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Abstract. We develop a framework for multifidelity information fusion and predictive inference
in high-dimensional input spaces and in the presence of massive data sets. Hence, we tackle simulta-
neously the “big N” problem for big data and the curse of dimensionality in multivariate parametric
problems. The proposed methodology establishes a new paradigm for constructing response sur-
faces of high-dimensional stochastic dynamical systems, simultaneously accounting for multifidelity
in physical models as well as multifidelity in probability space. Scaling to high dimensions is achieved
by data-driven dimensionality reduction techniques based on hierarchical functional decompositions
and a graph-theoretic approach for encoding custom autocorrelation structure in Gaussian process
priors. Multifidelity information fusion is facilitated through stochastic autoregressive schemes and
frequency-domain machine learning algorithms that scale linearly with the data. Taking together
these new developments leads to linear complexity algorithms as demonstrated in benchmark prob-
lems involving deterministic and stochastic fields in up to 105 input dimensions and 105 training
points on a standard desktop computer.
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1. Introduction. Decision making in data-rich yet budget-constrained environ-
ments necessitates the adoption of a probabilistic machine learning [1] mindset that
combines versatile tools, ranging from experiments to multifidelity simulations to ex-
pert opinions, ultimately shaping new frontiers in data analytics, surrogate-based
modeling, design optimization, and beyond.

Ever since the pioneering work of Sacks et al. [2], the use of surrogate models
for the design and analysis of computer experiments has undergone great growth,
establishing regression methods with Gaussian processes (GPs) [3] as a general and
flexible tool for building inexpensive predictive schemes that are capable of emulating
the response of complex systems. Furthermore, the use of GPs within autoregressive
stochastic models, such as the widely used scheme put forth by Kennedy and O’Hagan
[4] and the efficient recursive implementation of Le Gratiet and Garnier [5], allows for
exploring spatial cross-correlations between heterogeneous information sources. In [6]
the authors argue that this offers a general platform for developing multifidelity infor-
mation fusion algorithms that simultaneously accounts for variable fidelity in models
(e.g., high-fidelity direct numerical simulations versus low-fidelity empirical formulae)
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as well as variable fidelity in probability space (e.g., high-fidelity tensor product mul-
tielement probabilistic collocation [7] versus low-fidelity sparse grid quadratures [8]).
Although this construction is appealing to a wide range of applications, it is mainly
limited to low-dimensional input spaces and moderately sized data sets.

A common strategy for constructing autocorrelation models for GPs in high di-
mensions is by taking the product of one-dimensional autocorrelation kernels. This
typically results in an anisotropic covariance model, which assumes that all dimen-
sions actively interact with each other. However, as the dimensionality is increased,
one would hope to find sparsity in the input space, i.e., dimensions with negligible or
very weak pairwise interactions [9, 10]. This observation has been widely studied in
the literature and has motivated the use of additive models in [11]. Durrande et al.
[12] have recently adopted this approach in the context of GPs, advocating versatility
in constructing custom autocorrelation kernels that respect the structure in the ob-
served data. This suggests that, having a way to quantify the active interactions in
the data, one can tailor an autocorrelation model that closely adheres to those trends.
To this end, Muehlenstaedt et al. [13] have employed functional analysis of variance
(ANOVA) decompositions to compute the degree to which each input dimension, and
their pairwise interactions, contribute to the total variability in the observations and
used the corresponding sensitivity indices to construct an undirected graph that pro-
vides insight into the structure of possible additive autocorrelation kernels that best
suit the available data. Although this approach is evidently advantageous for scaling
GPs to high-dimensional problems, it may still suffer from computational tractability
issues in the presence of big data sets, unless sparse approximations are employed
[14, 15].

In general, the design of predictive inference schemes in high dimensions suffers
from the well-known curse of dimensionality, as the number of points needed to ex-
plore the input space in its entirety increases exponentially with the dimension. This
implicit need for big data introduces a severe deadlock for scalability in machine learn-
ing algorithms as they often involve the repeated inversion of covariance matrices that
quantify the spatial cross-correlations in the observations. This defines the so-called
big N problem—an expression used to characterize the demanding operational count
associated with handling data sets comprising N observations (N > 1000). The im-
plications of such large data sets on learning algorithms are well known, leading to an
O(N3) scaling for implementations based on maximum likelihood estimation (MLE).
Addressing this challenge has received great attention over the last decades and sev-
eral methods have been proposed to alleviate the computational cost [16, 17, 18].
Here, we will focus our attention on the frequency-domain learning approach recently
put forth by De Baar, Dwight, and Bijl [19] that entirely avoids the inversion of co-
variance matrices at the learning stage and is applicable to a large class of wide-sense
stationary autocorrelation models. This essentially enables the development of O(N)
algorithms, hence opening one path to predictive inference on massive data sets.

