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Minimum energetic cost to maintain a target nonequilibrium state
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In the absence of external driving, a system exposed to thermal fluctuations will relax to equilibrium.
However, the constant input of work makes it possible to counteract this relaxation and maintain the system
in a nonequilibrium steady state. In this article, we use the stochastic thermodynamics of Markov jump
processes to compute the minimum rate at which energy must be supplied and dissipated to maintain an arbitrary
nonequilibrium distribution in a given energy landscape. This lower bound depends on two factors: the undriven
probability current in the equilibrium state and the distance from thermal equilibrium of the target distribution.
By showing the consequences of this result in a few simple examples, we suggest general implications for the
required energetic costs of macromolecular repair and cytosolic protein localization.
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I. INTRODUCTION

In many functional contexts—nano-engineering and
biomolecular assembly, to name a few—it is essential to be
able to maintain a system in a nonequilibrium steady state.
Thermal and chemical equilibria are generally dominated by
configurations with low energy and high internal entropy,
yet there are many situations in which the useful outcome
is either highly ordered, high in energy, or both. For ex-
ample, equilibrium protein solutions misfold and aggregate
irreversibly at concentrations comparable to those found in the
cell. To avoid this, cells continually harness chemical work by
consuming ATP to fuel the molecular chaperones that hold
back aggregation [1,2].

The preceding observations point to a clear question of
general importance: what is the minimum rate of energy input
required to maintain a desired nonequilibrium distribution
over states of known, fixed energies? While previous studies
determined the minimum energy required to isothermally
prepare a system in an arbitrary nonequilibrium distribution—
or conversely the maximum work extractable from relaxation
to equilibrium [3–8]—the power cost required to hold a system
in a desired nonequilibrium distribution is a distinct and
significant thermodynamic quantity that has not been analyzed.
In this article, we employ the tools of modern nonequilibrium
thermodynamics [9,10] to compute this cost and show that it is
fully determined by two factors: first, an information-theoretic
measure of the driven steady state’s distance from equilibrium,
and, second, the magnitude of probability flux in the system’s
undriven equilibrium state.

II. DRIVEN REPAIR IN A TWO-LEVEL SYSTEM

Before addressing the general theory, we first consider an
illustrative example that captures the same essential physics.
Consider the two-level system depicted in Fig. 1, which
makes stochastic transitions between two distinct microstates.
To be concrete, these two states could represent, on the
one hand, a monodispersed arrangement of two native,
functional macromolecules, and, on the other hand, an inactive,
aggregated dimer. The first of these states (labeled 1 with
energy E1) is desired for its functionality, so we want it to

be favored; the latter state [labeled 0 with energy E0 such
that β�E = β(E1 − E0) > 1] is an unwanted aberration that
we would like to suppress by driving disaggregation. Prior
to control, the system is governed by Poissonian transition
rates k1→0 and k0→1 that preserve the Boltzmann distribution
p

eq
1 /p

eq
0 = k0→1/k1→0 = e−β(E1−E0) [11], which we assume

favors the unwanted state. The control goal is then to maintain
the system in a specified nonequilibrium distribution obeying
the occupancy ratio ρ = p

neq
1 /p

neq
0 > e−β(E1−E0).

There are often multiple such jump-type reactions that
connect a pair of states, even at equilibrium. For example,
one process moving from 0 to 1 could be the dissociation of
a pair of dimerized protein monomers solely through thermal
fluctuation and have probability rate a

(1)
0→1. Another, with rate

a
(2)
0→1, might be a transition that occurs via the normal pathway

of an assisting molecular chaperone, but, crucially, without
the hydrolysis of ATP. The latter often is so unlikely that it
is typically neglected in a biophysical model. However, for
reasons of thermodynamic consistency, we must allow it to be
possible in principle. Thus, the total undriven probability rate
of disassociation would be k0→1 = ∑

l a
(l)
0→1.

