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Abstract 

This paper proposes design catalogs as an efficient systematic process for identifying and evaluating improved 
designs in engineering systems by exploiting ideas of flexibility. Standard design and evaluation approaches 
typically do not cope well with a range of possible operating conditions. They often simplify considerations of 
uncertainty, which may lead to designs that do not perform as well as those responding dynamically to changing 
conditions. The proposed process addresses the complexity of the design problem under uncertainty, 
recognizing that it is impossible to analyze all possible combinations of evolutions, and the flexible ways in 
which the system could adapt over time. The process creates a small subset of designs that collectively perform 
well over a range of scenarios. It bundles representative scenarios and their flexible responses to enable a more 
thorough analysis that accounts explicitly for uncertainty – and enable considerations of improved designs. Each 
element consists of combinations of design variables, parameters, and management decision rules carefully 
selected, and referred as operating plans. In the example analysis, the process improves economic performance 
by 37% as compared to standard methods in an infrastructure system case study, while exploring only 3% of the 
design space. It reaches 88% of the stochastically optimal solution while being 183 times faster computationally 
in the example numerical study. The systematic property aims for practical applications in industry. In each 
phase, it gives the freedom to rely on the designer’s expertise with the system, or to consider analytical tools 
already in use at the design organization. 
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1 Introduction 
Engineering systems are characterized by a high degree of technical complexity, social intricacy, and elaborate 

processes aimed at fulfilling important functions in society [ESD, 2011]. Given they are long-lived, they face 

much uncertainty at strategic, tactical, and operational levels. Infrastructure systems are a particular class of 

engineering systems that serve an important role in any modern city, supporting emergency services (e.g. 

ambulance stations, hospitals), power generation and distribution (e.g. power plants and national grid), 

telecommunications (e.g. cell phone network), transportation (e.g. airports, roads, bridges, highways), and 

housing activities (e.g. real estate developments). Infrastructure systems are the focus of this paper. 

 

The early phase of design decision-making for engineering systems is a daunting task. Fig. 1 illustrates various 

phases of the standard design and evaluation process. Those are typically considered of the conceptual design 

and architecture activities occurring in the system development phase, before a more detailed design phase in 

systems engineering [INCOSE, 2015]. It starts from an initial design, then recognizes the main uncertainty 

drivers affecting lifecycle performance, recognizes that managers will adjust the system over time in an effort to 

accommodate changing conditions, and relies on various metrics to assess economic (e.g. net present value or 

NPV) and/or non-economic performance (e.g. response time for emergency services). Such process involves 

modeling and optimization of basic infrastructure designs (e.g. plants, networks, etc.) considering several 

possible design alternatives in phase 1, and considerations of uncertainty scenarios (e.g. market demand, price, 

regulations) over long-term horizons in phase 2. There can be many architectures and operating modes possible 

(e.g. number and size of plants, routing of vehicles on road network, etc.), as recognized in phase 3. The system 

can also be evaluated based on many lifecycle performance metrics (e.g. internal rate of return (IRR), NPV, 

return on investment (ROI), etc.) as captured in phase 4. Analyzing the full problem is typically intractable, as 

all possible design combinations and alternatives cannot be analyzed exhaustively. 

 

 

Fig. 1. Full analytical problem for designing engineering systems as part of conceptual design activities. 
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A typical approach in systems design and analysis is to simplify the full analytical problem to make it more 

tractable. Instead of considering many scenarios of periodical data, designs are often optimized for the most 

likely projection of the major uncertainty drivers [de Neufville and Scholtes, 2011]. Typical project evaluation 

approaches based on discounted cash flow (DCF) analysis, such as NPV, do not account well for the fact that 

managers will react periodically to enhance system performance [Trigeorgis, 1996]. Also, design decisions are 

often based on one evaluation metric like IRR, ROI or NPV. Such practices can lead to sub-optimal design 

selection, or leaving aside altogether potential solutions that could offer better lifecycle performance. 

 

There has been a great deal of effort over the last two decades to improve standard design and project evaluation 

practice by making more explicit considerations of uncertainty and flexibility in engineering systems design. 

Flexibility enables a system to change and adapt pro-actively to changing environments, markets, regulations, 

and technology [de Neufville and Scholtes, 2011]. It improves expected lifecycle performance by affecting the 

distribution of possible outcomes, selecting designs that reduce the effect from downside conditions (i.e. like 

buying insurance) while enabling the system to capitalize on favorable opportunities (i.e. like buying a call 

option on a stock). A flexible systems design concept is composed of a) a strategy (e.g. abandon the system 

permanently or temporarily, expand capacity, switch design configurations to provide better redundancy, etc.) to 

handle uncertainty, akin to a real option “on” the system, and b) an enabler in design and management, akin to a 

real option “in” the system [Cardin, 2014]. Several studies have shown improvements ranging between 10-30% 

compared to the outcome from standard design and evaluation practice, in line with traditional ROA evaluation. 

These cover a wide range of industries: space systems and telecommunications [Silver and de Weck, 2007, 

Nilchiani and Hastings, 2007, de Weck, de Neufville and Chaize, 2004], defense [Mikaelian, Nightingale, 

Rhodes and Hastings, 2011], water infrastructures [Zhang and Babovic, 2011], etc.2 

 

The 25 de Abril bridge connecting Lisbon to the municipality of Almada in Portugal is a real-world example of 

flexible thinking in engineering design. It was originally designed to carry four car lanes, but engineers 

accommodated the design for more lanes if needed in the future, as well as a railway on its lower platform, 

should usage and demographic patterns warrant it. This flexible design later allowed expansion to the current six 

car lanes and two-railroad tracks infrastructure that exists today. This strategy required a smaller initial 

investment than if full capacity had been deployed, and deferred additional costs to the future, taking advantage 

of the time-value of money by lowering their economic net present value. It also enabled more traffic between 

the two cities today, contributing to a growing economy. 

 

An important issue in analyzing infrastructure systems for flexibility is the complexity of the analytical problem. 

In addition to the many physical design variables and parameters, designers should account for a wide range of 

uncertainty scenarios, periodic managerial adjustments, and evaluation metrics. Additional variables (e.g. 

                                                             
2 More case studies are available: http://ardent.mit.edu/real_options/Common_course_materials/papers.html, 

http://strategic.mit.edu/publications.php, http://seari.mit.edu/publications.php, and 

http://www.ise.nus.edu.sg/staff/cardin/publications.html 
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uncertainty drivers, flexibility decision rules3) need to be introduced in the analytical problem, which increases 

computational complexity. Standard approaches to value flexibility based on real options analysis (ROA) may 

not be suitable for such problem in an engineering setting, as discussed below. 

 

The problem addressed in this paper is that the analysis of performance of an engineering system under 

uncertainty is not easy, and may even be intractable from an analytical standpoint if many design variables and 

scenarios are considered. Consideration of flexibility to adapt to changing conditions exacerbates this problem. 

Hence, there is a need to develop and evaluate a new practical approach to facilitate this analysis in an 

engineering setting. 

 

The main research question addressed here is: “What structured process can be devised to enable an extended 

analysis of the design of engineering systems with explicit considerations of uncertainty and flexibility, while 

improving lifecycle performance and being tractable analytically as compared to standard design and evaluation 

approaches?” A secondary question is: “What is the lifecycle performance improvement brought by the 

proposed mechanism when applied to the analysis of an example engineering system, and how does it compare 

to other competing methods?” 

1.1 Proposed Solution 
The proposed solution relies on the concept of design catalog. The catalog consists of a set of operating plans 

bundling flexible design architectures and managerial responses intended to suit relevant uncertainty patterns 

designers might wish to anticipate. An operating plan is therefore a combination of design variables, parameters, 

and flexible decision rules to manage the infrastructure system in operations, and over its lifecycle. One flexible 

operating plan is created to suit each scenario, thereby creating the catalog. In the evaluation phase, a wide range 

of uncertainty scenarios is simulated, and one operating plan may be assigned to each scenario to determine how 

the system will perform. Lifecycle performance is then measured along different metrics (e.g. ROI, NPV, IRR) 

to accommodate different risk profiles in decision-making. 

 

Illustrating the concept using a hypothetical example based on the 25 de Abril bridge case, an operating plan 

could have been to design an initial number of lanes with the possibility to expand in the future – as done by the 

system architect(s). To account for flexibility decision rules, the bridge capacity could have been expanded 

when vehicle usage exceeded a particular decision-making threshold T for several consecutive years. Different 

capacity usage scenarios could have been considered upfront (e.g. low, medium, high) and a contingency or 

operating plan could have been devised depending on how this uncertainty driver evolves, changing the timing 

and size of the expansion based on the actual scenario occurring. Such plans could have been used in the upfront 

evaluation of the design project. 