Here, we overcome the O(N3) scaling by employing frequency-domain learning
[19] that entirely avoids costly matrix inversions. Scaling to high dimensions is ac-
complished by employing hierarchical functional decompositions that reveal structure
in the data and inspire a graph-theoretic approach for constructing customized GP
priors that exploit sparsity in the input space. To this end, we propose a new data-
driven dimensionality reduction technique based on local projections—justified by the
Fourier projection-slice theorem [20]—to decompose the high-dimensional supervised
learning problem into a series of tractable, low-dimensional problems that can be
solved in parallel using O(N)-fast algorithms in the frequency domain.
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The paper is structured as follows. In sections 2.1 and 2.2 we provide a brief
overview of GP regression and multifidelity modeling via recursive GPs. In sec-
tion 2.3 we present the basic steps in performing learning via MLE and highlight
the bottlenecks introduced by high dimensions and big data. In section 2.3.2 we pro-
vide an overview of the frequency-domain approach of De Baar, Dwight, and Bijl
[19] that bypasses the shortcomings of MLE and enables fast learning from massive
data-sets. Subsequently, in section 3 we elaborate on kernel design in high dimen-
sions. In particular, we outline the a data-driven hierarchical functional decomposi-
tion based on random sampling high-dimensional model representation (RS-HDMR)
expansions [9] and describe a graph-theoretic approach inspired by [13] for tailoring
structured GP priors to the data. Moreover, we discuss how to decompose the global
high-dimensional learning problem to a series of local solves using a projection-based
dimensionality reduction technique in conjunction with the Fourier projection-slice
theorem [20]. In section 3.1 we conclude with a summary of the proposed workflow,
underlining key implementation aspects. The capabilities of the proposed methodol-
ogy are demonstrated through three benchmark problems. First, in section 4.1 we
employ a multifidelity modeling approach for constructing the mean field response
of a stochastic flow through a borehole. Second, in section 4.2 we use the proposed
methodology for estimating the probability density of the solution energy to a stochas-
tic elliptic problem in 100 dimensions. Last, in section 4.3 we present an extreme case
of performing GP regression in up to 100,000 input dimensions and 105 data points.

2. Multifidelity modeling via recursive GPs. The basic building block of
the proposed multifidelity information fusion framework is GP regression. One way of
viewing the use of GPs in regression problems is as defining a prior distribution over
functions, which is then calibrated in view of data using an appropriate likelihood
function, resulting in a posterior distribution with predictive capabilities. In what
follows we provide an overview of the key steps in this construction, and we refer the
reader to [3] for a detailed exposition to the subject.

2.1. GP regression. The main idea here is to model Nscattered observations
y of a quantity of interest Y (x) as a realization of a Gaussian random field Z(x),
x ∈ Rd. The observations could be deterministic or stochastic in nature and may
well be corrupted by modeling errors or measurement noise E(x), which is thereby
assumed to be a zero-mean Gaussian random field, i.e., E(x) ∼ N (0, σ2

ε I). Therefore,
we have the following observation model:

(1) Y (x) = Z(x) + E(x).

The prior distribution on Z(x) is completely characterized by a mean µ(x) = E[Z(x)]
and covariance κ(x,x′; θ) function, where θ is a vector of hyper-parameters. Typically,
the choice of the prior reflects our belief about the structure, regularity, and other
intrinsic properties of the quantity of interest Y (x). However, our primary goal here
is not just drawing random fields from the prior but to incorporate the knowledge
contained in the observations y in order to reconstruct the field Y (x). This can be
achieved by computing the conditional distribution π(ŷ|y, θ), where ŷ(x?) contains
the predicted values for Y (x) at a new set of locations x?. If a Gaussian prior is
assumed on the hyper-parameters θ, then π(ŷ|y, θ) is obviously Gaussian and provides
a predictive scheme for the estimated values ŷ. Once Z(x) has been trained on the
observed data (see section 2.3), its calibrated mean µ̂, variance σ̂2, and noise variance
σ̂2
ε are known and can be used to evaluate the predictions ŷ, as well as to quantify

the prediction variance v2 as (see [21] for a derivation)
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ŷ(x?) = µ̂+ rT (R+ σ̂2
ε I)−1(y − 1µ̂),(2)

v2(x?) = σ̂2

[
1− rT (R+ σ̂2

ε I)−1r +
[1− rT (R+ σ̂2

ε I)−1r]2

1T (R+ σ̂2
ε I)−11

]
,(3)

where R = κ(x,x′; θ) is the N × N correlation matrix of Z(x), r = κ(x,x?; θ) is a
1 × N vector containing the correlation between the prediction and the N training
points, and 1 is a 1 × N vector of ones. This is a linear regression scheme known
as the best linear unbiased predictor in the statistics literature [22]. Note, that for
σ2
ε = 0 the predictor exactly interpolates the training data y, returning zero variance

at these locations.

2.2. Multifidelity modeling via recursive GPs. Multifidelity stochastic mod-
eling entails the use of variable fidelity methods and models both in physical and prob-
ability space [6]. Efficient information fusion from diverse sources is enabled through
recursive GP schemes [5] combining s levels of fidelity and producing outputs yt(xt),
at locations xt ∈ Dt ⊆ Rd, sorted by increasing order of fidelity, and modeled by GPs
Zt(x), t = 1, . . . , s. Then, the autoregressive scheme of Kennedy and O’Hagan [4]
reads as

(4) Zt(x) = ρt−1(x)Zt−1(x) + δt(x), t = 2, . . . , s,

where Rt = κt(xt,x
′
t; θ̂t) is the Nt × Nt correlation matrix of Zt(x) and δt(x) is a

Gaussian field independent of {Zt−1, . . . , Z1}, distributed as δt ∼ N (µδt , σ
2
tRt(θt)).