The cell then often implements control by populating the
target state through a collection of driven auxiliary transition
pathways that consume energy from an ambient source, such
as the hydrolysis of ATP. For example, protein folding and
aggregation is managed in vivo by the activity of molecular
chaperone ATPases [2,12]. Thus, these controlled transitions
usually only become relevant once an external drive (such as
chemical baths of ATP and ADP) is introduced, allowing the
execution of the same motion as the undriven dissociation
event while an ATP happens to be hydrolyzed, which is
a physically distinct pathway from the dissociation event
mediated by the chaperone without ATP hydrolysis.

In light of this discussion, we are motivated to implement
control through the addition of a supplementary transition
pathway to our two-state toy model driven by a thermodynamic
force; a chemical example would be to link the transition
to a chemical reaction A → B down a chemical potential
gradient �μ = μA − μB > 0 [9,13]. For the dynamics to be
thermodynamically consistent, the rates around the induced
cycle due to the inclusion of r1→0 and r0→1 must match the
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(a) (b)

FIG. 1. Two-state system schematic: (a) Undriven two-state sys-
tem with energies E0 < E1 and equilibrium probability distribution
pictured as uneven blue rectangles. (b) Driven nonequilibrium state
with stabilized target configuration 1, supported by the additional
driven pathway powered by chemical work due to coincident
conversion of chemical species A → B.

thermodynamic force around the cycle via [9,13,14]:

β�μ = ln

(
k1→0

k0→1

r0→1

r1→0

)
. (1)

With the driving, the system relaxes to a nonequilibrium
steady state, accompanied by a continual probability flux J =
p

neq
1 k1→0 − p

neq
0 k0→1 as the system preferentially flows down

the equilibrium pathway and back up the driven pathway; see
Fig. 1. This cycle is maintained by the chemical potential
gradient �μ that does chemical work at a rate [13]

βẆchem = J · β�μ = J ln

(
k1→0

k0→1

r0→1

r1→0

)
, (2)

which quantifies the energetic cost to maintain the nonequilib-
rium state.

Our objective is to minimize the steady-state energy con-
sumption Ẇchem at fixed ρ. From (2), we see that Ẇchem splits
into two additive terms, each weighted by the current J . The
first, proportional to ln(k1→0/k0→1) = β�E, is independent
of how we drive the system, simply reflecting properties of the
undriven kinetics. The second, proportional to ln(r0→1/r1→0),
we can vary. We can make progress on finding the optimal
ratio by first considering the special case of extremely
fast-driven transitions: k/r → 0. In this case, to maintain
the nonequilibrium ratio ρ, we must have r0→1/r1→0 = ρ,
since the desired steady state is entirely determined by the
probability flow back and forth over the fast, driven transition.
Away from this limit, when k/r > 0, the relative effect of the
undriven transitions on the dynamics is enhanced. This effect
must be compensated by a stronger asymmetry of the driven
transition rates to maintain ρ, which means r0→1/r1→0 > ρ.
Looking back to Ẇchem (2), we see this requires a higher rate
of dissipation than the optimal k/r → 0. Thus, the minimum
cost is

βẆchem � J ln

(
k1→0

k0→1

p
neq
1

p
neq
0

)
= J (ln ρ + β�E). (3)

In this simple model, the minimum work depends on three
things: the energy gap �E, the imbalance of probability ρ

in the target distribution, and the current J determined by
the transition rate k ≡ k1→0 out of the target state (as k0→1 =

FIG. 2. Illustration of Markov jump process state graph: Nodes
represent mesostates and edges allowed transitions. Control is
implemented by adding transitions (red dashed edges) that push
the system into a desired nonequilibrium steady-state distribution
p∗ �= peq.

ke−β�E). With these parameters (3) takes the illuminating form

βẆchem � k
ρ

1 + ρ

(
1 − 1

ρeβ�E

)
[ln ρ + β�E]. (4)

Observe that the basic timescale is the undriven transition rate
k at which thermal fluctuations cause spontaneous transitions
from the desired state to the aberrant “damaged” state. The last
factor, in brackets, dictates the remaining physics and exhibits
two distinct regimes: For ln ρ ≈ β�E, the undriven energy
difference makes a significant contribution to the minimum
cost. However, as our demand for fidelity increases, ln ρ �
β�E, the determining factor is our fidelity criterion ρ, which
captures how strongly we pump into the target state.