 

                                                             
3 A decision rule is akin to an “if” statement, or “trigger mechanism” based on observations of the uncertainty drivers, 
determining when it is appropriate to exercise a given flexibility. 
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This design catalog proposed here is devised by selecting a set of operating plans or models that together deal 

reasonably well over a certain range of uncertainty scenarios. This speeds up the analysis for the most relevant 

plans, allows analysts to consider more design alternatives, and enables uncovering better design solutions with 

improved lifecycle performance without relying on more advanced methods based on stochastic programming 

or simulation-based optimization. The proposed solution suggests a middle ground between the simplest set of 

assumptions typically made in design and evaluation, and the full analytical problem depicted Fig. 1. It focuses 

on uncertainty sources that are known to system designers and can be characterized probabilistically (e.g. 

market demand, prices, regulatory changes, etc.) It relies on a range of possible scenarios small enough to be 

manageable analytically, but broad enough to enable better-informed design decisions. The aim is to provide a 

practical approach leading analysts to rapid lifecycle performance improvements by explicit considerations of 

flexibility, while limiting the computational overhead associated with a more advanced analysis. 

 

The remainder of the paper is organized as follows. In Section 2 a review of related work highlights previous 

efforts to generate and value flexibility in engineering systems design. Section 3 explains the process of 

constructing and evaluating the design catalog. Section 4 presents an example application of the proposed 

process in the analysis of an example infrastructure system. It also compares with other advanced methods based 

on simulation-based optimization. Results, findings, validity, and limitations of the results are discussed in 

Section 5, together with possible avenues for future work, followed by conclusions in Section 6.  

2 Related Work 

2.1 Valuing Flexibility in Engineering Design 
Enabling flexibility in engineering design essentially involves five phases: 1) standard/baseline design, 2) 

uncertainty recognition, 3) concept generation, 4) design space exploration, and 5) process management [Cardin, 

2014]. Several procedures exist to support architecture and design activities in each phase. In phase 1, 

Tomiyama et al. [2009] describe procedures to help generate an initial/baseline design (e.g. axiomatic design, 

TRIZ). In phase 2, procedures like scenario planning and binomial lattice are used to characterize and model 

uncertainty, as summarized by de Weck et al. [2007]. In phase 3, flexible systems design concepts are generated 

to address the main uncertainty drivers identified in phase 2, as explained by Cardin et al. [2013] and done in the 

studies by Mikaelian et al. [2012, 2011]. In phase 4, the preferred design configuration is identified relying on 

real options, optimization, and statistical techniques, as explained by de Neufville and Scholtes [2011]. Phase 5 

ties in all the previous phases, joining all relevant stakeholders in the process of generating, designing, 

implementing, and managing flexibility in operations. Game theory and simulation games can be used to better 

understand the conditions favorable to good process management, as done by Smit [2001] and Cardin et al. 

[2015]. 

 

This section summarizes the latest efforts to develop practical approaches to value flexibility in engineering 

systems design (i.e. focusing on phase 4 from above). Interested readers will find more details on each 

procedure, as well as an analysis of their individual strengths and weaknesses in Cardin [2014]. The evaluation 

effort involves two streams. The first stream focuses on developing techniques for valuing flexibility in an 
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engineering context. Traditionally, flexibility has been valued using ROA techniques inspired from financial 

options analysis. ROA relies on the Black-Scholes formula [Black and Scholes, 1973], binomial lattice [Cox, 

Ross and Rubinstein, 1979], ordinary differential equations, and/or dynamic programming techniques 

[Trigeorgis, 1996]. Such techniques, however, are based on assumptions that may not hold in an engineering 

context. For example, ROA based on arbitrage-enforced pricing assumes that markets of comparable tradable 

assets exist, are complete, and frictionless. This enables constructing a replicating portfolio that hedges perfectly 

the cash flows produced by the asset, and helps to quantify the value of flexibility. Such markets and ideal 

conditions may not exist for new engineering projects. Also, the path independence assumption inherent to 

recombining binomial lattice may not reflect well the realities of a new engineering project. An up-down 

movement in demand or price, for instance, may lead to a different sequence of engineering decisions (e.g. 

build, not build) than for a down-up movement over two periods.  

 

More recently, novel techniques relaxing the constraints imposed by economic theory have been proposed to 

suit the needs of flexibility analysis in engineering design. These involve mainly decision analysis, lattice 

analysis, and Monte Carlo simulation [Cardin, 2014]. Decision analysis and lattice analysis are simplified 

versions of standard ROA techniques relying on dynamic programming. Monte Carlo simulation as proposed by 

de Neufville and Scholtes [2011] exploits the idea of decision rule, which departs significantly from traditional 

methods to value flexibility, and is crucial to the approach proposed here. 

 

The concept of decision rule defines a trigger point or mechanism at which time it is appropriate to exercise a 

given flexibility. It simulates an appropriate decision taken by the system operator or manager at any point in 

time to adapt the system to changing conditions. Such rule is typically based on the observation or forecast of an 

uncertainty driver to which the system is called to react. In the example of the 25 de Abril bridge, a decision rule 

could be that if traffic demand reached the threshold T, additional lanes would be added. If traffic demand 

increased even further, this would warrant development of the railroads on the lower platform. While it is 

unclear what decision rule was used in this historical case, it is clear that the decision to expand capacity was 

based on observed changes in the main uncertainty drivers (e.g. availability of EU funds, possible land boom on 

South shore, etc.) 

2.2 Computationally Efficient Techniques  
The second stream involves developing computationally efficient techniques to identify the most valuable 

flexible systems design concepts, subject to a range of design variables, parameters, decision rules, and 

uncertainty scenarios. For example, flexible capacity expansion in the 25 de Abril bridge case could give rise to 

a range of flexible design alternatives with different decision rules. Designs could account for one, two, or three 

extra lanes when user demand reaches threshold T, account for one or two additional rail tracks, etc. Given T 

alone can take on any values, the number of possible solutions is infinite, each leading to a different lifecycle 

performance outcome. 

 

Most efforts have involved combining flexibility valuation tools with deterministic optimizations, stochastic 

programming, simulation-based optimization, and statistical techniques to reduce computational overhead. de 
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Neufville and Scholtes [2011] refers to them as screening methods, and suggested three types: bottom-up, 

simulators, and top-down. Bottom-up models use simplified versions of a complex, detailed design model. 

Simulators incorporate statistical techniques (e.g. surrogate response surface modeling) and/or fundamental 

principles to mimic the response of the detailed model. Top-down models use representations of major 

relationships between the parts of the system to understand possible system responses (e.g. systems dynamics). 

Stochastic programming, simulation-based optimization, and/or meta-modeling techniques – e.g. [Kall and 

Wallace, 1994, Romero, Amon and Finger, 2012] – can also be used to tackle engineering systems design 

problems. On the other hand, these require more advanced techniques imposing additional burden to the analyst, 

and little work has been done in these areas related to flexibility analysis. The studies below are few of the latest 

efforts. 

 

Wang [2005] was first to apply screening methods to the flexibility analysis of water infrastructures in China. 

Lin et al. [2013] used a bottom-up screening model approach to identify valuable flexible design alternatives in 

an offshore oilrig system. Ranjbar et al. [2013] proposed an integrated screening framework based on Kriging to 

speed up the analysis. Yang [2009] used a response-surface methodology coupled with fractional factorial 

analysis to explore flexibility in the car manufacturing process. Ross [2006] proposed Multi-Attribute Trade 

space Exploration (MATE) based on Pareto-optimal configurations to exploit tradeoffs between design 

performance utility attributes, and lifecycle cost. 

2.3 Contributions 
An novel approach must be devised to enable practical and efficient analysis of uncertainty and flexibility in the 

design of engineering systems. Traditional ROA methods are often criticized for requiring too advanced 

mathematical techniques, and for relying on assumptions that are not realistic in an engineering setting. This 

may have slowed down their adoption in academic circles and in industry practice. Designing and valuing 

flexibility exacerbates the analytical problem since it requires considerations of several uncertainty scenarios 

and decision rules, in addition to the already considerably large space of architectural design variable and 

parameters. While screening, stochastic programming, and simulation-based optimization methods can be used, 

they can be difficult to use in practice due to the advanced level of mathematical training required. There is a 

need for a new approach suitable for engineering, practical, systematic, and reducing the computational 

overhead as compared to more advanced techniques. 

 

The process detailed in the next section introduces a practical approach to expand treatment of the analytical 

problem described in Fig. 1. It relies on a simulation approach to flexibility valuation, which may be more 

intuitive to systems engineers and practitioners since it relies on an extension of existing techniques for project 

evaluation and design. It is more suitable for an engineering setting because it does not depend on several of the 

economic assumptions inherent to standard ROA. The process relies on a computationally efficient algorithm 

for exploring the design space systematically, and does not require advanced optimization and stochastic 

programming techniques. It enables the creation of a design catalog consisting of several operating plans that 

adjust the response based on uncertainty realizations. It enables the analyst to consider uncertainty and 
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flexibility explicitly, while not requiring use of more advanced mathematical techniques as necessary to conduct 

standard ROA. 