Also, {µδt , σ2
t } are mean and variance parameters, while ρ(x) is a scaling factor that

quantifies the correlation between {Zt(x), Zt−1(x)}. The set of unknown model pa-
rameters {µδt , σ2

t , ρt−1, θt} is typically learned from data using MLE.
The key idea put forth by Le Gratiet [5] is to replace the Gaussian field Zt−1(x)

in (4) with a Gaussian field Z̃t−1(x) that is conditioned on all known observations
{yt−1, yt−2, . . . , y1} up to level (t− 1), while assuming that the corresponding experi-
mental design sets Di, i = 1, . . . , t− 1, have a nested structure, i.e., D1 ⊆ D2 ⊆ · · · ⊆
Dt−1. This essentially allows us to decouple the s-level autoregressive problem to s
independent kriging problems that can be efficiently computed and are guaranteed
to return a predictive mean and variance that is identical to the coupled Kennedy
and O’Hagan scheme [4]. To underline the advantages of this approach, note that
the scheme of Kennedy and O’Hagan requires inversion of covariance matrices of size∑s
t=1Nt ×

∑s
t=1Nt, where Nt is the number of observed training points at level t.

In contrast, the recursive approach involves the inversion of s covariance matrices of
size Nt ×Nt, t = 1, . . . , s.

Once Zt(x) has been trained on the observed data {yt, yt−1, . . . , y1} (see sec-

tion 2.3), the optimal set of hyper-parameters {µ̂t, σ̂2
t , σ̂

2
εt , ρ̂t−1, θ̂t} is known and can

be used to evaluate the predictions ŷt as well as to quantify the prediction variance
v2t at all points in x?t (see [5] for a derivation),

ŷt(x
?
t ) = µ̂t + ρ̂t−1ŷt−1(x?t ) + rTt (Rt + σ̂2

εtI)−1[yt(xt)− 1µ̂t − ρ̂t−1ŷt−1(xt)],(5)

v2t (x?t ) = ρ̂2t−1v
2
t−1(x?t ) + σ̂2

t

[
1− rTt (Rt + σ̂2

εtI)−1rt +
[1− rTt (Rt + σ̂2

εtI)−1rt]
2

1Tt (Rt + σ̂2
εtI)−11t

]
,

(6)

where Rt = κt(xt,x
′
t; θ̂t) is the Nt×Nt correlation matrix of Zt(x), rt = κt(xt,x

?
t ; θ̂t)

is a 1×Nt vector containing the correlation between the prediction and the Nt training
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points, and 1t is a 1 × Nt vector of ones. Note that for t = 1 the above scheme
reduces to the standard GP regression scheme of (2)–(3). Also, κt(xt,x

′
t; θt) is the

auto-correlation kernel that quantifies spatial correlations at level t.
We recognize that such recursive autoregressive schemes can provide a rigor-

ous and tractable workflow for multifidelity information fusion. This suggests a
general framework that targets the seamless integration of surrogate-based predic-
tion/optimization and uncertainty quantification, allowing one to simultaneously
address multifidelity in physical models (e.g., direct numerical simulations versus ex-
periments) as well as multifidelity in probability space (e.g., sparse grids [8] versus
multi-element probabilistic collocation [7]). The reader is referred to [6] for a detailed
presentation of this paradigm.

2.3. Parameter estimation.

2.3.1. Maximum likelihood estimation. Estimating the hyperparameters re-
quires learning the optimal set of {µt, σ2

t , σ
2
εt , ρt−1, θt} from all known observations

{yt, yt−1, . . . , y1} at each inference level t. In what follows we will confine the presen-
tation to MLE procedures for the sake of clarity. However, in the general Bayesian
setting all hyper-parameters are assigned with prior distributions, and inference is
performed via more costly marginalization techniques, typically using Markov chain
Monte Carlo integration [3].

Parameter estimation via MLE at each inference level t is achieved by minimizing
the negative log-likelihood of the observed data yt,

min
{µt,σ2

t ,σ
2
εt
,ρt−1,θt}

Nt
2

log(σ2
t ) +

1

2
log |Rt(θt) + σ2

εtI|
(7)

+
1

2σ2
t

[yt(xt)−1tµt − ρt−1ŷt−1(xt)]
T [Rt(θt) + σ2

εtI]−1[yt(xt)− 1tµt − ρt−1ŷt−1(xt)],

where we have highlighted the dependence of the correlation matrix Rt on the hyper-
parameters θt. Setting the derivatives of this expression to zero with respect to
µt, ρt−1, and σ2

t , we can express the optimal values of µ̂t, ρ̂t−1, and σ̂2
t as functions of

the correlation matrix (Rt + σ2
εtI),

(µ̂t, ρ̂t−1) = [hTt (Rt + σ2
εtI)−1ht]

−1hTt (Rt + σ2
εtI)−1yt(xt),(8)

σ̂2
t =

1

c

{
[yt(xt)− 1tµ̂t − ρ̂t−1ŷt−1(xt)]

T [Rt + σ2
εtI]−1(9)

[yt(xt)− 1tµ̂t − ρ̂t−1ŷt−1(xt)]} ,

where ht = [1t ŷt−1(xt)], and c =

{
Nt−1, t=1

Nt−2, t > 1
. Finally, the optimal {σ̂2

εt , θ̂t} can

be estimated by minimizing the concentrated restricted log-likelihood

(10) min
{σ2
εt
,θt}

log |Rt(θt) + σ2
εtI|+ c log(σ̂2

t ).

