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Entropic and Near-Field 
Improvements of Thermoradiative 
Cells
Wei-Chun Hsu, Jonathan K. Tong, Bolin Liao, Yi Huang, Svetlana V. Boriskina & Gang Chen

A p-n junction maintained at above ambient temperature can work as a heat engine, converting some 
of the supplied heat into electricity and rejecting entropy by interband emission. Such thermoradiative 
cells have potential to harvest low-grade heat into electricity. By analyzing the entropy content of 
different spectral components of thermal radiation, we identify an approach to increase the efficiency 
of thermoradiative cells via spectrally selecting long-wavelength photons for radiative exchange. 
Furthermore, we predict that the near-field photon extraction by coupling photons generated from 
interband electronic transition to phonon polariton modes on the surface of a heat sink can increase 
the conversion efficiency as well as the power generation density, providing more opportunities to 
efficiently utilize terrestrial emission for clean energy. An ideal InSb thermoradiative cell can achieve a 
maximum efficiency and power density up to 20.4% and 327 Wm−2, respectively, between a hot source 
at 500 K and a cold sink at 300 K. However, sub-bandgap and non-radiative losses will significantly 
degrade the cell performance.

Low-grade heat is omnipresent in industrial processes, vehicular engines, and power electronics1,2. Many technol-
ogies such as solid-state thermoelectric energy conversion3–5, organic Rankine cycles1,6, and thermally regenera-
tive electrochemical cycle7,8 are pursued to harvest energy from low temperature heat sources. Semiconductor p-n 
junctions, on the other hand, have been used to harvest photons from high temperature heat sources to generate 
electricity, such as photovoltaic (PV) and thermophotovoltaic devices9–15. In these devices, photons from exter-
nal heat source enter the devices to generate electron-hole pairs and carry in entropy. Entropy of the incoming 
photons and entropy generated in the energy conversion process will be carried away by photons emitted during 
radiative recombination and via heat rejected to the environment.

Recently, the potential of using a p-n junction directly as a heat engine, coupling heat into the p-n junction 
by conductive or convective heat transfer from a heat source and rejecting the entropy via thermal radiation, has 
been explored for harvesting low temperature heat sources. Theoretical limit of such a thermoradiative (TR) cell 
was analyzed using the Shockley-Queisser framework established for photovoltaic devices16. This potential was 
demonstrated experimentally by Santhanam and Fan17, although the achieved efficiency was low.

To improve the efficiency of such devices, understanding the working principle of a thermoradiative cell is 
required. We first start by reviewing the operation of a conventional PV cell. When a PV cell is illuminated by a 
hot source, such as the sun, the p-n junction of the cell is driven out of equilibrium due to the radiative generation 
of excess electrons and holes. As shown in Fig. 1a, these excess electrons and holes flow towards the contacts 
on the n-type and p-type semiconductors, respectively. Under the open-circuit condition, the excess electrons 
raise the electron quasi-Fermi level in the n-type region and the excess holes lower the hole quasi-Fermi level 
in the p-type region. This leads to a quasi-Fermi level splitting, equivalently a positive open circuit voltage con-
figuration in the p-n junction. When connected to a load, a negative current, which is opposite to an externally 
forward-biased diode, flows to the external load and leads to power generation. Hence, a PV cell works in the 
fourth quadrant in power generation mode while a forward-biased diode works in the first quadrant.

In contrast, a thermoradiative cell is heated up to a higher-than-environment temperature by a heat source. 
Thermally excited electrons in the n-type region and holes in the p-type region diffuse towards the space charge 
region and recombine radiatively. If the radiative recombination rate is faster than the radiative generation rate, 
more photons will be emitted from the cell than it receives from the ambient, resulting in a negative open-circuit 
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voltage condition where a quasi-Fermi level difference is established in the p-n junction (Fig. 1b). When a load 
is connected externally, electrons flow into the n-type region and holes flow into the p-type region. In this power 
generation mode, the TR cell works in the second quadrant, while an externally reversely-biased diode works in 
the third quadrant (Fig.1c).

Thermoradiative cell, as a heat engine, also needs to reject entropy carried in from the heat source as well as 
entropy generated in the device due to irreversible processes. To reject entropy to the environment, a thermoradi-
ative cell relies on the out-going photons from thermal emission. The idea of using photons to reject heat of a heat 
engine is recently explored by Byrnes et al.18. aiming at using outer space as the heat sink, and a thermoradiative 
cell can be a candidate for this approach.

