
ar
X

iv
:1

50
1.

07
88

4v
2 

 [c
s.

S
Y

]  
10

 F
eb

 2
01

5
1
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A Class of Structure Preserving Power Grids

Thanh Long Vu and Konstantin Turitsyn,Member, IEEE

Abstract—The increasing development of the electric power
grid, the largest engineered system ever, to an even more
complicated and larger system requires a new generation of
stability assessment methods that are computationally tractable
and feasible in real-time. In this paper we first extend the
recently introduced Lyapunov Functions Family (LFF) transient
stability assessment approach, that has potential to reduce the
computational cost on large scale power grids, to structure-
preserving power grids. Then, we introduce a new geometry-
based method to construct the stability region estimate of power
systems. Our conceptual demonstration shows that this new
method can certify stability of a broader set of initial conditions
compared to the minimization-based LFF method and the energy
methods (closest UEP and controlling UEP methods).

I. I NTRODUCTION

The electrical power grid is currently undergoing the archi-
tectural revolution with the increasing penetration of renewable
and distributed energy sources and the presence of millionsof
active endpoints. Intermittent renewable and volatile loads are
difficult to exactly predict and present challenges concerning
voltage, frequency, power quality, and power supply during
unfavorable weather conditions. As such, the existing planning
and operation computational techniques largely developed
several decades ago will have to be reassessed and adopted to
the new physical models in order to ensure secure and stable
operation of the modern power grids. Among those challenges,
the extremely large size of the grid calls for the development
of new generation of stability assessment methods that are
computationally tractable and feasible in real-time.

The most straightforward approach to the post-fault sta-
bility assessment problem is based on direct time-domain
simulations of transient dynamics following the contingencies.
Rapid advances in computational hardware made it possible to
perform accurate simulations of large scale systems fasterthan
real-time [1], [2]. Alternatively, the direct energy approaches
[3]–[5], which are accepted and adopted by industry [6],
allow fast screening of the contingencies while providing
mathematically rigorous certificates of stability and saving
more computational resources than time-domain simulations.
Essentially, the closest UEP method [4] certifies that the post-
fault dynamics is stable if the system energy at the clearing
time is smaller than the minimum energy value at every
unstable equilibrium points (UEP). This method is known
conservative and not scalable to large-scale power grids since
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the problem of searching for an exponential number of UEPs is
an NP-hard problem. The controlling UEP method [7] certifies
that the post-fault dynamics is stable if the system energy at
the clearing time is smaller than the energy function value at
the controlling UEP, which is defined as the nearest point on
the boundary of the actual stability region that the fault-on
trajectory is approaching, i.e. nearest the fault-clearedstate.
This method is less conservative than the closest UEP method
since the energy value at the controlling UEP is possibly larger
than the energy value at the closest UEP. However, as the
actual stability region is unknown, the controlling UEP can
only be searched by some heuristic algorithms.

Recently, we introduced theLyapunov Functions Family
(LFF) approach to alleviate some of these drawbacks [8].
The principle of this approach is to provide transient stability
certificates by constructing a family of Lyapunov functions,
which are generalizations of the classical energy function,
and then find the best suited function in the family for given
initial states. Basically, this method certifies that the post-fault
dynamics is stable if the fault-cleared state stays within a
polytope surrounding the equilibrium point and the Lyapunov
function at the fault-cleared state is smaller than the minimum
value of Lyapunov function over the flow-out boundary of that
polytope. Generally, the LFF approach can certify stability of a
broader set of initial conditions compared to the closest UEP
method. Also, the introduced optimization-based techniques
for constructing stability certificates are scalable to large-
scale power grids, since they avoid identifying the exponential
number of UEPs. In addition, the LFF approach is applicable
to stability assessment of power grids with losses [9], which
is impossible by the standard energy method.