3 Design Catalog Process 
Fig. 2 summarizes the proposed catalog-based process, which consists of five steps that build upon and extend 

the process described in Fig. 1: 1) develop a basic model of the system for measuring lifecycle performance, 2) 

find representative uncertainty scenarios affecting lifecycle performance most, 3) identify and generate potential 

sources of flexibility in design and management, 4) find the most appropriate flexible operating plan for each 

scenario and construct the design catalog, and 5) assess lifecycle performance and compare with the baseline 

design under uncertainty. In the description below, popular techniques used in industry and academic circles are 

suggested. This choice, however, ultimately rests with the organization implementing the process. 

 

 

Fig. 2. A design catalog approach for designing engineering systems for flexibility. 

 

The goal of step 1 is to develop a basic model to measure the lifecycle performance of the system under 

different scenarios. This step takes as input an engineering systems design problem, and outputs a performance 

model, alongside identified uncertainty driver(s) that is (are) most likely to affect lifecycle performance. In 

industry, DCF analysis is typically used to assess expected economic performance, but other modeling 

techniques can be used, like agent-based modeling, queuing, computer-aided design, discrete event simulations, 

etc. The choice of modeling approach depends on the nature of the system, the complexity, the types of 

measurements necessary, and the approach already in use at the organization. 

 

The goal of step 2 is to find a set of representative scenarios capturing the range of possible uncertainty drivers 

affecting lifecycle performance. The input to this step is (are) the main uncertainty driver(s), modeled as part of 

the performance model, and the output consists of a representative set of such scenarios that are used to 

stimulate flexible systems design concept generation in step 3. Finding such representative set can be done using 

popular methods in industry like Shell scenario planning, probability elicitation, or case-based reasoning based 

on discussions with design experts within the design organization and/or with the client [Morgan and Henrion, 

1990, Helmer-Hirschberg, 1967, Schoemaker, 1995, Reich and Kapeliuk, 2004]. Here, a systematic process 

based on scenario planning is proposed – see Appendix for suggested elicitation items. Originally developed and 
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used at Shell, this modified process involves a) defining the scope of the problem, b) identifying major 

stakeholders, c) identifying basic trends, d) identifying key uncertainties, e) constructing initial scenario themes, 

f) developing quantitative models, and h) evolving towards decision-making. Enough scenarios must be selected 

to capture the nature of the variations, and spectrum of possible outcomes (e.g. 5-15 scenarios). Not too many 

scenarios must be chosen to avoid the computational burden typically associated to simulation-based and 

stochastic programming techniques. This step borrows conceptually from the sampled average approximation 

technique used in stochastic programming. It aims to reduce the number of scenarios considered for 

optimization, and thus the computational burden. 

 

The goal of step 3 is to generate flexible systems design concepts. The input to this step is the set of 

representative uncertainty scenarios. The output is (are) the flexible systems design concepts and augmented 

model to be used in step 4 to construct the catalog of operating plans. This step is the subject of active ongoing 

research to develop and evaluate procedures enabling this more systematically. Here, designers generate 

alternatives that aim at improving performance in the face of uncertainty by exploiting the idea of flexibility. 

While there is no particular method that represents best practice, several techniques based on real options 

analysis, prompting, brainstorming, and/or design structure matrix (DSM) have been proposed and evaluated in 

the literature in application domains involving complex systems like fleets of unmanned aero vehicles, real 

estate development projects, and waste-to-energy infrastructure systems [Mikaelian, Nightingale, Rhodes and 

Hastings, 2011, Mikaelian, Rhodes, Nightingale and Hastings, 2012, Cardin, et al., 2013, Hu and Cardin, 2015]. 

The strengths and limitations of each procedure are discussed in details in [Cardin, 2014], which help provide 

guidance on the appropriate procedures to choose, depending on the system and analytical context... 

 

The goal of step 4 is to construct the design catalog. The input(s) is (are) the flexible systems design concept(s) 

of interest and augmented performance model, and the output is a catalog of operating plans. The preferred 

flexible operating plan is found for each representative scenario to model managers’ ability to change operating 

plan as uncertainty unfolds. Each plan also models a possible flexibility strategy exploited within a given 

scenario. Thus, flexibility is exploited at two levels in the proposed framework: the ability to change between 

operating plans combined with the ability to adapt within a given operating plan. This step is similar 

conceptually to a discretization step often done in solving stochastic programs. 

 

Several mechanisms can be used in step 4 to construct the catalog. The choice of algorithm depends on the 

nature of the design problem (e.g. discrete vs. continuous variables, linear vs. non-linear objective function, 

deterministic vs. stochastic). One can rely on DOE techniques such as full or fractional factorial analysis, 

parameter studies, one-at-a-time, latin hypercubes, or orthogonal arrays to sample the design space 

systematically for each operating plan [Box, Hunter and Hunter, 1978]. Meta-heuristics optimization algorithms 

can be used, such as genetic algorithms [Holland, 1975], simulated annealing [Kirkpatrick, Gelatt and Vecchi, 

1983], and particle swarm optimization [Kennedy and Eberhard, 1995]. Linear programming, mixed integer 

programming, barrier methods, and/or sequential quadratic programming can also be used [Gill, Murray and 

Wright, 1986]. The consequences of using different algorithms may affect the quality of the solution, and/or the 
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level of computations needed. The texts referenced provide guidance on the best algorithm to use, depending on 

time, problem type, and resources available to the analyst. 

 

The goal of step 5 is to compare the results obtained using the catalog with those obtained for the basic model in 

step 1, to measure the improvement brought by the design catalog – if any – as compared with standard design 

and evaluation. This step takes as input the design catalog, and outputs a preferred set of value-enhancing 

flexible design(s) and catalog to be considered for the detailed analysis phase of the systems engineering 

process. This is done by simulating a wide range of uncertainty scenarios, assigning one operating plan to each 

scenario, and measuring the system performance under each plan/scenario. This step is similar to out-of-sample 

testing performed in stochastic programming, provided that the samples are generated from the same process or 

model used to generate the representative scenarios in step 2. Different performance comparisons can be made. 

To determine the value of flexibility both in using the catalog and the flexible operating plans, the analysis with 

and without the catalog can be conducted. Outcome distributions can be compared to determine how flexibility 

affects the proposed designs (i.e. does it protect from downside conditions, helps capitalize on upside 

opportunities, both?). Multi-criteria evaluation helps comparing the design alternatives or catalogs using 

different evaluation metric (e.g. mean performance, 5th or 95th percentile, etc.) to accommodate different risk 

profiles in decision-making. 

4 Application 
This section demonstrates how to apply the five-step process in the analysis of an example infrastructure system. 

The objectives are to address the research questions by demonstrating that the process: 

1) Works for a real-world system;  

2) Improves and recognizes additional value through explicit recognition of uncertainty and flexibility; 

3) Provides better solutions compared to a baseline design that is typically more rigid (i.e. inflexible) 

representing the outcome of standard design and evaluation practice, and;  

4) Reduces computational overhead significantly as compared to a full exhaustive analysis relying on 

simulation-based optimization. 

4.1 Example Study: Infrastructure System 
The case study is inspired from the development of a vertical multi-level parking garage built beside the 

Bluewater commercial center near London in the United Kingdom. This real infrastructure development project 

was launched to accommodate the parking needs of potential new customers and visitors to the mall. Since the 

growth in potential customers/visitors was unknown, the system designers and architects embedded flexibility in 

the system to accommodate extra floors and capacity, thereby providing more parking spaces in case more 

customers visited the mall than originally planned. de Neufville et al. [2006] used this case example to show that 

this strategy was worthwhile. They showed that a flexible design could create additional economic value in the 

face of uncertain demand growth, as opposed to a system designed with best – or stochastically optimal – fixed 

capacity. 
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In this paper, the modeling assumptions are similar to those used by de Neufville and Scholtes [2011], who 

developed a case example based on the Bluewater commercial center. There and in [de Neufville, Scholtes and 

Wang, 2006], the authors introduced the notion of a decision rule as a way to value flexibility. The authors only 

explored the value associated to one decision rule, however, and did not explore other combinations of decision 

rules and design variables, or determined the optimal parameters characterizing such rules. Application of the 

design catalog technique shown next enables a more thorough exploration of the design space, and demonstrates 

value improvement as compared to the baseline analysis based on this case study example. 

