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Abstract

This paper aims to maximize optical force or torque on arbitrary micro- and nano-scale objects
using numerically optimized structured illumination. By developing a numerical framework for
computer-automated design of 3d vector-field illumination, we demonstrate a 20-fold enhancement
in optical torque per intensity over circularly polarized plane wave on a model plasmonic particle.
The nonconvex optimization is efficiently performed by combining a compact cylindrical Bessel
basis representation with a fast boundary element method and a standard derivative-free, local
optimization algorithm. We analyze the optimization results for 2000 random initial configurations,
discuss the tradeoff between robustness and enhancement, and compare the different effects of
multipolar plasmon resonances on enhancing force or torque. All results are obtained using open-
source computational software available online.

1 Introduction

We show how large-scale computational optimization [1, 2, 3] can be used to design superior and non-
intuitive structured illumination patterns that achieve 20-fold enhancements (for fixed incident-field
intensity) of the optical torque on sub-micron particles, demonstrating the utility of an optimal design
approach for the many nanoscience applications that rely on optical actuation of nanoparticles [4, 5, 6].

Recent advances in nanoparticle engineering [7, 8] and holographic beam-generation via spatial light
modulators (SLMs) [9, 10, 11, 12] and other phase-manipulation techniques[13, 14, 15, 16] have created
many new degrees of freedom for engineering light-particle interactions beyond traditional optical
tweezers. Enhanced and unusual optical forces and torques can be engineered by designing material
objects [17, 18, 19, 20, 21] and/or structured illumination, with the latter including “tractor beams”
[22, 23] and beams carrying optical angular momentum [24, 25, 26, 27]. These increased degrees of
freedom pose an interesting design challenge: for a given target object, what is the optimal illumination
pattern to produce the strongest optical force or torque? While a small number of Gaussian beam
parameters can be manually calibrated for optimal performance using manual trial-and-error [28], an
arbitrary 3d vector field requires a more targeted approach. Moreover, optimization of a 3d vector
field is highly nonconvex by nature, and possesses many local optima due to wave interference and
resonance. When exploring so many parameters, a large number of scattering problems must be solved
efficiently, which requires careful design of the optimization framework.

Research in computational optimization of optical actuation has focused on the design of new
material geometries [29, 30] and on the improvement of multiplexed optical traps for microscale di-
electric particles (holographic optical tweezers) [31, 32, 33, 34, 35, 36, 37]. However, no computational
method has been available to design structured illumination for unconventional target objects that are
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Figure 1: Schematic of a structured vector-field illumination, analytically represented with a vector
Bessel basis. The right inset shows the distributions for electric field (color) and polarization (black
arrows) of the vector Bessel basis. The illumination can be optimized to produce maximum mechanical
force or torque on an example target particle. The gold nanotriangle in the left inset has edge length
400nm, thickness 40nm, and rounding diameter 30nm. The scanning electron microscope (SEM) image
shows an experimental sample fabricated using electron-beam lithography. This demonstrates that
such particles can be made, but all results presented in this paper are purely computational.

nonspherical, lossy, or nanometer-scale, thereby requiring a costly full-wave numerical simulation for
computing optical force and torque.

We present a compact and rapid computational framework to optimize structured illumination
for the mechanical actuation of an arbitrary target object. We combine (i) a compact Bessel-basis
representation (Sec. 2.1); (ii) a numerical solver based on boundary element method (BEM) that
discretizes the surfaces of a 3d scattering problem to form a BEM matrix, and solves hundreds of
thousands of incident-field configurations using the same matrix (Sec. 2.2); (iii) an appropriate opti-
mization algorithm that exploits the smoothness of the nonconvex and nonlinear optimization problem
(Sec. 2.3); and (iv) a suitable figure of merit (FOM) and optimization constraints (Sec. 2.4). As a
result, we rapidly attain many-fold improvements in optical force and torque over random field or
plane wave illuminations (Sec. 3.1), and discuss the tradeoff between enhancement and robustness of
optimization (Sec. 3.3). Furthermore, a given material object may have scattering resonances at var-
ious frequencies, and the choice of frequency for the incident field has several important implications.
When comparing interactions with two different resonances, we were able to distinguish the impact
of the change in the resonant field pattern from the change in the resonance lifetime. Controlling for
the change in lifetime, we found that torque seems to favor higher-order (e.g., quadrupole) resonances
with greater angular momentum, while force seems to favor lower-order (e.g., dipole) resonance with
greater field intensity within the particle (Sec. 3.2).