In this paper, we improve the LFF transient stability assess-
ment method and make two contributions. The first contribu-
tion is the extension of LFF method to structure-preserving
power systems. The second contribution is a new geometry-
based method to construct the estimate of stability region of
the desired equilibrium point, which we argue to possibly be
larger than that defined by the existing methods. We observe
that among all of the UEPs, there are many points that are far
from the equilibrium point and thus are not necessary to be
counted when we search for the controlling UEP. Therefore,
we define2|E| points that are the minimum points of Lyapunov
function over the2|E| flow-out boundary segments of the
considered polytope. Here,|E| is the number of lines in the
grids. These2|E| minimum points play the role of all possible
controlling UEPs of the system. The post-fault dynamics
is certified stable if the fault-cleared state stays within the
polytope and the Lyapunov function at the fault-cleared state
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is smaller than the Lyapunov function at the (controlling)
minimum point corresponding to the polytope’s subset con-
taining the fault-cleared state. This method is less conservative
than the original LFF method in [8] since the Lyapunov
function at the controlling minimum point is possibly larger
than the minimum value of Lyapunov function over the flow-
out boundary. In comparison to the controlling UEP method
we note that since the2|E| minimum points play the role
of all possible controlling UEPs of the system, the proposed
geometry-based method can certify stability for points for
which the controlling UEP method cannot. Furthermore, the
construction of the minimum points is mathematically rigorous
and does not involve any heuristic algorithm. Also, knowledge
of the fault-on trajectory is not required as in the controlling-
UEP method [7].

We note that there are many works on Lyapunov function-
based stability of structure preserving power systems [10]–
[12]. However, the Lyapunov function in these works is usually
used to prove the local stability of the system; it is not fully
exploited to construct the stability region of the system as
in this paper. Instead, in these works the stability region is
estimated by the energy method.

II. STRUCTURE PRESERVINGPOWER SYSTEMS

In normal conditions, power grids operate at a stable equi-
librium point. Under some fault or contingency scenarios,
the system moves away from the pre-fault equilibrium point
to some post-fault conditions. After the fault is cleared, the
system experiences the transient dynamics. This work focuses
on the transient post-fault dynamics of the power grids, and
aims to develop computationally tractable certificates of tran-
sient stability of the system, i.e. guaranteeing that the system
will converge to the post-fault equilibrium. In this paper,we
address this question on a traditional swing equation dynamic
model of power systems, which is named structure-preserving
model originally introduced in [10]. This model naturally
incorporates the dynamics of rotor angle as well as response
of load power output to frequency deviation. However it does
not model the dynamics of voltage in the system which is the
main downside of the approach. However, in comparison to
the classical swing equation with constant impedance loads,
the structure of power grids is preserved in this approach.

Assume that the grid hasm generators andn0 buses in
which n0 − m buses have loads and no generation. It is
convenient to introduce fictitious buses representing the in-
ternal generation voltages. So, in the augmented grid we have
n = n0 + m buses. Assume that the grid is lossless. Them
generators have perfect voltage control and are characterized
each by the rotor angleδk and its angular velocitẏδk. The
dynamics of generators are described by a set of the so-called
swing equations:

mkδ̈k + dk δ̇k + Pek − Pmk
= 0, k = 1, ..,m, (1)

where,mk is the dimensionless moment of inertia of the gener-
ator,dk is the term representing primary frequency controller
action on the governor.Pmk

is the effective dimensionless
mechanical torque acting on the rotor andPek is the effective
dimensionless electrical power output of thekth generator.

Let Pdk
be the real power drawn by the load atkth bus,

k = m + 1 . . . , n. In generalPdk
is a nonlinear function

of voltage and frequency. For constant voltages and small
frequency variations around the operating pointP 0

dk
, it is

reasonable to assume that

Pdk
= P 0

dk
+ dk δ̇k, k = m+ 1, . . . , n, (2)

wheredk > 0 is the constant frequency coefficient of load.
Whendk = 0 we have the constant load model. The electrical
powerPek from thekth bus into network, wherek = 1, ..., n,
is given by

Pek =
∑

j∈Nk

VkVjBkj sin(δk − δj). (3)

