 
traditional MDO formulations, only information regarding 
coupled variables is passed between the system and the 
subsystems.  In other words, the subsystems are responsible 
for the determination of best design choices in the cases of 
uncoupled design variables such as propellant type, solar cell 
type, and second battery materials. 
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Given f1 ,φpow , and φprop , we can formulate MDO as 
below: 

 
Find [ M pl , Ppl ,ΔV ]

 
that minimizes 

 f (GR, Mtot ) = γ
GR
GRo

+ (1− γ )
Mtot

( Mtot )o

 (8) 

subject to 
 

 

1( , , )

( , ( ) )

( , , ( ) )

[ , , , ] 0

(

]

, , ,

)

[ , pl pl

pow pow pl s

proptot pl pow s

pl pl pow tot

s

pow pow s

GR h f

M

G

M P V

M P h

M V M

M P V M

h h

R h

M

M

M

φ

φ

Δ

=

= Δ

Δ ≥

=

=

=

 

(9) 

 
where oGR  is initial ground resolution, ( )tot oM  is initial total 

system mass, and (⋅)s  represents slack variable to minimize 
direct communication between subsystems.  

The above optimization can be solved using an iterative 
linearized optimization scheme to find local optima. The 
linearized optimization problem for each iteration can be written 
as follows. 

 
Find[ M pl , Ppl ,ΔV ]  that minimizes 

 Δf =
γ

GRo

ΔGR +
(1− γ )
( Mtot )o

ΔMtot
  (10) 

subject to 
 

ΔGR =
∂( f

1
)

1

∂M
pl

ΔM pl +
∂( f

1
)

11

∂P
pl

ΔPpl +
∂( f

1
)

11

∂(ΔV )
Δ(ΔV )

Δh =
∂( f

1
)

2

∂M
pl

ΔM
pl
+
∂( f

1
)

2

∂P
pl

ΔP
pl
+
∂( f

1
)

2

∂(ΔV )
Δ(ΔV )

ΔM
pow

=
∂φ

pow

∂P
pl

ΔP
pl
+
∂φ

pow

∂(h)
s

Δ(h)
s

ΔM
tot
=

∂f
3

∂M
pl

ΔM
pl
+

∂f
3

∂(ΔV )
Δ(ΔV ) +

∂f
3

∂( M
pow

)
s

Δ( M
pow

)
s

h + Δh = (h)
s
+ Δ(h)

s

M
pow

+ ΔM
pow

= ( M
pow

)
s
+ Δ( M

pow
)

s

| ΔM pl | ≤ η M pl

| ΔPpl | ≤ η Ppl

| Δ(ΔV ) | ≤ η ΔV
 

(11) 

 

where i = 1,2,3  andη  is the dynamic step size. 
To achieve system optimality, the value of f  is calculated 

after each linearized optimization and whenever f increases, 
the value of η  is halved. The information flow between 
subsystems for this formulation is shown in Figure 1. 
 

 
 

FIGURE 1: INFORMATION FLOW BETWEEN SYSTEM 
DESIGNER AND SUBSYSTEM DESIGNERS FOR 3 

SUBSYSTEM MDO DESIGN. 

Scenario 2: MDO with two subsystems 
In the three subsystem MDO formulation, a combined 

Payload and Orbital subsystem is required to perform the 
optimization. This optimization is computationally expensive 
and it takes an order of magnitude longer to compute than the 
Power and Propulsion subsystems. Thus, it is logical to 
explore the effect of complete information sharing between 
the Power and Propulsion subsystems. In particular we should 
ask “is there any benefit for this cooperative protocol for 
information sharing?” 

 

 
 

FIGURE 2: INFORMATION FLOW BETWEEN SYSTEM 
DESIGNER AND SUBSYSTEM DESIGNERS FOR A 2 

SUBSYSTEM MDO DESIGN 
 
To combine the Power and Propulsion subsystems 

together coherently, this formulation allows the Power 
subsystem to directly pass the coupled variable, M pow , to the 
Propulsion subsystem. The information flow for this 
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formulation is represented in Figure 2.  Note that as a system 
design becomes more complex, the information passing required 
to combine subsystems will become more complex as well.  