2 Optimization Framework

A structured-illumination optimization aims to find the best 3d vector field, i.e., the one that max-
imizes a desired FOM for a given scattering problem (see Fig. 1). Our choice of the Bessel basis
expansion is described in Sec. 2.1. Sec. 2.2 and 2.3 discuss the BEM solver and the optimization
algorithm. Lastly, Sec. 2.4 explains force and torque FOMs and the corresponding optimization
constraints. The entire numerical framework is implemented with C++.
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2.1 Analytical Representation of Structured Illumination

The computational design of structured illumination requires a compact analytical representation of
an arbitrary 3d vector field. The vector field will contain spatial variations in both intensity and phase,
and must satisfy the vector wave equation [38]. The electric field can be represented using a basis
expansion E =

∑N
i=0 ciφi, where the complex scalar coefficient ci determines the relative intensity and

phase of each mode φi.
The choice of coordinates and the basis functions φi depends on the problem geometry. While

the spherical coordinate system is a common choice in Mie scattering [39, 40], it requires a very large
number of modes N to represent light propagating along a linear axis and potentially interacting with
flat substrates or SLMs. The Cartesian coordinate system is also ill-suited because it requires large
N to describe laser beams with a finite radius. We find that the cylindrical coordinate system [41, 42]
is well suited, requiring a small number of modes to describe structured illumination with varying
distributions of linear and angular momentum.

Among the wide menu of cylindrical basis functions (e.g., Bessel, Laguerre-Gaussian, Hermite-
Gaussian, and so forth) [42], we choose the Bessel basis [43, 44] for its compact analytical expression,
derived from the scalar generating function

ψm(r, ϕ, z) = Jm(ktr) exp(imϕ+ ikzz), (1)

where Jm is the mth-order Bessel function, kt is the transverse wavevector in r̂, and kz is the longitu-
dinal wavevector in ẑ, satisfying k2

t + k2
z = 2π/λ. The ratio between kt and kz specifies the numerical

aperture of the basis, NA = arctan(kt/kz). Higher NA represents greater transverse momentum
that can increase optical torque. But the permissible range of NA is often dictated by experimental
considerations, and the range of NA in the optimization can be set accordingly.

Taking spatial derivatives of Eq. (1) gives

Mi = ∇× (ψiuz), (azimuthal polarization) (2)

Ni =
1

k
∇×Mi, (radial polarization) (3)

where uz is the unit vector in ẑ, and Mi and Ni are the ith bases for azimuthal and radial polarizations,
respectively (right inset of Fig. 1). The incident electric field Einc can be expressed as:

Einc(r, φ, z) =

N∑
i=0

aiMi + biNi, (4)

where ai and bi are the complex scalar coefficients. Bessel basis produces the most compact expressions
for Mi and Ni because the magnitude of ψ does not vary with z, reducing ∂/∂z terms in Eqs. (2)
and (3).

We can use Eq. (4) to approximate a CP planewave configuration near the nanoparticle by setting
NA= 0.01◦ and ai, bi = 0, except for a1 = 1. This approximation is used once in Fig. 2 to
start the optimization from a CP planewave. All other CP planewave results are computed without
approximations, using E(r, ϕ, z) = [ur + iuϕ] exp(iϕ+ ikz) instead of Eq. (4).

Note that we intentionally decouple our optimization framework from the idiosyncratic differences
in the spatial resolution of the SLMs. A wide variety of experimental methods (e.g., superposed pitch-
fork holograms) [9] can be used to generate beams expressed as Eq. (4), for a finite N and NA. In this
paper, we consider numerical apertures with opening angles ≤ 10◦ and 12 basis functions (N = 5).