Here, the valueVk represents the voltage magnitude of thekth

bus which is assumed to be constant.Bkj are the (normalized)
susceptance betweenkth bus andjth bus.Nk is the set of
neighboring buses of thekth bus. Letakj = VkVjBkj . Finally,
the structure-preserving model of power systems is obtained
as:

mk δ̈k + dk δ̇k +
∑

j∈Nk

akj sin(δk − δj) =Pmk
, (4)

k = 1, . . . ,m,

dk δ̇k +
∑

j∈Nk

akj sin(δk − δj) =− P 0
dk
, (5)

k = m+ 1, . . . , n.

The system described by equations (4)-(5) has many station-
ary points with at least one stable corresponding to the desired
operating point. Mathematically, this point, characterized by
the rotor anglesδ∗ = [δ∗1 , ..., δ

∗
n, 0, ..., 0]

T , is not unique since
any shift in the rotor angles[δ∗1 +c, ..., δ∗n+c, 0, ..., 0]T is also
an equilibrium. However, it is unambiguously characterized by
the angle differencesδ∗kj = δ∗k − δ∗j that solve the following
system of power-flow like equations:

∑

j∈Nk

akj sin(δ
∗
kj) = Pk, k = 1, . . . , n, (6)

wherePk = Pmk
, k = 1, . . . ,m, andPk = −P 0

dk
, k = m +

1, ..., n. Then, the set of swing equations (4)-(5) is equivalent
with

mkδ̈k + dk δ̇k = −
∑

j∈Nk

akj
(

sin(δkj)− sin(δ∗kj)
)

, (7)

k = 1, . . . ,m,

dk δ̇k = −
∑

j∈Nk

akj
(

sin(δkj)− sin(δ∗kj)
)

, (8)

k = m+ 1, . . . , n.

Formally, we consider the following problem.
Transient stability assessment problem:Determine
if the post-fault scenario defined by initial conditions
{δk(0), δ̇k(0)}

n
k=1 of the system(7)-(8) leads to the stable

equilibrium pointδ∗ = [δ∗1 , ..., δ
∗
n, 0, ..., 0]

T .

We will address this problem by estimating the stability
region of the stable equilibrium pointδ∗, i.e. the set of
points from which the system (7)-(8) will converge toδ∗.
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Fig. 1. Bounding of nonlinear sinusoidal coupling(sin δkj − sin δ∗
kj

) by
two linear functions of angular differenceδkj as described in (12)

If the initial statex0 belongs to this estimate set, then the
corresponding post-fault scenario is determined stable. We
will use a sequence of techniques originating from nonlinear
control theory that are most naturally applied in the state space
representation of the system. Hence, we view the multimachine
power system (7)-(8) as a system with the state space vector
x = [x1, x2, x3]

T composed of the vector of generator’s angle
deviations from equilibriumx1 = [δ1 − δ∗1 , . . . , δm − δ∗m]T ,
their angular velocitiesx2 = [δ̇1, . . . , δ̇m]T , and vector of
load’s angle deviation from equilibriumx3 = [δm+1 −
δ∗m+1, . . . , δn−δ∗n]

T . LetE be the incidence matrix of the cor-
responding graph, so thatE[δ1 . . . δn]

T = [(δk−δj){k,j}∈E ]
T .

Consider matrixC such thatCx = E[δ1 . . . δn]
T . Consider the

nonlinear transformationF in this representation is a simple
trigonometric functionF (Cx) = [(sin δkj−sin δ∗kj){k,j}∈E ]

T .
In state space representation the system can be expressed in

the following compact form:

ẋ1 = x2

ẋ2 = M−1
1 (−D1x2 − S1E

TSF (Cx)) (9)

ẋ3 = −D−1
2 S2E

TSF (Cx)

whereS = diag(akj){k,j}∈E , S1 = [Im×m Om×n−m], S2 =
[In−m×n−m On−m×m]. Equivalently,

ẋ = Ax −BF (Cx), (10)

with the matricesA,B given by the following expression:

A =





Om×m Im×m Om×n−m

Om×m −M−1

1 D1 Om×n−m

Om×m Om×m Om×n−m



 , (11)

and B =
[

Om×|E| −M−1
1 S1E

TS −D−1
2 S2E

TS
]T

.
Here, |E| is the number of edges in the graph defined by the
susceptance matrix, or equivalently the number of non-zero
non-diagonal entries inBkj .