Mathematically, the two subsystem MDO formulation 
becomes: 

 
Find [ M pl , Ppl ,ΔV ] that minimizes 

 f (GR, Mtot ) = γ
GR
GRo

+ (1− γ )
Mtot

( Mtot )o

 (12) 

subject to 
 

 

[GR,h] = f
1
( M pl , Ppl ,ΔV )

M
tot
= φ prop ( M

pl
,ΔV ,φ

pow
(P

pl
,(h)

s
))

[ M
pl

, P
pl

,ΔV ,GR,h, M
tot

] ≥ 0

h = (h)s

  

(13) 
 

where all of variables are kept the same as for the three  
subsystem formulation. The main benefit for the cooperative 
protocol is that the slack variable for powM  disappears and 
reduces the possible sources of error for convergence. The above 
optimization problem is solved by linearization in a similar 
manner to the three subsystem MDO problem. 

Scenario 3: Two Player Traditional Game Theoretic 
Approach 
The game theoretical formulation is depicted in Figure 3. It 

is assumed that there are two players and that the first designer 
controls the Payload and the Orbital (P+0) subsystems and the 
second designer controls the Power and the Propulsion 
subsystems (P+P). The two designers have two competing 
objectives: while P+0 will aim at minimizing the ground 
resolution, leading to an increase in the total system mass, the 
P+P designer will seek to minimize the total system mass, 
hereby increasing the ground resolution. The design variables 
are as before: (M pl , Ppl ,ΔV ) . In order to be able to implement a 
feasible design P+0 will need to control the two variables: 
(M pl , Ppl ) .  P+P will only control the remaining change in 

velocity, ΔV . The non-cooperative game theoretical protocol is 
carried out using a sequential iterative process, as in . 

Starting from the initial design based on the SMAD 
example for Firesat, the goal of P+0 is to minimize the ground 
resolution while keeping the value of ΔV  constants. P+0 works 
as follows: 

The orbital subsystem will find h  from ΔV , which 
determines a set of feasible values for ( M pl , Ppl ). 

In the set of feasible designs, P+0 chooses the one that 
minimizes the ground resolution. 

The two values ( M pl , Ppl ) along with the value of h is 

sent to the P+P designer who will select the ΔV  that 
minimizes the total mass.  

This process is looped until convergence is reached. One 
requirement for convergence is that that the h  and ΔV  
respectively from P+0 and P+P are consistent. 

 

 
 

FIGURE 3: INFORMATION FLOW BETWEEN SUBSYSTEM 
DESIGNERS FOR A 2 PLAYER TRADITIONAL GAME 

THEORETIC APPROACH 

Scenario 4: Two Player Modified Game Theoretic 
Approach 
In the Modified Game Theoretic approach, the 

optimization problem is reformulated by removing the system 
engineer. Rather than sharing only design variable values as in 
a traditional non-cooperative protocol, subsystems are allowed 
to pass gradient information as well (see Figure 4).  This 
additional information allows each subsystem to attempt to 
optimize their objectives without hindering other subsystems’ 
objectives. The optimization problem for each subsystem is 
described as follows. 

 
a. Payload + Orbital 
 
Find [ΔGR,Δh]  that minimizes ΔGR  
Subject to: 

ΔM
tot
=
∂M

tot

∂M
pl

ΔM
pl
+
∂M

tot

∂P
pl

ΔP
pl
+

∂M
tot

∂(ΔV )
Δ(ΔV )

=
∂M

tot

∂M
pl

∂M
pl

∂GR
+
∂M

tot

∂P
pl

∂P
pl

∂GR
+

∂M
tot

∂(ΔV )

∂ΔV

∂GR

⎛

⎝⎜
⎞

⎠⎟
ΔGR

+
∂M

tot

∂M
pl

∂M
pl

∂h
+
∂M

tot

∂P
pl

∂P
pl

∂h
+

∂M
tot

∂(ΔV )

∂ΔV

∂h

⎛

⎝⎜
⎞

⎠⎟
Δh

= 0

| Δh | ≤ η

 (14) 
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FIGURE 4: INFORMATION FLOW BETWEEN SUBSYSTEM 
DESIGNERS FOR A 2 PLAYER MODIFIED GAME THEORETIC 