2.2 Numerical Solver

The optimization process itself has no restrictions on the choice of the numerical solver, so the biggest
consideration is the computational cost: the smaller the the better. We choose the Boundary Element
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Method (BEM) [45, 46] for several reasons. In comparison to other scattering methodologies such as
the finite-difference or finite-element methods, BEM is particularly well-suited to the type of large-
scale optimization problem requiring a rapid update of the incident field for a given geometry and a
given wavelength λopt.

M︸︷︷︸
fixed

BEM matrix

c︸︷︷︸
output
current

= f︸︷︷︸
rapidly updated

input field

(5)

In Eq. (5), the BEM matrix M remains fixed for a given geometry and frequency, while the column
f representing the incident field is rapidly updated at each step of the optimization process. This
allows hundreds of thousands of scattering configurations to be computed on the order of a few hours.
In addition, BEM projects the 3d scattering problem onto a 2d surface mesh, thereby reducing the
computation volume by a factor of 1/2000 in the nanoparticle scattering problem we consider. Lastly,
recent improvements [47] have significantly increased the speed with which optical force and torque
can be computed in BEM.

2.3 Optimization Algorithm

Structured-illumination optimization is nonlinear and nonconvex, such that searching for a global
optimum is prohibitively expensive. Therefore we choose a local algorithm with random starting points.
We choose one of the simplest solutions available: constrained optimization by linear approximation
(COBLYA) [2], a derivative-free algorithm that exploits the smoothness of the problem. An open-
source implementation of COBYLA is available through NLopt [3].

2.4 Figure of Merit and Optimization Constraints for Optical Force and Torque

We consider two types of optical actuation with respect to the object coordinate (left inset of Fig.
1), the force Fz and torque Tz. In order to avoid the optimizer from increasing the brightness of
the beam indefinitely, we choose to divide the force and torque by the average incident-field intensity
on the particle surface (Iavg = |Einc|2/2Z0, where Z0 is the impedance of free space), which is easily
computed in BEM. We choose the incident-field rather than the total-field intensity to avoid penalizing
high extinction efficiency. Iavg is measured on the particle surface because we want to account for the
portion of the beam that interacts with the target particle, rather than the entire beam. We choose
nondimensionalized figures of merit:

FOMF =
Fz

Iavg
·
( πc

3λ2

)
, (6)

FOMT =
Tz
Iavg
·
(

4π2c

3λ3

)
, (7)

where the constants in parentheses reflect ideal single-channel scattering. The largest [48, 49, 50]
scattering cross-section into a single (spherical harmonic) channel is 3λ2/2π, which when multiplied
by single-photon changes in linear (2h̄k) and angular (h̄) momentum per photon, divided by the photon
energy (h̄ω), yields the constants in Eqs. (6) and (7).

Based on the geometry and material composition of the particle, force or torque in various di-
rections can arise even when the incident field itself does not provide an imbalance in optical mo-
mentum. Optimization constraints can be added to suppress actuation in undesired directions. We
suppress actuations in directions other than ẑ using smooth constraints:

(
|F|2 − F 2

z

)
/|F|2 ≤ 0.01 and(

|T|2 − T 2
z

)
/|T|2 ≤ 0.01, where the limiting value 0.01 is set to ensure that Fz and Tz exceed 99% of

the force and torque magnitudes |F| and |T|, respectively.
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Figure 2: Distribution of FOM for 2000 randomly chosen incident field configurations at 1028nm, before
(black) and after (blue) optimization. Red marks on the x-axis indicate the initial (triangle) and final
(circle) FOM when the optimization starts from a circularly polarized plane wave. Representative
incident fields are plotted in the right.

Figure 3: Distribution of FOM for 2000 randomly chosen incident field configurations at 625nm. Top
inset shows four different field patterns with a near-identical FOM near the median, and the bottom
inset shows the field with the best FOM.