4.1.1 Step 1: Basic Model Development 

Application of the catalog approach starts from the development of a basic quantitative model enabling lifecycle 

performance assessment of design alternatives. Here, an economic DCF model is used, inspired from the data 

reported in de Neufville and Scholtes [2011], and summarized in Appendix (Table 11). NPV is the objective 

function (O) for measuring performance of different alternatives. The model implements the following 

relationships between the design variables (DV), design parameters (DP), and constraints (C): 

 

NPV = Rt −Ct
(1+ r)tt=0

T

∑         ( 1 ) 

Rt = min(Dt, kt)p, t ≥ 0         ( 2 )  

kt = n0 ft
t=0

T

∑
         

( 3 )  

kt ≤ n0fmax, t ≥ 0         ( 4 ) 

 

C0 = cc0 + cf + cl         ( 5 )  

 

Ct = ktcr + cl + ce, t > 0        ( 6 )  

 

Dt = Df – αe-
β
t          ( 7 ) 

 

Equation 1 shows how to compute NPV, which is a standard DCF analysis. Equation 2 states that revenues in 

any given year t are capped by installed capacity kt at time t. Equation 3 constrains installed capacity kt to be the 

sum of parking spaces built in each previous years, plus the number of floors ft added at time t. In the inflexible 

system, k0 = n0f0, the initial capacity of the system, and ft = 0 ∀ t, since no expansion is possible. For the flexible 

system, ft ≠ 0 because expansion occurs as demand changes. Equation 4 explains that the total number of floors 

is capped at fmax such that kt in any given year does not go beyond n0fmax. Equation 5 shows that cost at year 0 

(C0) is given by the total construction cost cc0, the cost of acquiring the flexibility to expand4 cf (i.e. stronger 

                                                             
4 Variable cf = 0 for simplification only. The model is used to assess the value of flexibility assuming that flexibility is 

already available. The real value of a design thus takes the measured NPV and subtracts from it the real acquisition cost of 

the flexibility. As long as this difference is positive (i.e. NPV – cf (real) > 0), flexibility is worth embedding in the design. 



 12 

columns to support expansion, as described below), and the cost of leasing land cl. The total construction cost is 

cc0 = n0f0cc for the first two floors, and then grows at rate gc = 10% for all floors above. Equation 6 shows that 

total cost Ct includes recurring operating cost ktcr, land leasing cost cl, and expansion cost ce. Cost cc is measured 

based on the growth in construction cost gC times the number of additional parking space built at time t. 

 

Deterministic demand for parking space Dt in year t is identified as the main uncertainty driver in this system. 

The initial deterministic projection is modeled using Equation 7, where α = additional demand by project 

midlife (year 10) + additional demand by final year (year 20), β = - ln(additional demand by year 10/α) / (10 – 

1), and Df is final demand at year 20. The model assumes that D1 = 750 parking spaces, additional demand by 

year 10 = 750, and additional demand by final year = 250, such that α = 1,000 and β = 0.15. Under this 

framework, an example design vector for the inflexible system is simply f0, the initial number of floors. Here ft = 

0 for ∀ t, and therefore kt = k0. The optimal design based on deterministic optimization has six floors (f0* = 6), 

leading to NPV = $10.6 million. 

4.1.2 Step 2: Finding Representative Uncertainty Scenarios 

This step finds a representative set of scenarios for the major uncertainty sources affecting lifecycle 

performance. Five scenarios are identified using the process inspired from scenario planning techniques 

[Schoemaker, 1995] – see Appendix. Through personal communications with system experts, such process is 

used to a) define the scope of the problem (i.e. develop a parking garage infrastructure), b) identify major 

stakeholders (i.e. users, owners), c) identify basic trends (e.g. growing uncertain demand for parking space), d) 

identify key uncertainties (i.e. parking space demand), e) construct initial scenario themes (e.g. slow growth 

followed by rapid growth, rapid growth followed by slow growth, etc.), f) develop quantitative models (i.e. 

Equations 1-8), and h) evolve towards decision-making (i.e. used NPV as basis for decision-making).  

 

Discussions with system experts led to a characterization of representative demand scenarios captured in Table 

1. The resulting scenarios are modeled as variations of the deterministic scenario in Equation 7. In 

characterizing the main scenario themes, it was decided that five scenario categories would span the space of 

possible demand scenarios adequately. This assumption may be changed, as discussed in Section 4.2. Initial 

growth over the first five years is taken as the main criterion for categorizing different scenarios. Years 1-5 are 

crucial to development and profitability, as demand will taper off to an asymptotical value in year 20. 

 

Table 1 Categories of representative demand scenarios based on percentage increase from years 1 to 5. 

Category Growth parameter β  Percentage increase Mid-value 

1 0.990 131% 123% 

2 0.500 115% 100% 

3 0.250 84% 68% 

4 0.125 52% 38% 

5 0.050 24% 
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Representative scenarios are split into five growth categories. Five growth parameters β give rise to five 

representative scenarios in Fig. 3. The percentage increase over five years is calculated for each representative 

scenario. The mid-values provide a breaking point to assign demand scenarios to each category. For instance, 

scenarios with growth above mid-value 123% in years 1 to 5 are assigned to category 1, while scenarios with 

growth less than 38% are assigned to category 5. The approach for doing this is not unique, and may change 

depending on the design problem, analysts, and input assumptions. 

 

 

Fig. 3. Set of representative demand scenarios based on the exponential demand model with β  = 0.990, 

0.500, 0.250, 0.125, and 0.050. 

4.1.3 Step 3: Identify/Generate Flexibility in Systems Design and Management 

This step uses the prompting procedure from Cardin et al. [2013] to identify and generate flexible systems 

design concepts, which is available online as supplementary material to the paper. The procedure consists of a 

series of short questions to elicit the concepts through interactive discussions with system experts. It induces 

designers to identify relevant flexibility strategies, enablers, and decision rules, in light of the representative 

uncertainty drivers and scenarios identified in step 2.  

 

The major opportunity for flexibility identified in this system is the ability to expand capacity as needed, in line 

with the work presented in de Neufville and Scholtes [2011]. The design vector is represented as: [a1-4, a9-12, 

a17-20, dr, ft, f0]. This vector includes both decision rules and design variables. Decision rules are implemented 

using logical programming statements in Excel® – i.e. IF(logical condition, outcome if true, 

outcome if false). Decision rules a1-4, a9-12, and a17-20 state respectively whether it is possible to expand 

capacity during years 1-4, 9-12, and/or 17-20 by taking on binary values (Yes = 1, No = 0). These rules capture 

the fact that it may not make sense to allow expansion in the early years of the project, or at the end. Similarly, it 

may be best in some cases not to allow expansion in years 9-12 to study mid-life evolution of the project. 

Decision rule dr specifies for how many consecutive years demand must be higher than installed capacity to 
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allow expansion. For example, dr = 1 means that demand will be observed for just one year prior to the decision 

– which is suitable for more aggressive and risk-seeking decision-makers. If it is higher than installed capacity, 

expansion will occur, if not capacity will remain the same. Design variable ft determines how many floors are 

added at each expansion phase.  

 

All decision rules are applied at the end of every year, and provide alternatives to suit risk-averse, risk-neutral, 

and risk-seeking decision-making profiles. They do not, however, represent all possible rules that exist for this 

design problem exhaustively. These are subject to the system expert elicitation process, and may vary from one 

application to another. These are used to demonstrate the catalog process and the ensuing analysis once feasible 

flexibility strategies and decision rules are elicited. Table 2 summarizes the flexible decision rules and design 

variables – also referred as factor – elicited in this application. 

 

Table 2 Summary of flexible decision rules (DR) and design variables (DV) investigated in this study. 

DV and DR Factor Description Levels 

a1-4 Expansion allowed in years 1-4 Yes - No 

a9-12 Expansion allowed in years 9-12 Yes - No 

a17-20 Expansion allowed in years 17-20 Yes - No 

dr Expansion decision rule (years) 2 – 4 

ft Number of floors expanded by 1 – 3 

f0 Number of initial floors 2 – 9 

 

Many combinations of decision rules and design variables exist to enable and manage the flexibility, each 

leading to a different operating plan. It is not clear what operating plan gives better lifecycle improvement 

compared to a fixed baseline design for each representative scenario. One operating plan may be well suited for 

a particular demand scenario, but not necessarily for another. It is best to tailor each operating plan for each 

scenario. All combinations lead to 23 x 32 x 8 = 576 possible operating plans. A level refers to the value a 

decision rule and/or design variable can take. The performance model is modified to enable analysis of the 

flexible decision rules and design variables, and to construct the design catalog in step 4. 

4.1.4 Step 4: Construct the Design Catalog 

In this application, the fractional factorial DOE technique called adaptive One-Factor-At-a-Time (aOFAT) [Frey 

and Wang, 2006] is used to explore the design space. The approach starts from a baseline configuration, and 

measures the response using the quantitative model. One of the factor levels is toggled to another level, and 

another measurement is made. If the objective function (i.e. NPV) is improved, the change is kept, and the 

analysis moves on to another factor and/or level. If there is no improvement, the change is discarded, and 

another design point is explored. The algorithm goes in sequence until all factors levels are explored once. 