Since thermoradiative cells rely on photons to carry out entropy, an understanding of photon entropy flux is 
important. In this paper, we start with an entropy analysis of photon flux. Guided by the analysis, we evaluate the 
performance of the TR cell with a spectrally-selective surface to demonstrate the device efficiency enhancement 
when the cell emissive spectrum is chosen to be narrow and centered at low frequencies. However, the increased 
device efficiency is accompanied by the reduction of its power density. This is a common dilemma for any energy 
converter, from the ideal Carnot engine19 to photovoltaics9, thermoelectrics20, or thermophotovoltaics9–11. To 
overcome this dilemma, we propose engineering radiative energy transfer between the thermally emissive engine 
and the heat sink via coupling the generated electron-hole pairs to phonon polariton in the near-field21,22. The 
near-field coupling enables both narrow-band emission and a high enhancement of radiative energy transfer. The 
enhancement factor can be orders of magnitude higher than that of the far-field thermal emission21–23.

Results
Entropy Analysis of Photon Radiation.  A heat engine using radiation to reject entropy such as a ther-
moradiative cell16–18 has its efficiency bounded by the Carnot limit 1 −​ Tc/Th due to the entropy generation caused 
by the imbalance of entropy flux between the heat conduction input, thermal emission, and light absorption from 
the environment. The origin of this imbalance is in the different amounts of entropy flux per unit energy in the 
processes of heat conduction (S/E =​ T−1) and thermal radiation (S/E =​ 4/3T−1, for the blackbody emitter)24–26. 
The study of the entropy of photons have a long history24–27 and is well summarized in the book of Green9. To 
reveal the fundamental differences in the entropy content between radiation and heat conduction, the frequency 
dependence of entropy flux per unit energy is plotted in Fig. 2b by using the following expressions for the spectral 
energy and entropy fluxes of radiation, respectively25,26,28:
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Figure 1.  (a) The band diagrams and (b) current-voltage curves of photovoltaic (PV) cells and thermoradiative 
(TR) cells. For a PV cell, excess electrons and holes generated radiatively by the sunlight will flow toward the 
contacts on the n-type and p-type semiconductors, respectively, resulting in a negative current in the load for 
power generation. On the contrary, in a TR cell, the thermally excited electrons and holes originating from non-
radiative processes flow oppositely so that a positive current will flow to load and generate electricity.
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tion, ħ is the Planck constant, kB is the Boltzmann constant, n is the ambient refractive index, ω is the frequency 
of photons, θ and φ are the polar angle and azimuthal angle in the spherical coordinates respectively, and 
μ =​ Efe −​ Efh is the chemical potential of emitted photons. It should be noted that the chemical potential can be 
established when electrons and holes reach quasi-equilibrium among themselves to form quasi-Fermi levels for 
the electrons (Efe) and holes (Efh)25,27. The entropy flux per unit energy is normalized to the heat conduction limit 
(S/E =​ T−1), which is plotted as the black dotted line. The total (integrated over the whole frequency spectrum and 
angular range) normalized entropy content of the blackbody radiation equals 4/3, and is shown as the black 
dash-dot line.

Figure 2b provides a clue to increasing the converter efficiency via judicious choice of the channels to deliver 
the energy to the engine and to dump the excessive entropy to the environment. Heat conduction or high fre-
quency radiation carry the lowest entropy content per unit energy, and thus are the most favorable forms of 
energy for the engine input. As work (W) carries zero entropy, the excessive entropy must be rejected to the heat 
sink. As illustrated in Fig. 2b, the best form of energy to maximize the entropy removal from the engine is 
low-frequency emission, which is characterized by the high entropy flux per unit energy. To verify this observa-
tion, we calculated the upper limit or the second law efficiency (η2nd) for an engine, as shown in Fig. 2a, using heat 
conduction as the energy input channel (with the entropy content = −S E T/H H H