III. L YAPUNOV FUNCTIONS FAMILY APPROACH

This paper proposes a family of Lyapunov functions to
certify the transient stability for the structure preserving power
system (10). The construction of this Lyapunov functions
family is based on the linear bounds of the nonlinear couplings

which are clearly separated in the state space representation
(10). From Fig. 1, we observe that

0 ≤ (δkj − δ∗kj)(sin δkj − sin δ∗kj) ≤ (δkj − δ∗kj)
2, (12)

for any|δkj+δ∗kj | ≤ π. Therefore, the nonlinearityF (Cx) can
be bounded by the linear functions in the polytopeP defined
by the set of inequalities|δkj + δ∗kj | ≤ π.

Exploiting this nonlinearity bounding, we propose to use the
convex cone of Lyapunov functions defined by the following
system of Linear Matrix Inequalities for positive, diagonal
matricesK,H of size 2|E| × 2|E| and symmetric, positive
matrix Q of size2n× 2n :

[

ATQ+QA R
RT −2H

]

≤ 0, (13)

whereR = QB−CTH−(KCA)T . For every pairQ,K satis-
fying these inequalities the corresponding Lyapunov function
is given by

V (x) =
1

2
xTQx−

∑

K{k,j}(cos δkj + δkj sin δ
∗
kj). (14)

Here, the summation goes over all elements of pair set
E , and K{k,j} denotes the diagonal element of matrixK
corresponding to the pair{k, j}.

Similar to Appendix A in [8], we obtain the derivative of
Lyapunov functionV (x) along (10) as:

V̇ (x) = −0.5(Xx− Y F )T (Xx− Y F )− (Cx − F )THF

= −0.5(Xx− Y F )T (Xx− Y F )−
∑

H{k,j}g{k,j}, (15)

where g{k,j} =
(

δkj − δ∗kj − (sin δkj − sin δ∗kj)
)

(sin δkj −
sin δ∗kj). From Fig. 1, we haveg{k,j} ≥ 0 for any |δkj+δ∗kj | ≤

π. Hence,V̇ (x) ≤ 0, ∀x ∈ P , and thus the Lyapunov function
is decaying inP . Therefore, we have the following result.

Theorem 1: In the polytopeP , the Lyapunov function de-
fined by (14) is decaying along the trajectory of(10), i.e.,
V (x(t)) is decaying wheneverx(t) evolves insideP .

IV. GEOMETRY-BASED STABILITY CERTIFICATION AND

CONTINGENCY SCREENING

A. Construction of Stability Certificate

In [8], the stability certificate is constructed by finding the
minimum valueVmin of the functionV (x) over the union of
flow-out boundary segments of the polytopeP . Accordingly,
if the Lyapunov function at the initial state, which stays
insideP , is smaller thanVmin, then the system trajectory is
guaranteed to converge from the initial state to the desired
stable equilibrium point. In this paper, we will introduce a
geometry-based approach for stability certificate construction,
in which we inscribe inside the polytopeP an invariant set
R which is the largest set formed by combining the flow-
in boundary of the polytopeP together with the patches of
Lyapunov function’s sublevel sets that are guaranteed do not
meet the flow-out boundary ofP .

In deed, we divide the boundary∂Pkj of P corresponding
to the equality|δkj + δ∗kj | = π into two subsets∂P in

kj and
∂Pout

kj . The flow-in boundary segment∂P in
kj is defined by

|δkj + δ∗kj | = π andδkj δ̇kj < 0, while the flow-out boundary
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estimated by theVmin method is the intersection of the Lyapunov level set
(blue solid line) and the polytope defined by−π − δ∗ ≤ δ ≤ π − δ∗. The
stability region estimated by the geometry-based method isthe inner of the
set whose boundary is combined of solid blue segments

segment∂Pout
kj is defined by|δkj + δ∗kj | = π andδkj δ̇kj ≥ 0.