APPROACH 
 
b. Power + Propulsion 

 
Find Δh  that minimizes ΔM tot  

Subject to: 
 

ΔMtot =
∂Mtot

∂Mpl

∂Mpl

∂h
+
∂Mtot

∂Ppl

∂Ppl

∂h
+
∂Mtot

∂(ΔV )
∂ΔV
∂h

+
∂Mtot

∂h

⎛

⎝
⎜

⎞

⎠
⎟ Δh

Δh ≤η  

(15) 

 
Note that aim of the Power + Propulsion subsystem is to 

minimize M tot  without increasing GR . This constraint forces 

[M
pl

, P
pl

,ΔV ,h]  to move in particular direction. At each 
iteration, each subsystem takes their turn solving the 
optimization problem.  Whenever M tot  and GR  increases after 
a full iteration, the value of η  will be halved.  While this 
insures convergence of this algorithm, it does not guarantee the 
optimality. 

4. RESULTS AND DISCUSSION 
A Pareto frontier between the total system mass and ground 

resolution is calculated to serve as a baseline comparison for the 
four scenarios.  To determine this Pareto set, ground resolution 
is fixed and optimized for total system mass as a function of 
altitude assuming complete information sharing between all of 
the subsystems.  This frontier is shown as a solid line in Figure 
5. 

4.1 Comparison of MDO formulations 
The first research question posed in Section 1 asked how a 

two subsystem, hybrid MDO approach might compare with a 
three subsystem MDO approach. To explore convergence of 
these two different MDO formulations, the initial values of η  
and γ values while the initial design is fixed.  The initial 
satellite design consists of ground resolution of 0.03 km and an 
altitude of 700 km to match the Firesat example in Space 
Mission Analysis and Design . There should be an ideal η  value 
for the number of iterations necessary for convergence. (Note 

that when η  is too high, errors caused by linearization will 
drive the design toward an infeasible design and waste 
resources by analyzing subsystem infeasibilities.)  However 
this ideal η  value is difficult to determine a priori.  There are 
a few possible approaches to determine an optimal η  value 
by calculating the Lipschitz constant, but it may be not be 
practical for a design problem. Figure 5 shows that both MDO 
formulations do converge to a subset of the Pareto frontier. 
For someγ values, there was not convergence to a Pareto 
solution due to numerical error for calculating derivatives. 

Figure 6 shows the number of iterations required for 
convergence vs. γ values when the initial η  value is fixed at 

 
FIGURE 6: NUMBER OF ITERATIONS VS. γ  WHEN THE 

INITIAL VALUE FORη  IS FIXED AT 0.15 

 
FIGURE 5: CONVERGENCE RESULT FOR MDO 

FORMULATIONS. 
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0.15.  Notice that the number of iterations is highly dependent on 
the value of γ and the 2 subsystem MDO scenario does not 
necessary converge more quickly than the 3 subsystem MDO for 
particular γ  values. Furthermore, Table 2 shows descriptive 
statistics and hypothesis testing results for number of iterations 
needed to converge for the two MDO formulations.  To obtain 
this statistical analysis γ  values are varied from [0.1, 0.125, …, 
0.9] for η  values which were fixed to 4 different values. To 
determine if the mean and variance for the two MDO 
formulations are statistical different, Welch’s t test and F test 
were applied.  It is shown that for most values of η , the 
difference in the number of average iterations is not statistically 
significant if using 5% confidence, while for all values of η , the 
variances were statistically smaller for the two subsystem MDO 
case. Thus, for this particular case study, complete information 
sharing between Power and Propulsion helped reduce the 
variance in the rate of convergence, but did not necessarily 
reduce the average number of design iterations.  

4.2 Comparison of Traditional and Modified Game 
Theoretic Approaches 

The second question asked in this paper was: How do 
traditional Game Theoretic and Modified Game Theoretic 
approaches compare? Figure 7 shows convergence regions for a 
Modified Game Theoretic approach as well as the limit cycle for 
a traditional Game Theoretic approach. Note that by passing 
gradient information between two subsystems and linearly 
constraining the other objective, the modified game theoretic 
approach does converge to a Pareto set from the same initial 
design as the MDO formulation.  Also, the convergence region 
is not a point, but a small region in the Pareto set depending on 
the initial step size for Δh  as well as initial order of 
optimization.  (i.e. if Orbital + Payload starts the optimization or 
if Power + Propulsion starts the optimization.). 