1) and the thermal emission with 
a frequency-selective surface as entropy-dumping channel (with the entropy content (Se −​ Sc)/(Ee −​ Ec)) under the 
best scenario where no entropy is generated in the engine (Sgen =​ 0).
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It is known that entropy can be generated during emission and absorption processes9. This entropy generation, 
however, is not intrinsic and depends on the specific process. For example, the entropy generation can be reduced 
when the emitted photons acquire a chemical potential and vanishes when an ideal infinite junction solar cell 
works at open circuit condition9. As shown in Fig. 2b, the selective surface only allows emission within a narrow 
spectral window with a bandwidth of Δ​ħω​ and completely blocks emission of photons outside this window (i.e., 
ε(ħω) =​ 1 within the window and ε(ħω) =​ 0 elsewhere, as schematically illustrated in Fig. 2b). The engine effi-
ciency is plotted with varying lower bounds (ħωc) of the band pass window. Given Δ​ħω​ =​ 0.01 eV and Sgen =​ 0, 

Figure 2.  The thermally emissive engine. (a) The thermally emissive engine shows that the engine harvests 
energy (EH) and entropy (SH) via heat conduction from the hot side at temperature of TH to generate power 
(W), and the entropy is rejected through thermal emission (Ee and Se) from the engine at temperature Te. The 
cold environment is at temperature of Tc. (b) The ratio of the spectral entropy flux to the energy flux reveals the 
entropy content per unit energy at various emissive temperatures and different photon energies. A band-pass 
selective surface with a width of the transparency window of Δ​ħω​ is implanted to select the emissive photons. 
(c) Implanting a band-pass selective surface with a width of the transparency window of Δ​ħω​ =​ 0.01 eV, the 
efficiency increases when the low-frequency photons are selected for emission under the best scenario where 
no entropy is generated in the engine (Sgen =​ 0). ħωc is the left bound of the band pass window. The input energy 
supplied in the form of heat conduction has entropy content of SH =​ EH/TH.
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Fig. 2c clearly shows that the second law efficiency can be enhanced when photon emission is selected to radiate 
out at low frequency.

Principle of the thermoradiative cell.  As shown Fig. 1, a thermoradiative cell is thermally driven out 
of equilibrium, generating a reverse-bias condition due to emitting more photons than received from the envi-
ronment so that the electrons and holes are collected by contacts on the p-type and n-type semiconductors, 
respectively. When an external load is connected to the TR cell, the thermally excited electrons and holes flow 
from n-type and p-type regions, respectively, and contribute to the current (I). The power (W =​ −​μI) can then be 
generated by the TR cell at a given temperature and calculated from the equation of current (I) continuity using 
the following expression16:

µ µ= −I q N Te N Tc( ) [ ( , ) ( , 0)] (4)
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where chemical potential of photons (μ =​ Efe −​ Efh <​ 0)27. The TR cell efficiency (η​) can then be calculated as 
η​ =​ W/Eh, where ∫ ω ω=

∞E E d( )h E g
 and E(ω) is integrated using Eq. (1).

We used Eqs (1–5) to calculate the characteristics of a TR cell with a band gap (Eg) of 0.1 eV, the cell temper-
ature TH =​ 500 K, and the ambient temperature TC =​ 300 K. The efficiency and the power density (black dotted 
line in Fig. 3a) are shown for various chemical potentials of the TR cell, under the assumption that the emission 
only occurs as a result of the interband radiative recombination process. The TR cell emission spectra at different 
temperatures and voltages for this situation are plotted in Fig. 3b. The resulting device efficiency (Fig. 3a) has been 
previously defined by Strandberg16 as the TR cell limit. By comparing the curves in Fig. 3a, we can observe that 
the maximum efficiency point (MEP) does not correspond to the same value of the chemical potential as the max-
imum power density point (MPP) due to the reason that the energy input of heat conduction also adjusts under 

Figure 3.  The performance of a thermoradiative cell with a band gap of 0.1 eV operating between a heat 
source at 500 K and a cold environment at 300 K. (a) Efficiencies and power densities of the TR cell are 
calculated as a function of various negative voltage and for three selected widths of the emission spectral 
window: ∆​ħω​ =​ ∞​, ∆​ħω​ =​ 0.1 eV, and ∆​ħω​ =​ 0.01 eV. (b) Schematics of the narrowband spectral windows of 
the TR cell are shown overlapping with the emission spectra, and the emissive spectra are also calculated for 
varying cell temperatures and voltages. (c) Heat conduction input and (d) entropy generation are also calculated 
under the same operating conditions.



www.nature.com/scientificreports/

5Scientific Reports | 6:34837 | DOI: 10.1038/srep34837

different voltages as shown in Fig. 3c. In particular, the maximum efficiency is achieved when the power density 
is decreasing. Furthermore, the maximum TR cell efficiency is far below the Carnot efficiency limit 1 −​ Tc/Th.