Since the derivative ofδ2kj at every points on∂P in
kj is negative,

the system trajectory can only go insideP once it meets∂P in
kj .

We define the following minimum values ofV (x) on the flow-
out boundary segment∂Pout

kj :

V ±
minkj

= min
x∈∂Pout±

kj

V (x), (16)

where∂Pout±
kj is the flow-out boundary segment of polytope

P that is defined byδkj + δ∗kj = ±π and δkj δ̇kj ≥ 0. Let
xout±
kj be the point on∂Pout±

kj such thatV (xout±
kj ) = V ±

minkj
.

Now we consider the setR formed by the combination of
the flow-in boundary∂P in of the polytopeP together with
2|E| segments of Lyapunov function’s sublevel sets. Each of
these segments goes through one of the2|E| points xout±

kj

and lies in the half of the polytopeP corresponding to
sign(δ̇kj) = ±. The conceptual demonstration of the setR
is given as the combination of solid blue lines in Fig. 2. Note,
these segments can only meet the boundary ofP at the point
with δkj δ̇kj = (∓π − δ∗kj)(±) < 0, i.e. the point on the flow-
in boundary. Therefore, the boundary ofR is composed of
segments which are parts of Lyapunov function’s sublevel sets
or flow-in boundary.

From the decrease of Lyapunov function insideP (Theorem
1) we note that from any initial state insideR the system
trajectory cannot escapeR through the Lyapunov function’s
sublevel sets. Also, once the system trajectory meets the flow-
in boundary, it can only go inside the polytopeP . So, if the
setR is closed, then its inner is an invariant set. In Appendix
VIII-A, we prove the following main result of this paper.

Theorem 2: If the setR is closed1, then the inner ofR is
an estimate of the stability region of the equilibrium pointδ∗,
i.e., from any initial statex0 in the setR, the system trajectory
xt of (10) will converge toδ∗.

1We conjecture that there are always some Lyapunov functionsin the family
defined by the LMIs (13) such that the setR is closed. In the conceptual
demonstration of 2-bus system, it is easy to search for such Lyapunov function
by the adaptation algorithm introduced in [8].

Theorem 2 provides a geometry-based estimate of the
stability region of the stable equilibrium point. As a conceptual
illustration, we can observe from Fig. 2 that in the most simple
case of 2-bus system, the geometry-based method results in the
largest stability region estimate compared to the closest UEP
method and theVmin method in [8].

B. Direct Method for Contingency Screening

In this section, we will apply the geometry-based stability
certificate to the contingency screening problem. Essentially,
the post-fault dynamics is certified stable if the fault-cleared
statex0 stays within the polytopeP and the Lyapunov function
at x0 is smaller than the Lyapunov function at the (control-
ling) minimum point corresponding to the polytope’s subset
containing the fault-cleared state. Indeed, for a given fault-
cleared statex0, which is determined by integration or other
techniques, the value ofV (x0) can be computed by direct
application of (14). Ifx0 is inside the polytopeP , we calculate
the frequency differenceṡδkj . From the|E| signatures of these
frequency differences, we can determine the subset of the
polytopeP in which every points have the same signatures for
frequency differences withx0. Then, from the formulation (16)
we can define|E| minimum valuesV ±

minkj
, in whichV ±

minkj
is

eitherV +

minkj
or V −

minkj
according to the signature ofδ̇kj . The

value of Lyapunov function at the initial statex0 should be
then compared to the minimum of these|E| minimum values
V ±
minkj

. If V0 is smaller than this minimum value, the post-
fault dynamics is certified stable, becausex0 belongs to the
stability region estimateΦ.