 

aOFAT reduces the number of search iterations tremendously, while still reaching a good solution. In a design 

space with n factors with 2-levels each, aOFAT reduces the number of experiments from 2n to n + 1, while still 



 15 

reaching on average about 83% of the optimal response [Frey and Wang, 2006]. For n factors with m levels, the 

number of possible combinations is mn, each factor being explored m – 1 times, and therefore n(m – 1) + 1 

combinations are explored. Instead of facing a design space growing exponentially in n and m, designers need 

only to explore a number of combinations growing as a multiplicative function of n and m. This reduces the 

computational overhead significantly. While no study exists to guarantee the global optimality of the solutions, 

using aOFAT helps consider a wider and more representative range of solutions that can improve the baseline 

response – since by definition aOFAT progresses through the design space based on response improvement, 

unless the baseline response is already the best combination – while reducing computational overhead. The 

process for representative scenario 1 in Fig. 3 is summarized in Table 3. 

 

Table 3 Description and output of each iteration in the aOFAT sequence for demand scenario 1. 

Iteration 
DV/DR 

changed: 

DV/DR Level 

changed to: 

NPV Output 

(million) 

Best NPV output 

so far? (million) 

Keep 

change? 

1 - - $21.7 - - 

2 ft 2 $21.1 $21.7 No 

3 ft 1 $21.0 $21.7 No 

4 f0 2 $7.6 $21.7 No 

5 f0 3 $12.9 $21.7 No 

6 f0 4 $14.0 $21.7 No 

7 f0 5 $19.1 $21.7 No 

8 f0 7 $19.7 $21.7 No 

9 f0 8 $22.6 $21.7 Yes 

10 f0 9 $20.6 $22.6 No 

11 a9-12 Yes $22.6 $22.6 No 

12 dr 2 $22.6 $22.6 No 

13 dr 4 $22.6 $22.6 No 

14 a17-20 Yes $22.6 $22.6 No 

15 a1-4 Yes $22.6 $22.6 No 

 

The initial design and exploration sequence are selected randomly. The baseline operating plan corresponds to 

vector [a1-4, a9-12, a17-20, dr, ft, f0] = [No, No, No, 3, 3, 6]. This design produces NPV = $21.7 million using the 

deterministic model in step 1. Decision rule factor ft is changed from value ft = 3 to ft = 2, leading to NPV = 

$21.1 million. Since the response is not improved, the decision rule is set back to its original value, and then the 

response using ft = 1 is measured. Since NPV = $21.0 million is also not an improvement compared to the 

baseline response, the change is also discarded. The analysis moves on to other design variables and decision 

rules, until all factor levels are explored once. The main change occurs when f0 = 8 floors, where NPV = $22.6 

million. The high capacity design captures the most value out of the high demand growth scenario. 
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Table 4 Design catalog I generated using aOFAT. 

DVs and DRs Op. Plan 1 Op. Plan 2 Op. Plan 3 Op. Plan 4 Op. Plan 5 

a1-4 No Yes Yes Yes No 

a9-12 No Yes Yes Yes Yes 

a17-20 No No No No Yes 

dr 3 2 2 2 4 

ft 3 2 2 1 1 

f0 8 6 4 4 4 

 

The operating plan for scenario 1 is captured by design vector [a1-4, a9-12, a17-20, dr, ft, f0] = [No, No, No, 3, 3, 8]. 

This operating plan states that if demand grows very fast in early years, capacity expansion should not be 

allowed because it is more profitable to have as many floors installed initially as possible. NPV is insensitive to 

choices in flexible decision rules, because most of the capacity is already installed. A similar approach is used to 

generate a flexible operating plan for each of the five representative scenarios, each offering slower demand 

growth in the first few years. This leads to the design catalog summarized in Table 4. To better visualize an 

operating plan, Fig. 4 shows the typical capacity deployment occurring under operating plan 4. Such plan will 

be applied in phase 5 of the process whenever a given scenario is associated to representative scenario 4. It is 

associated to design vector [a1-4, a9-12, a17-20, dr, ft, f0] = [Yes, yes, No, 1, 2, 4]. 

 

 

Fig. 4. Capacity deployment for operating plan 4. 

4.1.5 Step 5: Evaluate the Lifecycle Performance of the Catalog 

This step takes the catalog of operating plans constructed in step 4 and simulates the ability of the system 

operator to choose between different flexible operating plans, based on Monte Carlo simulations. Equation 7 is 

modified to account for the stochastic nature of demand, and to perform out-of-sample testing: 
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In Equation 8, Dt is calculated as before, although now D1, additional demand by year 10, and additional 

demand by final year are random variables sampled from a uniform distribution with values ± 50% off the initial 

projection. Inter-annual demand growth gt is modeled using Geometric Brownian Motion (GBM): gt = gpdt + 

σdWt√dt, where gp = Dt/Dt-1 – 1 is the projected inter-annual demand growth obtained using the stochastic 

version of the demand model, dt = 1 year time increment, σ = 15% is the assumed volatility of demand. Variable 

dWt is the Wiener process, in this case sampled from a uniform distribution U ~(-1, 1) instead of a normal 

distribution for faster computations.  

 

Using the stochastic demand model, the rigid design (f0* = 6) gives rise to an average NPV (or expected NPV, 

ENPV) ENPVinflex. = $8.0 million under 2,000 demand scenarios. This design is also the stochastic optimal 

design (i.e. maximizing ENPV), and therefore the baseline rigid design for this study.  

 

Fig. 5 shows a sample scenario alongside the original deterministic demand projection. In this sample, since 

growth is about 35% between years 1-5 (from 690 to 931), the scenario is associated to representative scenario 

5, and operating plan 5 is applied. Fig. 6 shows the lifecycle effect of the operating plan on an Excel® 

implementation of the DCF model, leading to NPV = $17.4 million. Even though operating plan 5 is 

conservative in the first years, it enables a series of aggressive expansions (fourth row from top) after year 5, 

when demand starts picking up. The same process is applied to all 2,000 demand scenario samples in the 

simulation. Each scenario is assigned to one of the five operating plans. Design variables and decision rules lead 

to a different expansion path for each scenario, leading each time to a different NPV. 

 

 

Fig. 5. Example simulated demand scenario assigned to operating plan 5. 

Fig. 7 shows the cumulative distribution functions – also referred as target curves – for the stochastic optimal 

inflexible baseline design with six floors, and using the design catalog approach. The target curve resulting from 

the catalog approach dominates the one from the inflexible 6-floor design. The resulting distribution of 

operating plan assignments is shown in Fig. 8. Table 5 summarizes the results according to different evaluation 

criteria: ENPV, 5th percentile (P5) or value at risk, P95 or value at gain, standard deviation, expected initial 

investment, and expected value of flexibility. The goal of reporting different evaluation metrics is to 

accommodate different risk profiles in decision-making. For example, a risk-averse decision-maker may prefer 
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designs that maximize the worst possible outcome (measured via P5), minimize volatility and risk as measured 

by the standard deviation, and/or minimize the expected initial investment. A risk-neutral decision-maker may 

favor a design maximizing ENPV – since s/he is indifferent between maximizing upsides and minimizing the 

impact of downside scenarios. A risk-seeking decision-maker may prefer maximizing the best possible outcome 

and gain (measured via P95). Table 5 does not include all possible performance metrics, but provides guidance 

to suit a range of decision-making profiles. 

 

 

Fig. 6. DCF analysis resulting from applying operating plan 5 to the simulated demand scenario from Fig. 

5. Only years 1-10 are shown out of a 20 years lifecycle. 

 

 

Fig. 7. Cumulative distribution functions – or target curves – for the inflexible 6-floor baseline design, and 

using the design catalog generated using aOFAT. 

The results in Table 5 show that the design catalog approach produces better results on almost all criteria. The 

expected value increase provided by flexibility and recognized via the design catalog approach is calculated as 

E[VCatalog] = ENPVCatalog – ENPVInflexible = $2.9 million. This is a 37% improvement compared to the stochastic 

optimal inflexible baseline design with six floors. The main advantage of the inflexible design is to provide a 

tighter distribution of outcomes, shown by a slightly lower standard deviation. 