The computational cost of calibrating model hyper-parameters through MLE is
dominated by the inversion of correlation matrices (Rt + σ2

εtI)−1 at each iteration of
the minimization procedure in (10). The inversion is typically performed using the
Cholesky decomposition that scales as O(N3

t ), leading to a severe bottleneck in the
presence of moderately big data sets. This is typically the case for high-dimensional
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problems where abundance of data is often required for performing meaningful in-
ference. This pathology is further amplified in cases where the noise variance σ2

εt is
negligible and/or the observed data points are tightly clustered in space. Such cases
introduce ill-conditioning that may well jeopardize the feasibility of the inversion as
well as pollute the numerical solution with errors. Moreover, if an anisotropic cor-
relation kernel κt(xt,x

′
t; θt) is assumed, then the vector of correlation lengths θt is

d-dimensional, leading to an increasingly complex optimization problem (see (10)) as
the dimensionality of the input variables xt increases. These shortcomings render the
learning process intractable for large data sets and suggest seeking alternative routes
to parameter estimation. Next, we describe a method that bypasses the deficiencies
of MLE and enables the development of fast learning algorithms that scale linearly
with the data.

2.3.2. Frequency-domain sample variogram fitting. Following the
approach of De Baar, Dwight, and Bijl [19] we employ the Wiener–Khinchin the-
orem to fit the autocorrelation function of a wide-sense stationary random field to
the power spectrum of the data. The latter contains sufficient information for ex-
tracting the second-order statistics that fully describe the Gaussian predictor Zt(x).
Therefore, the model hyper-parameters at each inference level t can be learned in the
frequency domain by fitting the Fourier transform of the sample variogram as

(11) min
{σ2
εt
,θt}

Ndt∑
i=1

| log ŵ2
t,i − log [ât,i(σ

2
εt , θt)]|2,

where ŵ2
t,i is the amplitude of each of the Nd

t Fourier coefficients in the modal repre-

sentation of the data yt(x), ât,i(σ
2
εt , θt) are the coefficients of the Fourier transform

of the autocorrelation function {κt(xt,x′t; θt) + σ2
εtδ(||xt − x′t||)}, with δ(·) denot-

ing the Dirac delta function, while || · || measures distance in an appropriate norm.
The Fourier coefficients ŵ(ξ) can be efficiently computed with O(Nt logNt) cost us-
ing the fast Fourier transform for regularly spaced samples or the nonuniform fast
Fourier transform [23] for irregularly spaced samples. Moreover, for a wide class of
autocorrelation functions, the Fourier transform of â(ξ;σ2

εt , θt) is analytically avail-
able, whereby each evaluation of the objective function in the minimization of (11)
can be carried out with a linear cost, i.e., O(Nt). This directly circumvents the limi-
tations of hyper-parameter learning using MLE approaches, namely, the cubic scaling
associated with inverting dense ill-conditioned correlation matrices, and therefore it
enables parameter estimation from massive data sets.

Although the Wiener–Khinchin theorem relies on the assumption of stationar-
ity, modeling of a nonstationary response can also be accommodated by learning a
bijective warping of the inputs that removes major nonstationary effects [24]. This
mapping essentially warps the inputs into a jointly stationary space, thus allowing
the use of standard wide-sense stationary kernels that enable fast learning in the fre-
quency domain. This enables the use of general families of expressive kernels, such as
the spectral mixture kernels recently put forth by Wilson and Adams [25] that can
represent any stationary covariance function.

A limitation of frequency-domain sample variogram (FSV) fitting is that the
summation in (11) is implicitly assumed to take place over all dimensions, i.e., over
all Nd

t frequencies in ξ. Although this is tractable for low-dimensional problems, it
may easily lead to prohibitive requirements in terms of both memory storage and
operation count as the dimensionality increases. In the next section we present an
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effective methodology for scalable hyper-parameter learning from massive data sets
in high dimensions.

3. Kernel design in high dimensions. While high-dimensional systems may
not always be sparse, the geometric law of large numbers [10] states that there is a good
probability that a sufficiently smooth multivariate function can be well approximated
by a constant function on a sufficiently high-dimensional domain. Empirically, we
know that many physical systems are governed by two- or three-body interaction
potentials. In such cases, high-dimensional model representations, such as ANOVA
and HDMR [9, 26, 27, 13] are proven to dramatically reduce the computational effort
in representing input-output relationships. The general form of such representations
takes the form

(12) y(x) = y0 +
∑

1≤i≤d

yi(xi) +
∑

1≤i<j≤d

yij(xi, xj) + · · · ,

where y0 is a constant, yi(xi) are component functions quantifying the effect of the
variable xi acting independently of all other input variables, yij(xi, xj) represents the
cooperative effects of xi and xj , and higher-order terms reflect the cooperative effects
of increasing numbers of variables acting together to impact upon the output of y(x).

Given a set of randomly sampled scattered observations, the mutually orthogonal
component functions are typically computed using Monte Carlo and its variants, or
probabilistic collocation methods [28, 29]. From yi(xi) and yij(xi, xj) we can directly
compute the Sobol sensitivity indices Di and Dij that quantify the active interactions
in the data [30],

Di =

∫ 1

0

y2i (xi)dxi ≈
∫ 1

0

[
ki∑
r=1

αirφr(xi)

]2
dxi =

ki∑
r=1

(αir)
2,(13)

Dij =

∫ 1

0

∫ 1

0

y2ij(xi, xj)dxidxj(14)

≈
∫ 1

0

∫ 1

0

 li∑
p=1

l′j∑
q=1

βijpqφp(xi)φq(xj)

2

dxidxj =

li∑
p=1

l′j∑
q=1

(βijpq)
2,

where αir and βijpq are unknown expansion coefficients determined from data and φr(x)
are basis functions of order r. For a set of orthonormal basis functions, the unknown
coefficients can be directly determined from the Nt data points at each inference level
via Monte Carlo integration or probabilistic collocation methods [28, 29].