Although the preceding remarks were specific to one simple
system, the physics behind them is general. In what follows,
we provide a proof of this general lower bound on the rate of
dissipation for an arbitrarily driven Markov jump process.

III. SETUP

Consider a system making stochastic transitions among a
set of discrete mesostates, or configurations, i = 1, . . . ,N ,
with (free) energies Ei . We can visualize these dynamics
occurring on a graph like in Fig. 2, where each configuration
is assigned a node, and possible transitions are represented by
edges (or links).

The dynamics are modeled as a Markov jump process
according to transition rates Rij from j to i, with Rij �= 0
only when Rji �= 0. As such, the system’s time-dependent
probability distribution pi(t) evolves according to the Master
equation [11]

∂tpi(t) =
∑
j �=i

Rijpj (t) − Rjipi(t) ≡
∑
j �=i

Jij (p), (5)

with probability currents Jij (p).
In the absence of any control, we assume that our system

relaxes to a thermal equilibrium steady state at inverse
temperature β = 1/T , given by the Boltzmann distribu-
tion p

eq
i = eβ(F eq−Ei ) with equilibrium free energy F eq =

−T ln
∑

i e
−βEi ; where from here on we set Boltzmann’s

constant to unity, kB = 1. To guarantee equilibrium, we impose
detailed balance on the transition rates [11]

Rijp
eq
j = Rjip

eq
i . (6)

In equilibrium, each transition is balanced by its reverse. Our
goal is to maintain the system in a target nonequilibrium
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steady state p∗ �= peq and to calculate the minimum dissipation
required.

IV. MINIMUM DISSIPATION COST

When discussing a minimum energetic cost, it is first
necessary to specify the set of allowable controls. The
most comprehensive set would be complete control over the
system’s energies {Ei}. We could then fix the system in p∗ by
shifting all the energies to E∗

i = −T ln p∗
i , thereby making

the target state p∗ the new equilibrium. While there is a
one-time energetic cost to change the energies (namely, the
nonequilibrium free energy difference) [8], afterwards the
system is maintained in p∗ for free. However, cells frequently
do not utilize this mechanism; in numerous biochemical
examples, free energies of states remain fixed, and structural
fidelity is achieved by coupling various dissipative processes.
For example, the free energy difference between a folded and
unfolded protein sets the baseline rate of undriven thermal
transitions, and then a distinct driven transition pathway
mediated by molecular chaperones is added to shift the relative
stability of the protein’s configurations [15].

Motivated by this observation, we take the energies {Ei}
to be static parameters fixing the thermal transition rates and
modify the steady-state distribution by introducing additional
“control” transitions with transition rates {Mkl}, as in Fig. 2.
As was outlined in our analysis of the two-state system at the
beginning of this article, we assume that for every molecular
reaction contributing to the total probability of an undriven
edge in the Markov graph, there is a corresponding process
contributing to the driven (“control”) edge that is accompanied
by exchange with one or more external baths. This requirement
is general to any physically consistent description of matter
coupled to heat and chemical baths, though it often can be
safely ignored since many of the contributing processes are
so unlikely that they contribute nothing to the physics. Since
we are modeling the thermodynamics of the general case,
however, it is appropriate to point out this pairing between
driven and undriven transitions.