3 Results and Discussion

We demonstrate our illumination-field optimization framework on the gold nanotriangle illustrated in
Fig. 1. Our previous work [51] analyzes the optical force and torque on such a particle for circularly-
polarized (CP) planewave illumination. CP planewave is a common incident-field choice [52, 53, 19, 20]
for torque generation due to its intrinsic spin angular momentum, but we find in our computational
optimization that highly optimized field patterns can show 20x improvement of FOMT . The wave-
length of illumination in each optimization, λopt, is chosen to correspond to the plasmonic resonance
wavelengths of the model particle.

Sec. 3.1 presents the distribution of 2000 local-optimization results and discusses the optimized
field-patterns. Sec. 3.2 analyzes the wavelength-dependence of optical force and torque for optimized
illuminations, based on the choice of λopt, and compares the results with the reference force and torque
from CP planewave. Lastly, the tradeoff between robustness and enhancement is discussed in Sec. 3.3.

3.1 Illumination-field Optimization from 2000 Randomly Selected Initial Config-
urations

The illumination-field design space is nonconvex and littered with local optima, due primarily to wave-
optical interference effects. We survey this broader design space by restarting our local-optimization
algorithm 2000 times with randomly selected initial configurations that are constructed using Eq. (4),
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Figure 4: Force spectrum for two different target wavelengths (vertical green line), (a) 1028nm and
(b) 625nm. The spectra for the best (blue line) and the median (red dashed line) optimized field
configurations are each labeled with the factor of enhancement, with respect to CP planewave reference
(black dashed line).

where the complex coefficients ai and bi are uniform random numbers bounded by |ai|, |bi| ≤ 1. The
results are summarized in Figs. 2 and 3 at λopt = 1028nm (dipole resonance) and 625nm (quadrupole
resonance), respectively. At both wavelengths, we find that more than 50% of local optimizations
from random starting points can achieve over 5x enhancement of FOMT compared to CP planewave
reference, and that the optimized field patterns contain various combinations of Bessel-basis modes
without a systematic convergence to one over the others. The distributions are plotted in log-scale to
increase the visibility of small bins.

In Fig. 2, the median FOMT at 0.913 is very close to the best FOMT at 1.01 and the distribution
is predominantly concentrated to the right: the 4 rightmost bars represent 69% of all samples, which
all achieve over 5x enhancement of FOMT compared to CP planewave reference at 0.169 (marked
with a red triangle). The insets show the optimization results from two different starting points –
random field (top) and CP planewave (bottom) – that reach similar optimized field patterns. We also
observe that a variety of other patterns, dominated by different combinations of Bessel-basis modes,
can produce a nearly identical or superior FOM.

In Fig. 3, the final FOMT distribution is more dispersed between the median at 3.934 and the
best at 10.94, which respectively achieve over 5x and 14x enhancement compared to CP planewave
reference at 0.779. As in Fig. 2, the results concentrate heavily around the median; however, in Fig.
3 a small number of samples achieve a remarkable improvement above 14-fold. The top inset shows
four different field patterns that produce a nearly identical FOMT above the median, and the bottom
inset shows the field-pattern with the highest FOMT . A comparison of all optimized field patterns at
1028nm and 625nm shows that the latter contains more higher-order Bessel-basis contributions.

3.2 Dependence on Illumination Wavelength

We further investigate the influence of λopt by plotting optical force or torque per incident-field in-
tensity Iavg as a function of illumination wavelength. In Figs. 4(a) and 4(b), the reference planewave
force spectrum (black dashed line) is identical in both plots, clearly dominated by a broad dipole
resonance with smaller peaks at higher-order resonances. Through illumination-field optimization, we
can enhance the force at the dipole mode while suppressing higher-order modes (Fig. 4(a)) and also
enhance the force at the quadrupole mode while suppressing the dipole mode (Fig. 4(b)).