 

Year 0 1 2 3 4 5 6 7 8 9 10
Realised demand 690                733                964              1,088             931                986            1,104            1,310           1,420           1,305           
Capacity -                 800                800                800              800                800                800            1,000            1,200           1,400           1,600           

Expansion? expand expand expand expand
Expansion (using expansion operating plan)?
Build extra capacity 0 0 0 0 0 0 200 200 200 200 0
Revenue $0 $6,900,000 $7,333,222 $8,000,000 $8,000,000 $8,000,000 $8,000,000 $10,000,000 $12,000,000 $14,000,000 $13,050,245
Operating costs $0 $1,600,000 $1,600,000 $1,600,000 $1,600,000 $1,600,000 $1,600,000 $2,000,000 $2,400,000 $2,800,000 $3,200,000
Land leasing costs $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000 $3,600,000
Expansion cost $0 $0 $0 $0 $4,259,200 $4,685,120 $5,153,632 $5,668,995 $0
Cashflow $0 $1,700,000 $2,133,222 $2,800,000 $2,800,000 $2,800,000 -$1,459,200 -$285,120 $846,368 $1,931,005 $6,250,245
DCF $1,517,857 $1,700,592 $1,992,985 $1,779,451 $1,588,795 -$739,276 -$128,974 $341,834 $696,340 $2,012,412
Present value of cashflow $26,339,961
Capacity cost for up to two levels $6,400,000
Capacity costs for levels above 2 $7,392,000
Net present value $8,947,961
Total initial cost $17,392,000
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Fig. 8. Relative frequency of each operating plan to each demand scenario in using design catalog I 

constructed using aOFAT. 

 

Table 5 Multi-criteria evaluation of the design alternatives for each evaluation technique, using aOFAT to 

construct the catalog of operating plans in case study I. All values are in $ (million). 

 Deterministic Inflexible Catalog Preferred? 

ENPV 10.6 7.8 10.7 Catalog 

P5 (Value At Risk) N/A -11.2 -6.9 Catalog 

P95 (Value At Gain) N/A 17.6 23.4 Catalog 

Standard Deviation N/A 9.1 9.5 Inflexible 

E[Initial Investment] 22.7 22.7 16.1 Catalog 

E[Value of Catalog] - - 2.9  

4.2 Sensitivity Studies 
This section evaluates critically the process in steps 2, 4, and 5 under different sets of assumptions. In step 1, a 

sensitivity analysis can be done on the main economic and engineering parameters, but it is of limited interest 

given that the focus is on understanding how the construction and evaluation change under different 

assumptions. In step 3, other sources of flexibility could be analyzed, but this does not add to the scope of the 

paper, which aims at introducing the catalog process, and demonstrating how to apply it. Abandonment, staged 

capacity deployment, and switching real options have been analyzed in similar applications of the process in 

mining and real estate problems [Cardin, de Neufville, Geltner and Deng, 2013, Cardin, de Neufville and 

Kazakidis, 2008] showing that the process can handle the analysis of other flexible systems design concepts, and 

for different infrastructure systems. 

4.2.1 Step 2: Finding Representative Uncertainty Scenarios 

The scenario planning technique may lead to different numbers and forms of representative scenarios, 

depending on users, context, and organization. Choosing such scenarios is critical as it influences the design 

catalog, and ultimately the results. Additional analyses are conducted using k = 2, 3, and 4 representative 
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scenarios out of n = 5 available scenarios. The combinations shown in Table 6 were randomly selected, since 

there are C(n, k) possible combinations for each set, and it is impossible to show here all possible results. The 

same mid-values from Table 1 were used to assign a demand scenario to an operating plan. Results show that 

using fewer operating plans still improves value without the need to perform an exhaustive flexibility analysis. 

Here, a catalog consisting of four operating plans (OP) – namely OP 2-5 – provides the best overall results. 

 

Table 6 Results obtained using different representative scenarios and operating plans. OP: operating 

plan; SD: standard deviation; E[Invest.] = E[Initial Investment]; E[Flex.] = E[Value of Flexibility]. 

  Inflex. OP 1-5 OP 2-5 OP 1, 3, 5 OP 2, 4 Preferred? 

ENPV 7.8 10.7 11.0 9.7 10.6 OP 2-5 

P5 -11.2 -6.9 -4.0 -9.4 -7.4 OP 2-5 

P95 17.6 23.4 23.0 23.3 23.3 OP 1-5 

SD 9.1 9.5 8.2 10.3 9.6 OP 2-5 

E[Inv.] 22.7 16.1 15.4 16.8 17.6 OP 2-5 

E[Flex.] - 2.9 3.2 1.9 2.8 OP 2-5 

4.2.2 Step 4: Construct the Design Catalog 

The results above are obtained using aOFAT. This is not the only suitable mechanism to construct the catalog. 

Two additional catalogs are constructed using a) an evolutionary optimization algorithm, and b) using full 

factorial analysis to explore the design space for each representative scenario. Table 7 shows design catalog II 

using an evolutionary optimization algorithm in Excel® for Mac 2011 version 14.1.4. This one differs from the 

one obtained with aOFAT, but is similar to the one obtained using full exhaustive search described next. 

  

Table 7 Design catalog II generated using Excel®’s evolutionary optimization algorithm. 

DVs and DRs Op. Plan 1 Op. Plan 2 Op. Plan 3 Op. Plan 4 Op. Plan 5 

a1-4 Yes Yes Yes Yes Yes 

a9-12 No Yes Yes Yes Yes 

a17-20 Yes Yes No No Yes 

dr 2 2 2 2 2 

ft 3 3 2 1 1 

f0 6 5 4 4 4 

 

Table 8 shows design catalog III obtained by evaluating all 576 possible combinations of design variables and 

decision rules under each representative scenario. The operating plans are all different from catalogs I and II, 

except for operating plan 4. Only operating plan 1 under aOFAT is significantly different from catalogs II and 

III, starting with 8 floors as opposed to 6 when using exhaustive search and optimization. This shows that 

aOFAT can offer myopic results in some cases, due to the local nature of the search algorithm. 

 



 21 

Table 9 compares the results obtained with the different catalogs under different performance metrics taken 

individually (i.e. not as a multi-criteria function). They show a) that the catalog approach generates better value 

compared to the inflexible baseline design solution no matter what the search process is, and b) expectedly the 

full factorial search leads to the best results for most criteria. 

 

Table 8 Design catalog III generated using full factorial analysis in Excel®. 

DVs and DRs Op. Plan 1 Op. Plan 2 Op. Plan 3 Op. Plan 4 Op. Plan 5 

a1-4 Yes Yes Yes Yes Yes 

a9-12 No No No Yes No 

a17-20 No No No No No 

dr 2 2 2 2 2 

ft 3 3 2 1 1 

f0 6 5 4 4 4 

 

Table 9 Multi-criteria comparison of the inflexible design with the design catalogs constructed using 

aOFAT, evolutionary optimization, and full factorial analysis. All values in $ million. 

 Inflex. 
Cat. I 

aOFAT 

Cat. II 

Optim. 

Cat. III 

FF 
Preferred? 

ENPV 7.8 10.7 11.4 11.8 Catalog III 

P5 -11.2 -6.9 -4.3 -4.0 Catalog III 

P95 17.6 23.4 23.2 23.2 Catalog I 

SD 9.1 9.5 8.6 8.6 Catalogs II/III 

E[Inv.] 22.7 16.1 15.0 15.0 Catalogs II/III 

E[Flex.] - 2.9 3.6 4.0 Catalog III 

 

As expected, design catalog III offers the best results under most economic performance metrics. Full factorial 

analysis, however, requires evaluating all 576 combinations of design variables and decision rules, which can be 

expensive on applications with a model running slowly. It takes < 1 second to run aOFAT and a full factorial 

analysis using Data Tables in Excel® for Mac 2011 on a standard MacBook Pro laptop running Mac OSX 10.8, 

with 3 GHz Intel Core i7, and 8 GB 1,600 MHz DDR3 RAM. The optimization algorithm requires evaluation of 

5388, 4049, 3289, 3556, and 3189 sub-problems per representative scenario, and on average ~1 minute 

computational runtime. The sub-problems emerge from the mutation, crossover, and natural selection steps 

inherent to the evolutionary algorithm evaluating different combinations in a systematic way. In contrast, 

constructing design catalog I using aOFAT requires evaluating only 15 different combinations per representative 

scenario, which is less than 3% of the full design space, while reaching nearly 91% of the ENPV response of 

design catalog III ($10.7 million/$11.8 million). The evolutionary algorithm achieves a better response than 

aOFAT while also not exploring the full design space. It requires significantly more runtime, due to the higher 
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complexity of the algorithm. The results show that constructing a catalog using aOFAT provides good results 

while significantly reducing the number of configurations to analyze. 

4.2.3 Step 5: Evaluate the Lifecycle Performance of the Catalog 

A fair comparison of the results obtained here with those generated using existing techniques in the literature is 

challenging. This is because a design catalog accounts for managerial flexibility in two ways. First, it recognizes 

managers’ ability to change operating plan as needed. Second, it recognizes the flexibility to adapt within a 

given operating plan. Most of existing research only provides ways to identify the stochastic optimal flexible 

design alternative. For instance, Yang [2009] and Lin et al. [2013] found the flexible design solution that 

optimizes ENPV, or other performance metrics like P5, P95, etc. Although in both studies the solution is 

optimal, it represents only one operating plan, which is applied consistently throughout the system lifecycle. 