We note that unlike energy based approaches, the LFF
method provides a whole cone of Lyapunov functions to
choose from. This freedom can be exploited to choose the
Lyapunov function that is best suited for a given initial
condition or their family. Essentially, we can apply the similar
iterative algorithm in [8] (Section IV) to identify the Lyapunov
function that certifies the stability of a given initial condition
x0 whenever such a Lyapunov function exits.

V. SIMULATION RESULTS

To illustrate the effectiveness of the LFF and geometry-
based approach in estimating the stability region of power sys-
tems, we consider the classical2-bus with easily visualizable
state-space regions. This system is described by a single 2-nd
order differential equation

mδ̈ + dδ̇ + a sin δ − P = 0. (17)

For this systemδ∗ = arcsin(P/a) is the only stable equi-
librium point (SEP). For numerical simulations, we choose
m = 1 p.u., d = 1 p.u., a = 0.8 p.u., P = 0.4 p.u., and
δ∗ = π/6. Figure 2 illustrates the construction of stability
region estimate for the most simple 2-bus system by the closest
UEP method, theVmin method in [8], and the geometry-based
method. It can be seen that there are many contingency scenar-
ios defined by the configurationx0 whose stability cannot be
certified by the energy method, but can be ensured by the LFF
method. Also, the geometry-based method provides a better
stability region estimate compared to theVmin method.
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We can also see that the two minimum pointsxout± are all
the UEPs of the system. Hence, the estimate setR covers
the Lyapunov function’s sublevel sets that go through the
UEPs. Therefore, the geometry-based stability certificatecan
assess transient stability for every initial states inP that the
controlling UEP method in [7] does.

VI. CONCLUSIONS ANDPATH FORWARDS

This paper extended the recently introduced LFF approach
to transient stability certification of structure-preserving power
systems. A new geometry-based technique was also introduced
to further enlarge the estimate of stability region compared to
the original LFF method. The new estimate is the largest set
formed by combining the flow-in boundary of the polytope in
which the Lyapunov function is decreasing together with the
patches of sublevel sets that are guaranteed do not meet the
flow-out boundary of that polytope. Our numerical simulations
showed that this new estimate of stability region is broader
than that obtained by the energy methods and the original
LFF method. In the applications to contingency screening,
the geometry-based technique in this paper resulted in a more
complicated algorithm compared to the original LFF method
in [8]. However, the larger stability region estimate obtained by
the geometry-based method guaranteed that more contingency
scenarios are screened and certified stable.

Toward the practical applications of the Lyapunov Functions
Family approach to transient stability certification, further
extensions should be made in the future where more com-
plicated structure-preserving models of power systems are
considered, e.g. the dynamics of generators’ voltage or effects
of buses’ reactive power is incorporated in the model. Since
the LFF method is applicable to lossy power grid [9], it is
straightforward to extend the method to incorporating reactive
power, which will introduce the cosine term in the model
(7). This can be done by extending the state vectorx and
combining the technique in this paper with the LFF transient
stability techniques in [9] for lossy power grids (without
reactive power considered). Also, we can see from the proof of
Theorem 1 that, in order to make sure the Lyapunov function
is decreasing in the polytopeP , it is not necessary to restrict
the nonlinear termsF (Cx) to be univariate. As such, we can
extend the LFF method to power systems with generators’
voltage dynamics in which the voltage variable is incorporated
in a multivariable nonlinear functionF.