As we predicted based on the entropy analysis illustrated in Fig. 2a, the TR cell efficiency can be enhanced 
in the situation when its emission is highly spectrally selected to be narrowband and dominated by low fre-
quency photons. Figure 3a also shows the calculated results when the emission window of a TR cell are limited to  
Δ​ħω​ =​ 0.1 eV and Δ​ħω​ =​ 0.01 eV above the band gap. We used these spectral windows to calculate characteristics 
of the TR cell with the spectrally-selective emission. Our data show that when low frequency photons dominate 
the emission spectrum, the maximum efficiency is increased and close to the 1 −​ Tc/Th Carnot limit (red dashed 
line and blue solid line in Fig. 3a). However, the maximum power density generated by the cell with the narrow-
band frequency-selective emittance decreases as the spectral window width is reduced (red dashed line and blue 
solid lines in Fig. 3a), resulting in the lower entropy generation as shown in Fig. 3d.

Based on the comparison between the efficiency and power density curves in Fig. 3a, we can better quan-
tify the TR cell performance by replotting these two values together, as shown in Fig. 4. The power-efficiency 
curves begin at origin under zero chemical potential, corresponding to short circuit condition. When a load is 
connected, a negative voltage is biased on the load. As the magnitude of the voltage increases, the power density 
first increases and approaches the maximum power density point. Upon passing this point, the power starts to 
decrease but the efficiency keeps increasing until it reaches the maximum efficiency value. Finally, the curve folds 
and returns back to the origin due to a decreasing current. For the widths of the emission spectral window of  
Δ​ħω​ =​ ∞​, Δ​ħω​ =​ 0.1 eV, and Δ​ħω​ =​ 0.01 eV, the power-efficiency curves are shown in Fig. 4 as black dashed 
line, red narrow solid line, and blue solid line, respectively. The maximum efficiency can be clearly observed to be 
increasing with the shrinking spectral width of the emission window, but the power density is reduced.

The drop of power density stems from the reduced amount of emitted photons through a narrowband radia-
tive channel. This imposes a limitation on the performance of the TR cell, when its thermal emission operates in 
the far field. However, it has already been demonstrated both theoretically10,29 and experimentally21,22 that the 
radiative power flux can be increased within a narrow spectral range by orders of magnitude if the emitter and the 
heat sink are electromagnetically coupled at a small gap distance through the near-field. To roughly estimate the 
effect of such enhancement, we introduced an enhancement factor (β​) to emulate the near-field radiation within 
a narrow spectral window of Δ​ħω​ (i.e.,  βε ω ω ω µ ω ε ω= ∆ ω =

π
E D f T( ) ( ) ( , , ) ; ( ) 0c

4
 outside the emission 

window). The expressions for the first and second law in Fig. 2a can then be modified as:
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The power-efficiency curves for a TR cell with enhancement factors β​ =​ 15 and β​ =​ 30, restricted by the emis-
sion spectral window width Δ​ħω​ =​ 0.01 eV and operating at temperature Te =​ 500 K, are shown as blue dotted 
line and blue dash-dot lines in Fig. 4. Comparison of the curve for the same cell without near-field enhancement 
(β​ =​ 1, solid blue line in Fig. 4) reveals opportunities to operate TR cells at high efficiency and high power density 
simultaneously.

Near-field thin-film thermoradiative cell.  To further test our hypothesis, we built a detailed numerical 
model of a near-field enhanced TR cell. The near-field enhanced TR system consists of a thin-film TR cell and 
a semi-infinite radiation extractor (heat sink), which exchange radiative energy through a narrow vacuum gap. 
The choice of a thin-film TR cell stems from minimizing the electronic loss through the non-radiative processes, 