 

The solutions identified here are nonetheless compared along two dimensions. The first comparison is to 

determine whether the catalog approach improves the expected lifecycle performance of the system as compared 

to the best inflexible benchmark design – also addressing the secondary research question. This is a fair 

comparison, because the stated goal of the process is to improve system performance as compared to the 

benchmark – and not necessarily to guarantee stochastic optimality. Indeed, Table 5-6 and Table 9-10 show 

performance improvements when comparing the inflexible benchmark design to the different catalogs, and 

along most evaluation metrics. 

 

The second comparison is to evaluate the performance of the catalog relative to the stochastic solution. Such 

analysis requires evaluating all 576 possible design solutions under 2,000 out-of-sample demand scenarios. The 

stochastic solution is [a1-4, a9-12, a17-20, dr, ft, f0]* = [Yes, No, No, 2, 1, 5] with ENPVflex. = $12.5 million. Results 

are summarized in Table 10. 

 

Table 10 Multi-criteria evaluation using aOFAT to construct the design catalog, and stochastic 

optimization (SO). All values are in $ (million). 

 Deterministic Inflexible Catalog SO Preferred? 

ENPV 10.6 7.8 10.7 12.5 SO 

P5 N/A -11.2 -6.9 -4.7 SO 

P95 N/A 17.6 23.4 26.3 SO 

SD N/A 9.1 9.5 9.5 Same 

E[Inv.] 22.7 22.7 16.1 18.1 Catalog 

E[Flex.] - - 2.9 4.7 SO 

 

While the global solution provides better expected performance, it does not recognize managers’ ability to 

change between different operating plans during the project lifetime. Also, such analysis requires significant 

computational runtime (i.e. ~26 seconds on average per evaluation under 2,000 scenarios x 576 evaluations ≈ 

4.1 hours) using Matlab R2010b. In contrast, constructing the design catalog requires evaluating 75 feasible 
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design solutions (15 combinations per representative scenario x 5 scenarios) taking on average < 1 second each 

once automated. Running a Monte Carlo simulation with 2,000 out-of-sample demand scenarios, and assigning 

each scenario to one of the five operating plans takes on average ~4 seconds. The entire analysis takes < 80 

seconds on average. This is nearly 183 times faster than the stochastic optimization analysis described above. 

 

The stochastic optimization is tractable in this application for demonstration purposes, and to understand the 

properties of the catalog process. Such optimization will most likely not be tractable in applications where a 

high-fidelity model is used, as often done in the mining and/or oil and gas industries, or if a more complex 

system with more design variables, uncertainty sources, and decision rules is analyzed. In these industries, 

models take routinely several hours if not several days to find a single optimal operating plan to one 

deterministic scenario of main uncertainty drivers [Cardin, de Neufville and Kazakidis, 2008, Lin, de Neufville, 

de Weck and Yue, 2013]. For instance, oil companies typically use separate high-fidelity models for 

sub-reservoir capacity, fluid flow physics, and economic evaluation, requiring days to optimize one design 

configuration. Mining companies use high-fidelity resource allocation models also taking several days to 

construct a single optimal plan for exploiting the mine. While it is true that decision-makers may well afford 

many days of computations to support multi-million and billion dollar decisions, there are cases where the 

computational problem is simply too prohibitive or plainly intractable to perform, and/or situations requiring 

faster progress to the more detailed phase of the design process. The procedure proposed here is adding to the 

designer’s toolkit, depending on the situation they face, and the time/resources available for the analysis. 

 

In cases where a high-fidelity model is used, the design catalog approach combined with aOFAT can be 

particularly useful. It only requires analyzing a few design configurations, representing sizeable savings in terms 

of computational time and analytical resources. Out-of-sample evaluation using the process described in step 5 

can then be done inexpensively to determine how the proposed catalog fares as compared to other solutions, 

without the need to explore the entire design space. 

5 Discussion 
The analysis above answers the main research question, since application of the proposed five-step process is 

shown successfully to analyze flexibility in the design of an infrastructure system operating under uncertainty. 

The second research question is addressed because the process is shown to improve lifecycle performance as 

compared to the outcome of standard design and evaluation methods. The process also has valuable properties 

as compared to existing techniques based on stochastic optimization and DOE, and for practical uses. 

 

First, the catalog process improves the expected lifecycle performance compared to a stochastically optimal 

inflexible baseline design obtained via standard evaluation practice. It recognizes in the evaluation process that 

operators will adapt intelligently to different scenarios during operations. Such flexibility has value that can be 

considered explicitly in early evaluation and design phases, and embedded physically in the design. Otherwise, 

design alternatives offering less performance may be selected and implemented. 
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Steps 2-3 of the process help stimulate creativity and insights on how to recognize and generate additional value 

from flexibility. Steps 4-5 help measure such expected performance improvement, building upon the 

performance model developed in step 1. Value improvement stems from the ability to reduce downside losses 

when demand is not growing fast enough, by reducing initial investment, and by avoiding unnecessary capacity 

deployment when it does not grow rapidly enough. It also stems from the ability to change operating plan as 

exogenous conditions change. This approach positions the system to capture more value from upside 

opportunities, and reduce the impact from downside events. It is also suitable for evaluation based on different 

performance metrics (e.g. P5, P95, etc.) 

 

Second, the proposed process provides a systematic approach to analyze uncertainty and flexibility in early 

design decision-making phases that a) does not rely on traditional ROA techniques – and therefore is not limited 

by their implicit assumptions – and b) relies on standard deterministic optimization techniques while still 

accounting for uncertainty via Monte Carlo simulation. The approach reduces computational burden without the 

need to rely on more advanced stochastic optimization techniques, while still reaching a good solution. 

 

Third, the approach provides a solution that is easy to manage, implement, and builds upon what is currently 

done in practice. The following illustrates how the catalog technique could be used to manage the example 

system. First, demand is projected at t = 0 for years 1-5, and the initial development and management is based 

on the corresponding operating plan in Table 4. If, for example, projection is assigned to representative scenario 

4 (0.38 < β < 0.68), the initial design should have four floors to follow the recommendation of operating plan 4, 

and managers should account for a one-floor expansion every time demand exceeds capacity for two 

consecutive years in periods 1-4 and 9-12. Revisions to the management rules can then be made every five 

years, as needed, to account for possible changes in operating plans over the project lifetime. 

 

The proposed process has several properties that make it useful for practical applications. It is generic and 

systematic, so designers and decision-makers can apply it to analyze different system problems. In phase 1, 

analysts can choose the modeling technique to measure the system performance based on the suggestions 

provided, or the approach already in use at the organization. In phase 2, several techniques are suggested to 

identify representative scenarios so that users can identify those that are most significant to the system at hand. 

Such choice may also rely solely on the analyst’s expertise and experience with the system, without the need to 

use more formal methods. Phase 3 relies specifically on such expertise, and on the analyst’s creativity with the 

system. It provides the necessary structure to “think out of the box”, and consider other solutions that may not 

normally be considered through standard and project evaluation processes by explicit consideration of 

flexibility. In phase 4, several quantitative techniques can be used to explore the design space. The main idea is 

to construct the catalog so that the system provides a good response in adaptation to different uncertainty 

realizations. This can even be done manually, if analysts know of a better outcome or solution, without the need 

for a systematic search. The creative ideas from phase 3 are really put to test via quantitative evaluation of the 

design catalog in phase 5. This is important to discriminate between different possible solutions, and to identify 

those that are more likely to enhance performance and value. 
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5.1 Limitations and Results Validity 
This section discusses the limitations of the proposed process, and the validity of the results. In phase 1, the 

validity of the valuation results to assist in the decision-making process relies heavily on the ability of the model 

to capture essential performance tradeoffs. Validation of the numerical results, however, is challenging due to 

the typically long lifecycle of complex engineering systems. To this end, the DCF modeling approach captures 

best practices in finance and large-scale engineering firms to assess the future economic performance of 

investment projects. In phase 2, results can be affected greatly by the choice of representative scenarios and 

uncertainty drivers. Designers must use caution in their analysis of uncertainty, and be modest in the number of 

drivers/scenarios they can consider and their ability to characterize uncertainty. Choosing different scenarios 

and categorization parameters may lead to significantly different results and recommendations. Thus, this initial 

study sets a research agenda to improve the method of finding representative scenarios. The work on scenario 

planning, probability elicitation techniques, and case-based reasoning provide good directions for further 

developments [Morgan and Henrion, 1990, Helmer-Hirschberg, 1967, Schoemaker, 1995, Reich and Kapeliuk, 

2004]. In step 3, only capacity expansion was analyzed for demonstration purposes, but more flexibility sources 

can be studied. Although out of scope for the present paper, validating the process on the analysis of a more 

complex system, accounting for more design variables and decision rules, is needed. A similar approach was 

used to support a consulting case in mining operations [Cardin, de Neufville and Kazakidis, 2008]. The focus of 

the study was on the results, however, as opposed to the methodology, which is the focus of this paper. Such 

application in mining provides further support to the view that the process is applicable in the real world, 

although an example study in parking infrastructure was used here to illustrate the overall approach. Thus, 

another opportunity for future extension of the work is to thoroughly study the application process of the 

proposed method in practice, and share the experience and insights gained by the system managers and analysts. 