These sensitivity indices identify active interactions in high-dimensional data sets.
This valuable information can guide the design of correlation kernels that are tailored
to the given data set, respecting all significant input-output interactions. To this
end, we employ a graph-theoretic approach in which custom correlation kernels can
be constructed as an additive composition of kernels that describe cross-correlations
within each one of the maximal cliques of the undirected graph defined by the Sobol
sensitivity indices. The first step toward this construction involves assembling the
undirected graph G = (V,E) of the computed sensitivity indices, where first-order
sensitivities Di correspond to vertices V , while sensitivity indices of second-order
interactions Dij define edges E (see Figure 1). Once the undirected graph is available,
a clique C can be identified as a subset of the vertices, C ⊆ V , such that every two
distinct vertices are adjacent. This is equivalent to the condition that the subgraph of
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x10

x1

x7
x11

x5

Fig. 1. Sketch of the undirected graph defined by the Sobol sensitivity indices of a 12-
dimensional function y(x1, x2, . . . , x12). The size of the disks corresponds to the magnitude of
first-order sensitivity indices, while the thickness of the connecting lines quantifies the magni-
tude of second-order indices. Here we can identify three maximal cliques of dimensionality 3,
C1 = {x2, x3, x6}, C2 = {x8, x9, x12}, and C3 = {x4, x9, x12}, and one clique of dimensionality
2, C4 = {x3, x8}. By convention, all remaining five inactive dimensions are grouped together in
C5 = {x1, x5, x7, x10, x11}.

G induced by C is complete. A maximal clique is a clique that cannot be extended by
including one more adjacent vertex, that is, a clique which does not exist exclusively
within the vertex set of a larger clique (see Figures 1, 2(a), 4(a)). Maximal cliques can
be efficiently identified from the graph of sensitivity indices using the Bron–Kerbosch
algorithm with both pivoting and degeneracy reordering [31].

This procedure reveals the extent to which the observed data encodes an additive
structure. The key idea here is to exploit this structure in order to effectively de-
compose the high-dimensional learning problem into a sequence of lower-dimensional
tasks, where estimation of model hyper-parameters can take place independently
within the support of each one of the maximal cliques. To this end, recall that
fitting the FSV becomes intractable in high dimensions. However, we can utilize the
hierarchical representation of (12) in order to exploit the structure encoded in the
maximal cliques and efficiently perform FSV fitting locally for each maximal clique.
This can be done by constructing an additive autocorrelation kernel that reflects the

active interactions within each maximal clique κ(x,x′; θ) =
NC∑
q=1

κq(xq,x
′
q ;θq), where NC

is the total number of maximal cliques at each fidelity level. Our goal now is to esti-
mate the hyper-parameters θq by fitting the Fourier transform of each autocorrelation
kernel κq(xq,x

′
q; θq) to the power spectrum of the data. In order to do so, we first

have to identify the contribution of each maximal clique to the power spectrum of the
d-dimensional data set. To this end, the hierarchical component functions yi(xi) and
yij(xi, xj) can be utilized to project data onto the subspace defined by each maximal
clique as

(15) Pqy(x) = y0 +
∑
i∈Cq

yi(xi) +
∑
i,j∈Cq

yij(xi, xj) + · · · , 1 ≤ q ≤ NC ,

where Cq is an index set listing all active dimensions contained in the qth maximal
clique, and the operator Pq projects the data onto the subspace defined by all input
dimensions that appear in Cq. Then, by assuming a wide-sense stationary covariance
kernel κq(xq,x

′
q; θq) in each maximal clique, we can employ the FSV learning al-
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gorithm to estimate θq by fitting the power spectrum of the clique-projected data,
which typically lives in a subspace of dimension much lower than d. This approach is
justified by the Fourier projection-slice theorem [20], which formalizes the equivalence
between taking the Fourier transform of a projection versus taking a slice of the full
high-dimensional spectrum. The main advantage here is that for high-dimensional
cases that admit an additive hierarchical representation, the dimension of the qth
subspace is m = #Cq � d, where #Cq denotes the cardinality of the set Cq. Hence,

the optimal hyper-parameters θ̂i defining the autocorrelation kernel in each clique can
be estimated very efficiently using the FSV fitting algorithm. Due to the linearity of
the projection this is a distance-preserving transformation of the input space, hence
allowing for the consistent estimation of length-scale hyper-parameters. Finally, sum-
ming up all clique contributions we construct the global autocorrelation kernel that
according to the Fourier projection-slice theorem best captures the power spectrum
of the original high-dimensional observations. This allows us to fit GP models to big
data in high dimensions by using O(N) algorithms.

3.1. Implementation aspects. Here we provide an overview of the workflow
and discuss some key implementation aspects.

Step 1. Starting from a set of available scattered observations yt(x) at the in-
ference level 1 ≤ t ≤ s, our first task is to compute the RS-HDMR representation.
To this end, we adopt the approach of [32] that employs an orthonormal basis of
shifted Legendre polynomials (up to order 15), using adaptive criteria for the optimal
selection of the polynomial order that approximates each component function, and
variance reduction techniques that enhance the accuracy of the RS-HDMR represen-
tation when only a limited number of samples is available. For all cases considered,
an RS-HDMR expansion with up to second-order interaction terms was sufficient to
capture more than 95% of the variance in the observations.