Figure 4.  The power-efficiency curve of a thermoradiative cell with the band gap of 0.1 eV operating 
between a heat source at 500 K and a cold environment at 300 K. Power-efficiency curves reveal the trends of 
operating efficiencies and power densities. Blue dotted line and blue dash-dot line illustrate hypothetical power-
efficiency loop if the emission to cold sink can be enhanced by a factor β​. Such enhancements are possible for 
near-field TR cells.
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which will be discussed later, and the optical constants including InSb and CaCO3 and thickness-dependent 
results are shown in the supplementary material31–34. In order to utilize the enhanced and narrow-band near-field 
radiative energy transfer between the TR cell and the heat sink, the gap distance (g) should be on the order 
of or smaller than the dominant emission wavelength10,21,22,30. The submicron gap distance can enable efficient 
coupling of photons generated by the radiative recombination process in the TR cell with the phonon polariton 
on the surface of the radiation extractor (i.e., heat sink). Typically, phonon polariton modes have resonant fre-
quencies below 0.2 eV, e.g., 0.186 eV (~6.7 μ​m) for CaCO3 and 0.138 eV (~9 μ​m) for SiO2

21,30. On the other hand, 
InSb with a band gap of 0.17 eV at room temperature32 is a semiconductor material commonly used to make 
narrow-gap PV cells and infrared detectors33,34. The phonon polariton mode of CaCO3 has resonant frequency 
slightly higher than the band gap of InSb. It allows the phonon polariton coupling to electrons through the inter-
band transition to direct extract the luminescent emission, making CaCO3 material a good candidate for the 
narrow-band near-field radiative extractor. Other materials are also possible to be used as near-field radiative 
extractors, including materials supporting surface plasmons polaritons35.

To compare the performance of TR cells under various scenarios of radiative energy extraction, we calculate 
the power-efficiency curves for several systems, including: (i) the InSb thin film cell (Fig. 5a), (ii) the InSb thin 
film with a spectrally-selective surface (Fig. 5b), and (iii) the InSb thin film with the adjacent CaCO3 acting as 
the near-field radiative extractor (Fig. 5c). First, we calculate an ultimate limit of the device efficiency and power 
density assuming that the radiative process through the interband transitions is the only mechanism of radiative 
energy extraction (ideal case). Such an assumption corresponds to the celebrated Shockley-Queisser efficiency 
limit for photovoltaic cells36. In Fig. 5d, the limiting power-efficiency curves are compared for the three systems. 
The energy carried away from the cell by photons with frequencies below the band gap energy (sub-bandgap loss) 
and the non-radiative generation of free carriers via Auger, Shockley-Read-Hall, and surface defect processes 
(non-radiative loss) are the two major loss mechanisms in a realistic system, and their impacts on the device per-
formance will be discussed later.

First, to calculate the emission spectrum of a 50-nm-thick InSb thin film (Fig. 5a), which is close to the optimal 
thickness for each of the three configurations (see the thickness dependent results in the supplementary material), 
we used the transfer matrix method37 to rigorously solve Maxwell equations to find the surface emittance, ε(ω). 

Figure 5.  The performance of the 50-nm-thick InSb TR cells operating between a hot source at 500 K and a 
cold environment at 300 K, calculated for various scenarios of the radiative energy extraction. The emission 
spectra for the three scenarios, including (a) a far-field emission from a thin-film InSb cell, (b) a far-field 
narrowband (Δ​ħω​ =​ 0.01 eV) emission from a thin-film InSb cell with a selective surface (surf.), and  
(c) a near-field phonon-polariton-enhanced energy transfer from a thin-film InSb to a bulk CaCO3 across 
10 nm and 100 nm-wide vacuum gapS (g). (d) Power-efficiency curves are calculated for the three energy 
extraction scenarios, with the black dash-dot line, the red solid line, and the blue dotted and dashed lines 
representing the systems with the emission spectra shown in (a,b and c), respectively.
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The TR cell is assumed to have a perfect metal mirror as a backside reflector. The emittance was then averaged 
over the total angular range from 0 to 90°, and over the two orthogonal (transverse electric and magnetic) polar-
izations of emitted photons using Eqs (1) and (2). Finally, using Eqs (4) and (5), the power and efficiency were 
calculated and plotted together as a black solid curve in Fig. 5d. The emission spectrum of the InSb thin film with 
a spectrally-selective surface is plotted in Fig. 5b. It can be seen by comparing Fig. 5a,b that not only the spectrum 
bandwidth but also the peak emission power flux significantly decreases for the TR cell with the selective sur-
face. As a result, the device current density and power drop, but the efficiency increases as expected, shifting the 
power-efficiency curve to the region of low power density and high efficiency (red solid line in Fig. 5d).