Our only additional assumption is that the rates {Mkl}
satisfy a local detailed balance relation,

ln
Mkl

Mlk

= �se
kl, (7)

which guarantees that we can connect their ratios to the entropy
flow �se

kl into the environmental reservoir that mediates the
transition [9,10]. For example, coupling to an auxiliary thermal
bath at a different temperature β ′ entails �se

kl = β ′(El − Ek)
is proportional to the heat flux. A biochemical example would
be the conversion of ATP into ADP and Pi leading to �se

kl =
β(μAT P − μADP − μPi

), corresponding to the chemical work
extracted from the ambient chemical baths. It should be noted,
however, that if such a chemical potential drop were erased, yet
the system remained coupled to the baths, we would formally
still include the “driven” transitions that hydrolyze ATP in
our representation, yet they would not occur at appreciable
rates because they would lack the forward tilting provided
by the favorability of conversation of ATP to ADP. In order
to eliminate such transitions from the picture completely, it
would be necessary to take the system out of contact with the

chemical baths. Yet we should also point out that even in this
ATP-free case, there would still be events involving passive
catalysis by ATPase proteins that would in principle contribute
to the undriven events represented in our Markov graph.

To characterize the minimum dissipation, we bound the
total entropy production rate in the target nonequilibrium state.
As the system plus controller together is one open supersystem
with jump rates {Rij } ≡ {Rij ,Mij }, it must satisfy the second
law of thermodynamics. Namely, the entropy production rate
must be positive [9,10]:

Ṡi =
∑
i>j

Jij (p) ln
Rijpj

Rjipi

� 0, (8)

which is typically split between the rate of change of the
Shannon entropy S(p) = −∑

i pi ln pi , given as Ṡ(p) =∑
i>j Jij (p) ln(pj/pi), and the entropy flow into the environ-

ment Ṡe = ∑
i>j Jij (p) ln(Rij /Rji).

Now, the supersystem produces entropy in the steady state
p∗ at a rate

Ṡi =
∑
i>j

Jij (p∗) ln
Rijp

∗
j

Rjip
∗
i

+
∑
k>l

Jkl(p
∗) ln

Mklp
∗
l

Mlkp
∗
l

. (9)

Our goal is to find a lower bound on this sum, determined
solely by the fixed system properties {Rij } and the target state
p∗. The essential observation is that every control edge linking
a pair of states contributes positively to the entropy production.
Indeed, link-by-link we have [16]

Jkl(p
∗) ln

Mklp
∗
l

Mlkp
∗
k

= (Mklp
∗
l − Mlkp

∗
k ) ln

Mklp
∗
l

Mlkp
∗
k

� 0, (10)

since x ln x � ln x. The same linkwise positivity has also been
shown as a consequence of a general fluctuation theorem
for partial entropy production [17,18]. Thus, each control
edge contributes superfluous dissipation, implying the only
unavoidable dissipation occurs along the system’s undriven
links:

Ṡi � Ṡmin =
∑
i>j

Jij (p∗) ln
Rijp

∗
j

Rjip
∗
i

� 0. (11)

No matter how control is implemented, the system inevitably
jumps along the original links, and those on average dissipate
irrecoverable energy into the environment when the system is
in the target state p∗.

Physical insight into the factors regulating (11) is offered
by using detailed balance (6) to reexpress (11) in terms of the
nonequilibrium ratio p∗/peq,

Ṡmin =
∑
i>j

Rijp
eq
j

(
p∗

j

p
eq
j

− p∗
i

p
eq
i

)(
ln

p∗
j

p
eq
j

− ln
p∗

i

p
eq
i

)
. (12)

This formulation emphasizes that the minimum cost depends
on two factors. First, it depends on how structurally different
p∗ is from peq: the further p∗ is from equilibrium the more
dissipation required. Second, the time scale is completely
specified by the equilibrium dynamics through Rijp

eq
j : to push

a system into a nonequilibrium state one must overcome the
natural evolution of the system.