Step 2. Once the RS-HDMR representation is computed, we invoke the Bron–
Kerbosch algorithm [31] to identify all maximal cliques in the undirected graph of
sensitivity indices. This guides the construction of an additive autocorrelation kernel
that comprises all cliquewise contributions. Throughout all recursive inference levels
we have assumed an anisotropic product Gaussian autocorrelation function for all
corresponding maximal cliques, 1 ≤ q ≤ NC .

(16) κq(xq,x
′
q; θq) =

m∏
i=1

e
− |xi−x′i|

2

2θi ,

where m = card{Cq} is the number of dimensions contained in the qth clique, and
θi is a correlation length hyper-parameter along the ith dimension. In this case, the
Fourier transform of the autocorrelation function in (11) is available analytically,

(17) â(ξq;σ
2
εq , θq) = σ2

εq + (2π)
m
2 θqe

−2
m∑
i=1

(πθiξi)
2

.

Step 3. The next step involves learning the hyper-parameters {σ2
εq , θq} for each

maximal clique at inference level t by fitting the power spectrum of the clique-
projected data (see (11), (15)). To this end, the data is projected on a regular grid
with 128 points along each clique dimension. This corresponds to using 128 Fourier
modes for resolving the variability of the shifted Legendre basis functions in the fre-
quency domain. Note that the learning task is directly amenable to parallelization
as it can be performed independently for each maximal clique. Once the optimal
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values of {σ̂2
εq , θ̂q} are known, we can construct the global correlation matrix and fac-

torize it using the Cholesky decomposition. Although this step still scales as O(N3
t )

it’s required to be performed only once for each recursive level. In cases where Nt is
extremely large one may employ a preconditioned conjugate gradient solver to approx-
imate [Rt(θt) + σ2

εtI]−1yt without the need for storing the global correlation matrix
Rt. Finally, the optimal values of {µ̂t, ρ̂t−1, σ̂2

t } can be obtained from (8), (9), where
(Rt + σ2

εtI)−1yt is either computed via back-substitution of the Cholesky factors or
approximated via a gradient descent method.

Step 4. Finally, given a set of prediction points x? we can employ (5), (6) to eval-
uate the predictor ŷt(x

?
t ) and variance v2t (x?t ). This task is also trivially parallelizable

as predictions at different points in x?t can be performed independently of each other.

4. Results.

4.1. Borehole function. The first benchmark illustrates the salient features of
the proposed framework, and it involves multifidelity in both physical models and
probability space. In particular, we consider two levels of fidelity of functions that
simulate stochastic water flow through a borehole and depend on eight input pa-
rameters and four random variables. We assume that high-fidelity observations are
generated by [33]

(18) fh(x) =
2πTu(Hu −Hl)

log(r/rw)
(

1 + 2LTu
log(r/rw)r2wKw

+ Tu
Tl

) ,
where x = [rw, r, Tu, Hu, Tl, Hu, L,Kw] is a set of parameters defining the model.
We also assume that realizations of (18) are perturbed by a non-Gaussian noise
term η(z) expressed as a function of four normal random variables η(z1, z2, z3, z4) =
z1 sin2[(2z2 + z3)π] − cos2(z4π), zi ∼ N (0, 1), i = 1, . . . , 4. This returns stochastic
high-fidelity data of the form yh(x; z) = fh(x)[1 + 0.2η(z)]. Similarly, stochastic low-
fidelity observations are generated by replacing fh with a lower-fidelity model given
by [33]

(19) fl(x) =
5Tu(Hu −Hl)

log(r/rw)
(

1.5 + 2LTu
log(r/rw)r2wKw

+ Tu
Tl

) .
Next, we apply the proposed multifidelity information fusion framework to con-

struct the response surface of the eight-dimensional mean field S(x) = E[yh(x; z)],
given observations {yh(x; z), yl(x; z)}, by employing two methods of different fi-
delity in probability space. We choose the high-fidelity probabilistic method to be
a Gauss–Hermite sparse grid level-5 quadrature rule (SG-L5) [8] using 4,994 sam-
pling points, while the low-fidelity method is a coarser sparse grid level-2 (SG-L2)
with just 57 quadrature points. Taking together the available multifidelity informa-
tion sources yields two models in physical space (yh, yl) and two models in prob-
ability space (SG-L5, SG-L2). Blending of information is performed by employing
a four-level recursive scheme traversing the available models and data in the order
S11 → S12 → S21 → S22, where S11(x) = ESG-L2[yl(x; z)], S12(x) = ESG-L5[yl(x; z)],
S21(x) = ESG-L2[yh(x; z)], and S22(x) = ESG-L5[yh(x; z)].