In step 4, the results obtained using aOFAT were compared to those obtained using an evolutionary algorithm, 

and full factorial analysis. While aOFAT found a good solution, it did not find the global optimum for each 

representative scenario, which is an important limitation. Additional work is needed to compare other 

optimization and space sampling techniques to construct the catalog. Also, it is unclear how the operating plans 

can be constructed for iso-performance analysis, or when the objective is not necessarily to optimize 

performance under each representative scenario. In step 5, comparison with stochastic optimization showed that 

the catalog approach does not generate as much value as the global optimal configuration. While this is 

expected, the loss in value is explained by the fact that simulated demand scenarios are categorized based on a 

quick and efficient criterion (i.e. 5-year growth) that may not be the best, and may lead to sub-optimal 

classification if demand evolves differently over the following years. Also, while finding the global optimum 

was possible in this study, it may not be possible when optimizing the system using a high-fidelity model. More 

studies should apply the technique in a context where it may not be possible to find the global optimum, as a 

way to demonstrate general applicability in industry. 

 

Here, a 37% improvement in expected lifecycle performance was observed compared to the best inflexible 

benchmark design, while exploring less than 3% of the design space for each representative scenario. The 

design catalog generated using aOFAT reached nearly 91% of the ENPV obtained by the catalog constructed 

using full factorial analysis, and 88% compared to the preferred stochastic solution for the flexible design. The 
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design catalog approach reached the preferred solution 183 times faster than stochastic optimization in terms of 

computational runtime. The fact that the catalog approach generated improvements with so little computations 

shows that it has good potential for designers having limited time and analytical resources, or not having the 

resources to conduct more advanced real options and/or stochastic optimization analyses. 

 

The cause and effect relationships reported here depend on the modeling assumptions and model validity. The 

results reported here are deemed internally valid and reliable because the same set of assumptions was used to 

analyze each scenario, compare each design alternative, and each design catalog. They are useful to rank order 

the design alternatives relative to one another in terms of expected performance (i.e. inflexible vs. flexible 

systems). It is difficult, however, to fully validate the valuation results, because of the typically long lifecycle of 

such system. Important features of the process are thus to enable recognition and creation of value-adding 

flexibility, to enable relative rank ordering of different solutions, and to do so in a computationally efficient 

manner. The process may be generalizable to other engineering systems, since a similar version was applied 

successfully to analyze other systems in the real estate and mining industries [Cardin, de Neufville, Geltner and 

Deng, 2013, Cardin, de Neufville and Kazakidis, 2008]. Such external validity must be, however, further 

validated with more industry applications and studies in practice. 

6 Conclusion 
This paper presents a novel process to improve current systems design and evaluation practice that often relies 

on simplifying assumptions regarding the main uncertainty drivers affecting lifecycle performance in 

engineering systems. The proposed process bundles a set of representative uncertainty scenarios obtained using 

probability elicitation and scenario planning techniques within a design catalog consisting of key operating 

plans. Each operating plan provides an appropriate flexible response to a representative uncertainty scenario. 

This enables recognizing upfront intelligent managerial decisions in design and management, stemming from 

the flexibility embedded early in the system design, without relying on more advanced real options and 

stochastic programming techniques. It alleviates computational challenges typically related to such extended 

design and evaluation analysis. 

 

The catalog approach was applied to the analysis of an example infrastructure system, a particular class of 

engineering system. It shows 37% improvements in expected lifecycle performance compared to the baseline 

design developed from standard design and evaluation practice. The analysis explores less than 3% of the design 

space, representing significant economies in terms of computational runtime and analytical resources, while 

reaching 88-91% of the response obtained with full factorial and stochastic optimization methods. Even though 

the process is promising, more work is needed to fully validate its use across different systems and industries. 
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7 Appendix 

7.1 Modeling Data 
Table 11 Master table summarizing lower (LB) and upper bound (UB) values for design variables (DV), 

parameters (DP), constraints (C), and objective functions  (O) for the parking garage system. 

Symbol Description [LB, UB] Initial Value Units Type 

cc Construction cost per parking space - 16,000 [$] DP 

cl Annual leasing land cost - 3,600,000 [$] DP 

cr Operating cost per parking space - 2,000 [$] DP 

cct Total construction cost at year t - f(cc, gc, k0) [$] C 

Ct Total cost at year t - f(cct, ce, cl, cr, kt) [$] C 

f0 Number of initial floors at year 0 2 - 9 6 [floors] DV 

gC Constr. cost growth per floor above two - 10% [%] DP 

kt Total parking space capacity at year t 400 - 1,800 f(f0, n0, ft) [spaces] C 

n0 Initial number of parking space/floor - 200 [spaces] DP 

NPV Net Present Value None - [$] O 

p Price per parking space - 10,000 [$] DP 

Rt Total revenues at year t None f(kt, p, Dt) [$] C 

r Discount rate - 12% [%] DP 

T Project duration - 20 [years] DP 

 
(Below apply to flexible design) 

    
a1-4 Expansion allowed in years 1 to 4 Yes - No Yes - DR 

a9-12 Expansion allowed in years 9 to 12 Yes - No Yes - DR 

a17-20 Expansion allowed in years 17 to 20 Yes - No Yes - DR 

ce Expansion cost at time t - f(cc, ft, gc, kt, n0) 
  

cf Cost of acquiring the flexibility - 0 [$] C 

cp Percentage cost of flexibility - 0% [%] DP 

dr 
Number of years with demand > 

capacity 
2 - 4 2 [years] DR 

fmax Maximum number of floors - 9 [floors] C 

ft Number of floors expanded in year t 1 - 3 1 [floors] DV 
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7.2 Procedure for generating representative scenarios 
This process is inspired from scenario-planning by Schoemaker [1995]: 

a) Defining the scope  

a. What is the time frame and scope of the analysis? 

b. Consider markets, geographic areas, technologies 

b) Identifying major stakeholders 

a. Who will have interest in this engineering system, who will be affected, who can influence it? 

b. Examples include customers, suppliers, competitors, employees, shareholders, government 

c) Identifying basic trends 

a. What political, economic, societal, technological, legal, and industry trends will affect the issue 

identified in step 1? 

b. Think of a discrete number of representative trends (e.g. low, medium, high economic growth; 

slow initial demand ramping quickly; favorable or unfavorable regulatory environments) 

d) Identifying key uncertainties 

a. What events that are uncertain will significantly affect the issues of concerns? 

b. Consider the major uncertainty drivers in terms of the trends identified in the previous step 

e) Constructing initial scenario themes 

a. Consider extreme worlds such as putting all positive elements into one scenario, and all negative 

elements into another, then combine elements in various ways to generate intermediate scenarios 

f) Check for consistency and plausibility 

a. Are the trends compatible with the chosen timeframe? 

b. Do scenarios combine outcomes of uncertainties that go together? 

c. Can the major stakeholders be placed in a position they do not like and will want to change? 

g) Develop learning scenarios 

a. Are there strategically relevant themes, and how can one organize possible trends and outcomes 

around them? 

h) Identify research needs 

a. Is there a need for more research to further refine the scenarios? 

i) Developing quantitative models  

a. Examine the internal consistencies of the scenarios and determine how to formalize their 

interaction with the system via a quantitative model 

j) Evolve toward decision scenarios 

a. Do the scenarios help the organization spur further creativity and/or appreciate the up and 

downside events that may occur and affect the system’s lifecycle performance? 
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8 Acronyms 
aOFAT  = adaptive one factor at a time 

C  = constraint 

DCF  = discounted cash flow 

DP  = design parameter 

DOE  = design of experiment 

DSM  = design structure matrix 

DV  = design variable 

ENPV  = expected net present value 

IRR  = internal rate of return 

LB  = lower bound 

MATE  = multi-attribute tradespace exploration 

NPV  = net present value 

O  = objective function 

OOIP  = original oil in place 

ROA  = real options analysis 

ROI  = return on investment 

SO  = simulation-based optimization 

UB  = upper bound 

 