A traditional Game Theoretic approach converges to a limit 
cycle. However, this limit cycle includes solutions with much 
greater total system mass compared to ground resolution.  Thus, 
if human designers were responsible for designing at each 
iteration rather than an automated computer system, it is likely 
they would stop the optimization routine at a point near the 
Pareto Set. 

4.3 Comparison of a MDO approaches with a Modified 

Game Theoretic Approach 
The final question considered in this paper asked how an 

MDO formulation and a Modified Game Theoretic Approach 
compared. In this paper, it is found that the number of 
iterations required is comparable with that found for the MDO 
formulation.  For initial Δh  = [5, 10, 25, 50, 75], the average 
number of iterations was 23.4 with a standard deviation of 
8.96.  Thus, the number of iterations required for a Modified 
Game Theoretic approach is similar to both MDO 
formulations, but with slightly higher variance than the 3 
subsystem MDO formulation. Furthermore, the Modified 
Game Theoretic approach converges to a smaller subset of the 
Pareto Frontier compared to the MDO formulations. Because 
the Modified Game Theoretic approach converged to the 
Pareto Frontier near the initial design, this result most likely 
shows that the convergence region for a Modified Game 
Theoretic approach is sensitive to the initial design. 

 

 

5. CONCLUSIONS AND FUTURE WORK 
This paper examines the impact of "complete" 

information sharing by determining the effect of merging 
subsystems into a “hybrid” subsystem, and introduced a 
Modified Game Theoretic Approach as a way of testing the 
impact of such a merging. A satellite design case study is used 
as a test case. A summary of responses to the original research 
questions follows: 

 
• How does a two subsystem, hybrid MDO approach 

compare with a three subsystem MDO approach in terms 
of performance? 

In this case study, when the information passed between 
subsystems is sufficiently linear, two- and three-subsystem 
MDO scenarios converge in a statistically indifferent number 
of iterations, but additional "complete" information does 
reduce the variability in the number of iterations.  

FIGURE 7: COMPARISON OF MODIFIED AND TRADITIONAL 
GAME THEORETIC APPROACHES  

TABLE 2: DESCRIPTIVE STATISTICS AND STATISTICAL
TEST RESULTS FOR CONVERGENCE RATES FOR TWO 

MDO FORMULATIONS 
    Number of Iteration for MDO Statistical Tests 
     3 Subsystems  2 Subsystems  p value 
    mean Std mean std mean variance 

0.05 33.06 8.28 31.61 3.86 0.366 4.18E-05 
0.15 23.88 5.98 22.45 2.87 0.224 7.71E-05 
0.25 23.12 9.19 19.85 3.05 0.059 1.26E-08 η 

0.40 23.94 5.70 21.58 3.24 0.044 1.99E-03 
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• How do traditional Game Theoretic and Modified Game 
Theoretic Approaches compare?  

A traditional Game Theoretic approach is found to converge to a 
limit cycle rather than a fixed point for the given initial design. 
There may be region of attraction for convergence for the 
traditional Game Theoretic approach, but it is not located in this 
study. In comparison, the modified approach converges to a 
subset of the Pareto set. 
• How does a hybrid MDO approach compare with a 

Modified Game Theoretic Approach? 
The Modified Game Theoretic approach does converge to a 
smaller region of Pareto set compare to MDO formulations, but 
removes the necessity for a system facilitator. 
 

There are a number of areas of further study.  While a 
modified Game Theoretic approach is used, the underlying 
process structure for the game theory-based formulations is non-
cooperative in nature.  Leader/follower and augmented 
cooperative formulations may lend additional insight into 
computational and information passing requirements.  Also, 
there are 16 subsystems in the full satellite model.  Studying 
more players in this design process would create additional 
challenges and would more accurately reflect design and 
engineering practice. Lastly, while we focused on optimizing 
one satellite in this study, future work could include optimizing 
an entire set of distributed satellites using concepts from 
coalition, bargaining, and grey game theory.   
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