These observations can be made quantitatively precise by
reformulating (11) using the information-theoretic relative
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entropy. The relative entropy between two densities fi and
gi , D(f ||g) = ∑

i fi ln fi/gi , is an information-theoretic mea-
sure of distinguishability [19]. In thermodynamics, the rate of
decrease in relative entropy of a relaxing distribution p(t)
against the equilibrium state, D(p(t)||peq), quantifies the dis-
sipation via −∂tD(p(t)||peq) = ∑

i>j Jij (p) ln(Rijpj/Rjipi)
[8], due to detailed balance (6). From this observation, we
recognize Ṡmin (11) as the entropy production rate we would
observe in the instant p∗ begins to relax under the undriven
dynamics:

Ṡmin = −∂
eq
t D[p(t)||peq]|p(t)=p∗ , (13)

where the notation ∂
eq
t emphasizes that the evolution is

under the equilibrium dynamics. Equation (13) quantifies
the intuitive fact that it costs more to control a system the
farther it is from equilibrium and the faster the equilibrium
relaxation dynamics. Notably, the relative entropy has recently
been shown to emerge naturally in the energetic cost of
self-assembly as well [20].

An important special case of our bound is isothermal
control, where the driven control transitions exchange heat
with one thermal reservoir at inverse temperature β, as in
our introductory two-state example. For isothermal control,
Ṡi = βẆ is the external work provided by the control,
be it mechanical or chemical. In addition, by introducing
the nonequilibrium free energy F(p) = 〈E〉p − T S(p) =
F eq + D(p||peq) [8,21], our bound (13) simplifies to Ẇ �
−∂

eq
t F(p∗). The controller must supply work at a rate that

compensates the loss of free energy as the system tries to relax
to equilibrium. This variant is reminiscent of a prediction for
the minimum cost to control a quantum mesoscopic device
[22], but that result is limited to control by an auxiliary
feedback device.

Finally, our analysis readily offers the condition under
which we saturate the minimum. We reach the minimum
dissipation when extraneous entropy production due to the
controlled transitions is zero, i.e., Jkl(p∗) ln(Mklp

∗
l /Mlkp

∗
k ) =

0. Thus, the optimal control rates {M∗
kl} must verify

M∗
klp

∗
l = M∗

lkp
∗
k . (14)

We can satisfy this condition only when the added edges oper-
ate much faster than the equilibrium transitions, guaranteeing
that the controlled transitions are reversible. In other words,
fast control is optimal. We verify this observation in Fig. 3
by numerically minimizing Ṡi for a random set of completely
connected N = 6 graphs.

V. IMPLICATIONS

Having formulated the general framework, we can immedi-
ately appreciate implications for various molecular processes
of maintenance and self-repair.

A. Molecular repair

First, consider a system with N mesostates indexed by
i, where we have the functional goal of ensuring that the
system is found in a prescribed state, say, i = 0, with high
probability p0 = 1 − ε, where ε � 1 is a small number that
controls fidelity. Scenarios such as this are commonplace

FIG. 3. Numerical verification of minimum dissipation bound:
Completely connected graphs with N = 6 nodes were randomly
generated (different colors) with undriven rates such that for two states
with Ej > Ei , Rij = e−Bij and Rji = e−(Bij +Ej −Ei ), with barriers B

drawn from an unit-mean exponential distribution and energies from
a zero-mean, unit-variance Gaussian distribution. All possible driven
edges were included. Ṡi was numerically minimized subject to the
constraints that 0 < Mij < Mmax and p∗ = 1/6 is uniform. For fast
enough Mmax, the bound (11) is saturated.

in biochemistry; in the cell, it is frequently the case that a
chemical fuel such as ATP is used to pay for quality control in
essential processes such as protein folding, nucleic acid repli-
cation, or polypeptide translation and degradation [2,15,23].
Here the bound (11) predicts a ε-scaling Ṡmin ∼ −(1/τ ) ln ε,
where τ = (

∑
j �=0 Rj0)−1 is the exit time scale from the target

state, which we verify numerically in Fig. 4. This scaling is
consistent with the simple two-state model of chaperone action
considered earlier: the limit ε � 1 implies that the dominant
cost comes from maintaining fidelity and is insensitive to the
background energy landscape. It further matches well with past
thermodynamic bounds derived specifically for biochemical
error correction [24].