The spectrum of the near-field radiative energy transfer from the InSb thin film to a bulk CaCO3 is 
narrow-band and over two orders of magnitude enhanced in intensity over its far-field counterpart. Importantly, 
most of the photons contributing to the radiative heat flux have energy greater than the InSb bandgap energy. As 
such, they can significantly enhance N(Te, μ) in Eq. (4), yielding high current and high power density of the TR 
cell. To calculate the near-field energy transfer from a thin film to a bulk medium via a narrow gap, a rigorous 
analytical electromagnetic formulation based on Rytov theory is used38. The thermally emitting object is modeled 
as a volume of fluctuating dipole sources, whose amplitudes are determined via the fluctuation dissipation theo-
rem10,30,38–41. The detailed formulas can be found in the supplementary material and refs. 10 and 35. To generate 
the plots in Fig. 5c, the radiative energy transfer from a 50-nm-thick InSb thin film to a bulk CaCO3 was calcu-
lated for a gap distance (g) of 10 nm. A narrow-band and enhanced radiative energy transfer can be observed, 
peaking at the phonon-polariton resonance wavelength of 6.7 μ​m as shown in Fig. 5c. As a result, the TR cell 
power-efficiency curve extends to the regions of both high power and high efficiency, which offers opportunities 
to efficiently harvest low-grade heat into electricity.

Although the near-field emission of the TR cell, using the coupling of the phonon polariton mode in the 
heat sink, can provide the narrow-band and intensity-enhanced features, it may also introduce additional losses 
into the system, such as sub-bandgap emission losses. The sub-bandgap emission can also strongly couple to 
phonon-polariton modes in the heat sink, leading to its heating and thus to degrading the efficiency of the TR sys-
tem. For the case of the near-field radiative energy transfer between the InSb cell and CaCO3 extractor, low-energy 
phonon polariton modes with wavelengths of 28 μ​m in CaCO3 can contribute to the sub-bandgap losses. These 
losses are manifested as additional low-frequency peaks in the near-field heat flux spectrum in Fig. 6a.

The data in Fig. 6a show that there is a trade-off between increasing the above-bandgap emission and reducing 
the sub-bandgap losses. The best coupling configuration can be found by optimizing the thickness of the TR cell 
and the width of the vacuum gap between the cell and the extractor. We included the sub-bandgap loss mecha-
nism into our near-field heat transfer model and calculated the system performance as a function of the vacuum 
gap distance (g) between the TR cell and heat extractor (Fig. 6b,c). We observe that the maximum efficiencies are 
reduced from the ideal cases when the sub-bandgap losses are taken into account (compare blue plots to brown 
plots in Fig. 6b). However, the corresponding power densities increase as shown in Fig. 6c due to the mismatch of 
the maximum efficiency point and the maximum power point.

Discussion
Effect of Non-Radiative Losses.  Furthermore, realistic models of TR cells should include non-radiative 
losses. The non-radiative processes (Auger, Shockley-Read-Hall, and surface defects processes) contribute to the 
net free carrier generation in the TR cell and provide an additional loss mechanism in a realistic system. To 
account for the losses due to the Auger and Shockley-Read-Hall (SRH) processes, their rates need to be included 
in current continuity equation42–43:

∇ = − + − + −I q G R q G R q G R[ ] [ ] [ ] (9)rad rad Auger Auger SRH SRH

where q is the elementary charge, the Grad, GAuger, and GSRH are the free carrier generation rates for radiative, Auger, 
and Shockley-Read-Hall processes respectively, and the Rrad, RAuger, and RSRH are the free carrier recombination 
rates for radiative, Auger, and Shockley-Read-Hall processes respectively. Typically, the Shockley-Read-Hall pro-
cess is neglected in InSb due to its slow rate compared to the radiative and Auger processes44–46. To account for 
the surface defect recombination process, the current continuity equation needs to be solved together with the 
Poisson and drift-diffusion equations to calculate the net free carrier generation rate (see supplementary mate-
rial). After incorporating both sub-bandgap and non-radiative losses in InSb into our model, we observe that 
both efficiencies and power densities drop by orders of magnitude relative to their counterparts for the system 
with only radiative and sub-bandgap losses (compare yellow plots to brown plots in Fig. 6b,c). However, both 
efficiency and power density increase with the narrowing gap distance (Fig. 6b,c).