First, we compute the hierarchical representation of the data from (12) considering
a set of randomly sampled training points {1024, 512, 128, 32} that correspond to each
one of the four observation models with increasing fidelity. Figure 2(a) shows the
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= [rw , r, T, r, Tu, H, Hu , Tl l, Hl, L,Kl, L,K, L,Kw
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Fig. 2. Borehole function: demonstration of pairwise interactions and multifidelity predictions.
(a) Sketch of the undirected graph of the Sobol sensitivity indices generated using 1,024 observa-
tions of S11(x), and the resulting additive GP prior. The radius of the purple disks quantifies the
sensitivity on each input dimension, while the thickness of the gray arcs indicates the strength of
each pairwise interaction. Color coding reveals the dimensionality of the identified maximal cliques.
(b) Density plot of the frequency distribution of the exact solution E[y] (blue solid line), versus
the estimated E[ŷ] (dashed lines) resulting from co-kriging and the HDMR representation. The red
dashed line corresponds to the final co-kriging predictor accounting for information fusion along
the path S11 → S12 → S21 → S22. The orange dashed line corresponds to the output of krig-
ing on the lowest-fidelity data (L1 predictor), while the green and yellow dashed lines correspond
to the predictions at each intermediate recursive level, namely, S11 → S12 (L2 predictor), and
S11 → S12 → S21 (L3 predictor). (c) Scatter plot of the exact solution E[y] (black dashed line), ver-
sus the co-kriging predictor E[ŷ] at each level (circles) at 2,000 randomly sampled test locations. The
black circles correspond to the final co-kriging predictor accounting for information fusion along the
path S11 → S12 → S21 → S22, while the colored triangles show the predictions of the intermediate
recursive levels. (CPU cost: 5 minutes; memory footprint: 3 megabytes.)

resulting undirected graph of Sobol sensitivity indices that characterizes the active
interactions in the data. The graph reveals a structure of seven maximal cliques:
C1 = {1, 4}, C2 = {1, 6}, C3 = {1, 7}, C4 = {2}, C5 = {3}, C6 = {5}, and C7 = {8}.
Next, we utilize the available observations to calibrate the autocorrelation hyper-
parameters by solving NC = 7 independent FSV learning problems. Finally, we
sum up all the cliquewise contributions to obtain the global autocorrelation kernel
κ(x,x′; θ), which is used to construct the correlation matrix Rt at each recursive
level, t = 1, . . . , 4. Finally, Rt is factorized once using the Cholesky decomposition
leading to an optimal set of {µ̂t, ρ̂t−1, σ̂2

t }, and thus enabling the computation of the
GP predictive posterior at each level of the recursive algorithm.

Accuracy is tested against a test set of 2,000 observations corresponding to an
“exact” solution constructed computing E[y] using 106 Monte Carlo samples of the
highest-fidelity observation model fh(x?). Figure 2(b) shows a density plot of the
frequency distribution of the exact solution E[y], versus the estimated E[ŷ] resulting
from the predictors at each level, as well as the prediction of the hierarchical repre-
sentation of (12) meta-model denoted by HDMR (equation 12). The output of the
Gaussian predictors also has been plotted in the scatter plot of Figure 2(c). Evidently,
the response surface of the mean field is captured remarkably well by just using 32 ob-
servations of the highest-fidelity model S22, supplemented by a number of inaccurate
but mutually correlated low-fidelity observations from (S11, S12, S21).

4.2. Stochastic Helmholtz equation in 100 dimensions. We consider the
following elliptic problem subject to random forcing and homogeneous Dirichlet bound-
ary conditions in two input dimensions:
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(λ2 −∇2)u(x;ω) = f(x;ω), x = (x, y), x ∈ D = [0, 2π]2,

u(x;ω)|∂D = 0,

f(x;ω)=
2

d


d/4∑
i=1

[ωi sin(ix)+ωi+d/4 cos(ix)]+

d/4∑
i=1

[ωi+d/2 sin(iy)+ωi+3d/4 cos(iy)]

,

(20)

where d = 100 is the total number of random variables representing the forcing
term, and λ2 = 1 is the Helmholtz constant, the value of which has been cho-
sen in order to sustain high-frequency components in the unknown solution field u.
The additive forcing is represented by a collection of independent random variables
ω = (ω1, ω2, . . . , ω100), each of them drawn from the uniform distribution U(0, 1).

Our goal here is to utilize the proposed multifidelity framework to get an accurate
estimate of the probability density of the kinetic energy

(21) Ek(ω) =
1

2

∫ 2π

0

u2(x, t;ω)dx.

To this end we consider blending the output of an ensemble of variable fidelity models
in physical space, by employing different resolutions of a spectral/hp element dis-
cretization of (20) [34]. Higher-fidelity models are obtained by either increasing the
number of quadrilateral elements that discretize the two-dimensional physical domain
D (h-refinement) or by increasing the polynomial order of the numerical approxima-
tion within each spectral element (p-refinement). In this context, a sample solution
to (20) is approximated in terms of a polynomial expansion of the form

(22) u(x) =

Ndof∑
i=1

wiΦi(x) =

Nel∑
e=1

M∑
m=1

wemφ
e
m(xe(ξ)),

whereNdof is the total number of degrees of freedom, M = (P+1)2 is the total number
of modes in each quadrilateral spectral element, ξ defines a mapping from the physical
space to the standard element, and φep(xe(ξ)) are local to each element polynomials
of order P , which when assembled together under the mapping xe(ξ) result in a C0

continuous global expansion Φp(x) [34]. In Figure 3 we present representative samples
of the random forcing field and the numerical solution to (20).