B. Cytosolic protein localization

As a final example, consider the cost of maintaining cy-
tosolic protein localization. Recent studies using fluorescence

FIG. 4. Numerical verification of high-fidelity control: Random
completely connected graphs with N = 6 nodes were generated as
in Fig. 3 with different realizations distinguished by color. Ṡmin with
target distribution confined to one state with probability 1 − ε is
plotted as function of the fidelity ε, displaying a − ln ε scaling.
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microscopy in eukaryotic cells have revealed a wide range
of diffusively open subcellular compartments not enclosed by
membranes, which coalesce or disassemble rapidly under cel-
lular stresses, such as nutrient starvation or heat shock [25–27].
While evidence in particular cases suggests the formation of
such structures could be an equilibrium phase separation [28],
it is possible in principle that the cell exploits nonequilibrium
driving to maintain spatial order without employing attractive
interparticle interactions that retard diffusive mobility [29].

As a simple model of this situation, consider a solution
of N proteins composed of two chemical species A and B

diffusing in a region V with equal diffusivities D. We wish
to confine all of the A proteins, numbering NA = f N , to a
region ν, while displacing B proteins, thereby maintaining a
uniform total concentration. Although the bound derived above
also applies in far more general scenarios, we will assume
the chemical monomers are noninteracting for the sake of
calculational simplicity.

The minimum dissipation rate in this diffusive limit is
obtained by first imagining we have a single molecule making a
random walk on a d-dimensional square lattice with equal tran-
sition rates k, implying a uniform energy landscape. We then
shrink the lattice spacing as �x → 0, while diffusively accel-
erating time k → D/(�x)2, allowing us to approximate (11) as

Ṡmin =
∑
〈ii′〉

k(p∗
i′ − p∗

i ) ln
p∗

i′

p∗
i

(15)

≈ D

∫ ∇p∗(x) · ∇p∗(x)

p∗(x)
dx, (16)

where the summation is over pairs of neighboring lattice
sites. Confining A to ν under the constraint that the total
concentration is constant fpA(x) + (1 − f )pB(x) = 1, where

pj (x) with j = A,B is the probability density of species j to
be found at location x, suggests an ultimate minimum cost

Ṡmin = min
p∗

A∈ν

∑
j=A,B

NjD

∫ ∇p∗
j (x) · ∇p∗

j (x)

p∗
j (x)

dx, (17)

assuming independent A and B.
Assuming a cytosolic mass density of 300 mg/ml [1] filled

with 25 kDa globular proteins, the confinement of a single
protein to a cubic region ν of side L = 1 μm, corresponds to a
choice of f � 10−7, so we can stipulate that f = NA/N � 1.
In this limit, the optimal distribution of B molecules p∗

B is
uniform, whereas the optimal distribution of A molecules is

p∗
A(x) =

d∏
i=1

[1 − cos(2πxi/L)]/L. (18)

The resulting minimum work cost per confined protein
at physiological temperature T is Ẇ/f N = T Ṡmin/f N =
3kBT D(2π/L)2. For a diffusion coefficient of a small globular
protein like GFP, for which D = 26 μm2/s, the predicted
number of ATP hydrolyzed per confined protein is roughly
102 molecules/s [30]. Notably, this rate is larger by a factor
of ∼1–100 than the rate of heat dissipation per protein
in exponentially growing microbes [31]. This comparison
suggests that the energetic cost of nonequilibrium confinement
could significantly impact when and how the cell might benefit
from such a mechanism.
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