In Figs. 5(a)–5(c), the reference planewave torque spectrum (black dashed line) is identical in all
three plots and peaks at both dipole and quadrupole resonances with nearly equal heights (explained in
detail in [51]). Illumination-field optimization at dipole resonance and off-resonance achieve a similar
6x-boost at the chosen λopt value without suppressing the quadrupole resonance. The optimized total
fields in Fig. 5(d) at 1028nm and 805nm both exhibit a 4π phase change around the circumference of
the particle, resembling a quadrupole resonance.
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Figure 5: Torque spectrum for three different target wavelengths (vertical green line), (a) 1028nm,
(b) 805nm, and (c) 625nm. The spectra for the best (blue line) and the median (red dashed line)
optimized field configurations are each labeled with the factor of enhancement, with respect to CP
planewave reference (black dashed line). (d): Total-field distributions of initial random field (left) and
final optimized field (right) for the best optimized field configurations at three target wavelengths.
Scalebar is 400nm.

In Fig. 5(c), on the other hand, the best optimization at quadrupole resonance achieves a remark-
able 20x improvement while suppressing much of the dipole resonance; the median optimization also
achieves 12x improvement while suppressing the dipole resonance to a lesser extent. The optimized
total field in Fig. 5(d) at 625nm shows a distinct, highly resonant distribution.

When comparing interactions with two different resonances, we were able to distinguish the impact
of the change in resonant field pattern from the change in the resonance lifetime. Controlling for the
change in lifetime, we found that torque seems to favor higher-order (e.g., quadrupole) resonances with
greater angular momentum, while force (Fz), which closely correlates with extinction power, seems to
favor lower-order (e.g., dipole) resonance with greater field intensity within the particle. With the use
of structured illumination, higher-order resonances can be excited more effectively, which contributes
to higher optical torque after optimization.

Our numerical optimization framework allows a systematic search of the illumination-field design
space to maximize force or torque on lossy, non-spherical particles with multipolar scattering channels.
In addition, we think a rigorous analytical study of the fundamental upper bounds on opto-mechanical
responses, similar to the analysis performed on light extinction [54, 55], would be useful in the future.

3.3 Robustness of Optimization

Experimental generation of the designed illumination via SLMs may suffer various types of manufac-
turing errors [56]. Fig. 6 shows the tradeoff between enhancement and robustness to experimental
errors. The fractional error is added to the beam using

Ew =

m∑
i=0

(ai + δai)Mi + (bi + δbi)Ni, (|δ| ≤ w · |a, b|∞) , (8)

where δ is a complex-valued random error bounded by the magnitude of the largest coefficient mul-
tiplied by the fractional weight 0 ≤ w ≤ 1. Fig. 6 shows the decrease in FOMT as a function of w.
At λdip, increasing w from 1% to 10% decreased the best FOM from 0.994 to 0.517, and the median
FOM followed a similar trend. On the other hand, FOMT of the best optimized field at λquad dropped
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Figure 6: Robustness of the optimized incident fields, quantified by the decrease in FOMT with
respect to fractional random error added to the best (blue) and the median (red) optimized fields, at
λdip (right) and λquad (left). The error bar represents the standard deviation for 100 samples.

from 8.624 to 1.433, and the median optimized field changed from 3.92 to 3.237. Fig. 6 demonstrates
a clear tradeoff between field enhancement and error tolerance, as one might expect due to the need
to couple strongly to the underlying particle resonances. For the tolerance requirements of a given
experimental setup, the approach we outline here could easily be adapted to a robust-optimization
framework [57, 58] in which the expected variability is included and optimized against.

4 Conclusion

We present a numerical framework for computer optimization of structured illumination that maxi-
mizes optical force or torque on arbitrary scatterers, and show a 20-fold enhancement in optical torque
per intensity on an example plasmonic nanoparticle, compared to a circularly polarized planewave.
Previously, the major bottleneck has been the cumbersome computation. We overcome this bottleneck
with a compact cylindrical Bessel basis and a fast boundary element method. We are optimistic that
such computational framework for 3d vector fields can be generalized and applied to other design
problems in opto-mechanics, nanophotonics, and 3d imaging.
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