We envision to develop a new security assessment toolbox
for practical power grids based on the LFF approach. This tool
can certify transient stability for a broad set of contingency
scenarios when the dynamics of power systems in described
by a number of models, from simple classical reduction model
to complex structure-preserving model with dynamic voltage
and reactive power incorporated. Also, this security assessment
toolbox can certify stability for rather complicated situations
when the system parameters are changing or unknown via the
robust stability certificate developed in [9]. We will builda
library of models and contingency scenarios the stability of
which can be certified by this security assessment toolbox.
This will help us quickly assess the transient stability of
dynamical power systems by offline algorithms.
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VIII. A PPENDIX

A. Proof of Theorem 2 for Stability Region Estimate

Since inner ofR is an invariant set we havex(t) ∈ R ⊂ P
for all t ≥ 0. By Theorem 1 we havėV (x(t)) ≤ 0 for all t.
From LaSalle theorem, we conclude that the system trajectory
x(t) will converge to the set{x : V̇ (x) = 0}. This together
with (15) imply that the system trajectory will converge to
the stable equilibrium pointδ∗ or to some point lying on the
boundary ofP . However, by the construction ofR the second
case cannot happen. Therefore, the system will converge toδ∗.

REFERENCES

[1] Z. Huang, S. Jin, and R. Diao, “Predictive Dynamic Simulation for
Large-Scale Power Systems through High-Performance Computing,”
High Performance Computing, Networking, Storage and Analysis (SCC),
2012 SC Companion, pp. 347–354, 2012.

[2] I. Nagel, L. Fabre, M. Pastre, F. Krummenacher, R. Cherkaoui, and
M. Kayal, “High-Speed Power System Transient Stability Simulation
Using Highly Dedicated Hardware,”Power Systems, IEEE Transactions
on, vol. 28, no. 4, pp. 4218–4227, 2013.

[3] M. A. Pai, K. R. Padiyar, and C. RadhaKrishna, “TransientStability
Analysis of Multi-Machine AC/DC Power Systems via Energy-Function
Method,” Power Engineering Review, IEEE, no. 12, pp. 49–50, 1981.

[4] H.-D. Chiang, F. F. Wu, and P. P. Varaiya, “A BCU method fordirect
analysis of power system transient stability ,”Power Systems, IEEE
Transactions on, vol. 9, no. 3, pp. 1194–1208, 1994.

[5] H.-D. Chiang,Direct Methods for Stability Analysis of Electric Power
Systems, ser. Theoretical Foundation, BCU Methodologies, and Appli-
cations. Hoboken, NJ, USA: John Wiley & Sons, Mar. 2011.

[6] J. Tong, H.-D. Chiang, and Y. Tada, “On-line power systemstability
screening of practical power system models using TEPCO-BCU,” in
ISCAS, 2010, pp. 537–540.

[7] Y. Zou, M.-H. Yin, and H.-D. Chiang, “Theoretical foundation of
the controlling UEP method for direct transient-stabilityanalysis of
network-preserving power system models,”Circuits and Systems I:
Fundamental Theory and Applications, IEEE Transactions on, vol. 50,
no. 10, pp. 1324–1336, 2003.

[8] T. L. Vu and K. Turitsyn, “Lyapunov functions family approach to
transient stability assessment,”Power Systems, IEEE Trans., 2014, in
review, available: arXiv:1409.1889.

[9] ——, “Synchronization stability of lossy and uncertain power grids,” in
2015 American Control Conference, accepted.

[10] A. R. Bergen and D. J. Hill, “A structure preserving model for power
system stability analysis,”Power Apparatus and Systems, IEEE Trans-
actions on, no. 1, pp. 25–35, 1981.

[11] R. Davy and I. A. Hiskens, “Lyapunov functions for multi-machine
power systems with dynamic loads,”Circuits and Systems I: Funda-
mental Theory and Applications, IEEE Transactions on, vol. 44, 1997.

[12] D. J. Hill and C. N. Chong, “Lyapunov functions of lur’e-postnikov
form for structure preserving models of power systems,”Automatica,
vol. 25, no. 3, pp. 453–460, 1989.


	I Introduction
	II Structure Preserving Power Systems
	III Lyapunov Functions Family Approach
	IV Geometry-based Stability Certification and Contingency Screening
	IV-A Construction of Stability Certificate
	IV-B Direct Method for Contingency Screening

	V Simulation Results
	VI Conclusions and Path Forwards
	VII Acknowledgements
	VIII Appendix
	VIII-A Proof of Theorem ?? for Stability Region Estimate

	References