To provide guidelines for performance improvement of realistic TR cells, we need to identify the process that 
dominates the net generation of free carriers and contributes to the major energy loss. In Fig. 7a, the net rate of 
the inter-band radiative process and the net generation rates of the Auger and surface defect processes are calcu-
lated for varying gap distances. All rates are increased for smaller gap distances, but the radiative recombination 
rate increases faster than non-radiative generation rate, resulting in the increase of power density and efficiency. 
Obviously, the Auger process is characterized by a much faster rate than the surface defect process, and thus it 
dominates the energy loss through the free carrier generation. For the InSb, the ratio (m) of the radiative rate to 
the non-radiative rate (including both Auger and surface defect rates), m =​ |radiative rate|/|Auger rate +​ surface 
defect rate|, is calculated around 2~2.5 at each gap distance. If the suppression of Auger process can be achieved 
in either InSb or another material to improve this ratio to m >​ 4, the major loss through non-radiative generation 
can be significantly reduced. As a result, the device efficiency can be increased by more than three orders of mag-
nitude (Fig. 7b). The ongoing research efforts to suppress the Auger process using quantum wells47, doping profile 
control48, superlattices49, or heterostructures50, can yield performance improvement of TR cells.
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Figure 6.  The effect of the sub-bandgap emission and non-radiative recombination losses on the near-field 
TR cell performance. The device is comprised of a 50-nm-thick InSb cell at TH and a bulk CaCO3 extractor 
at TC =​ 300 K. (a) Net near-field energy flux between InSb and CaCO3. InSb bandgap narrows at elevated 
temperatures, and equals 0.09 eV at 500 K32. The device (b) efficiency and (c) power density are calculated at 
varying gap distances, assuming cell operation at maximum efficiency point. The blue plots for the ideal cases 
are shown for comparison. The brown plots include the sub-bandgap loss. The yellow plots consider both sub-
bandgap and non-radiative losses (due to the Auger and surface defect processes).

Figure 7.  Non-radiative losses in a near-field TR cell comprised of a 50-nm-thick InSb film at TH = 500 K 
and a bulk CaCO3 extractor at TC = 300 K. (a) Net rates of the free carrier generation and recombination due 
to radiative, Auger, and surface defect processes are calculated as a function of the gap distance. The ratio 
(m) of the radiative rate to non-radiative rate in InSb is calculated to be m ≈​ 2~2.5 in this configuration for all 
gap distances. (b) Device efficiency can be enhanced by five orders of magnitude provided that this ratio can be 
increased to m >​ 4.
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Conclusion
To summarize, we predict that the efficiency of thermoradiative (TR) cells can be dramatically improved if they 
are engineered to selectively emit only low-frequency photons. This prediction is based on a theoretical analysis 
of the entropy content of high- and low-frequency radiation. Spectral selectivity of far-field emission can be 
achieved by introducing a selective surface, which boosts the efficiency of a TR cell but abate the power density 
due to the reduced emission and a lower radiative recombination rate. This work show that near-field radiative 
energy transfer between the TR cell and the heat sink, which is enhanced by resonant coupling between elec-
tron interband transition on the hot side and phonon polariton modes on the cold side, can simultaneously 
yield both high efficiency and high power density, offering opportunities to efficiently harvest low-grade heat. 
However, the sub-bandgap radiation losses and the non-radiative losses, especially due to the Auger process, may 
degrade the performance of TR cells significantly. For example, in a realistic system composed of a 50-nm-thick 
InSb TR cell at 500 K and a CaCO3 heat sink at 300 K coupled via a 10nm vacuum gap, the performance of this 
TR system can be improved from 2.4 ×​ 10−5% and 10−5 Wm−2 (far-field) to 0.5% and 45.16 Wm−2 (near-field at 
10 nm gap distance). Under this configuration, the ratio of the radiative rate to the non-radiative rate is calcu-
lated around 2, which causes to significant non-radiative losses. Provided the sub-bandgap radiation loss can 
be eliminated, the performance can further achieve 20.4% and 327 Wm−2 from 2.5% and 161 Wm−2, when the 
nonradiative-to-radiative ratio is improved from 2 to 15.3.
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