We consider three levels of fidelity corresponding to different discretization reso-
lutions in physical space. In particular, the highest-fidelity observations are obtained

by solving (20) on a grid of n
(3)
e = 144 uniformly spaced spectral elements using

a polynomial expansion of order P (3) = 10 in each element. This discretization is
fine enough to resolve all high-frequency components in the forcing term and return
accurate solution samples of u(x;ω). At the intermediate fidelity level S2, we have

chosen a discretization consisting of n
(2)
e = 64 spectral elements of polynomial or-

der P (2) = 8. Similarly, the low-fidelity data S1 is generated by a discretization of

n
(1)
e = 16, and P (1) = 4. Neither the intermediate nor the low-fidelity levels can

resolve the high-frequency forcing term in (20), and, consequently, they return solu-
tions that are contaminated with aliasing errors. However, the computational effort
required to obtain a solution sample with the low-fidelity discretization is one order
of magnitude smaller compared to the intermediate-fidelity level, and two orders of
magnitude smaller compared to the high-fidelity level.

D
ow

nl
oa

de
d 

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTIFIDELITY MODELING IN HIGH DIMENSIONS B533

Fig. 3. Stochastic Helmholtz equation: Representative samples of the random forcing term
f(x;ω) (left) and the numerical solution u(x;ω) (right), obtained using a high-fidelity spectral ele-
ment discretization of (20) with 144 elements and a 10th-order polynomial basis expansion in each
element.

We train a multifidelity predictor that can accurately emulate the kinetic en-
ergy of the solution to (20) for any given random sample ω. Nested training sets
are constructed from 104 low-fidelity, 103 intermediate-fidelity, and 102 high-fidelity
realizations of (20) by sampling the random forcing term in [0, 1]100 using a space
filling Latin hypercube strategy. With this training data set we compute the corre-
sponding hierarchical expansion of (12) up to second order and identify the active
dimension interactions that contribute in the variance decomposition of y = Ek(ω).
The resulting undirected graph of first- and second-order Sobol sensitivity indices is
depicted in Figure 4(a), indicating that all input variables are equally important and
revealing very complex conditional dependency patterns between them. Interactions
can be grouped in 135 maximal cliques, each containing 1 to 6 active dimensions.
This information is then encoded to a structured GP prior by employing the additive
autocorrelation kernel suggested by the computed Sobol indices (see Figure 4(a)).

Employing the steps outlined in section 3.1 we optimize the cliquewise kernel
hyper-parameters for each level of the recursive information fusion algorithm to ar-
rive at a predictive Gaussian posterior for the kinetic energy ŷ(ω). The mean of
such Gaussian distribution over one-dimensional functions yields an estimate for the
probability density function π(Ek(ω)), while the variance quantifies our uncertainty
with respect to that prediction. To assess the quality of the multifidelity predictor we
compare the estimated probability density against a reference solution obtained by
Monte Carlo averaging over 106 uniformly distributed solution samples that were ob-
tained using the highest-fidelity discretization describe above. Figure 4(b) illustrates
that comparison, along with the predicted densities resulting from considering only
the low- and intermediate-fidelity training sets. Also, in Figure 4(c) we demonstrate
the ability of the multifidelity model to generalize to unobserved inputs. Specifically,
we test the predictions of Ek(ω) for unobserved inputs ω against the values obtained
using the highest-fidelity discretization in a set of 2,000 randomly chosen test loca-

D
ow

nl
oa

de
d 

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

B534 P. PERDIKARIS, D. VENTURI, AND G. E. KARNIADAKIS

(c)

y

ŷ
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Fig. 4. Stochastic Helmholtz equation: com-
plex clique structures and multi-fidelity pre-
dictions. (a) Sketch of the undirected graph
of the Sobol sensitivity indices generated us-
ing 10, 000 observations of the low-fidelity es-
timations of the solution kinetic energy, and
the resulting additive GP prior. The radius
of the purple disks quantifies the sensitivity
on each input dimension, while the thickness
of the gray arcs indicates the strength of each
pair-wise interaction. Color coding reveals

the dimensionality of the identified maximal cliques. The additive auto-corelation kernel is con-
structed by summing up all clique-wise contributions where i is a multi-dimensional index accounting
for the active dimensions in each of the 135 maximal cliques. (b) Probability density function of the
solution kinetic energy y = Ek(ω) obtained by Monte Carlo averaging of 106 high-fidelity samples
(blue solid line), versus the estimated ŷ = Ek(ω) (dashed lines) resulting from 3-level recursive
co-kriging (red), 2-level recursive co-kriging trained on low- and intermediate-fidelity observations
(L2 predictor, green), and kriging trained on low-fidelity observations only (L1 predictor, orange).
(c) Scatter plot of the reference solution y = Ek(ω) (black dashed line), versus the 3-level co-kriging
predictor ŷ = Ek(ω) (black circles) at 2, 000 test locations, randomly sampled in [0, 1]100. (CPU
cost: 70 minutes, memory footprint: 800 megabytes)

tions in [0, 1]100. It is evident that the multifidelity surrogate can correctly emulate
the functional relationship that maps values of ω to Ek, at a fraction of the compu-
tational cost compared to a brute-force Monte Carlo simulation of the high-fidelity
solver.

4.3. Sobol function in 105 dimensions. In this last example we consider an
extreme demonstration involving the approximation of the Sobol function in d = 105

input dimensions. The Sobol function is a tensor product function that is routinely
used as a benchmark problem in sensitivity analysis [33]. We consider the input space
defined by the unit hypercube [0, 1]d and

(23) y(x) =

d∏
i=1

|4xi − 2|+ ai
1 + ai

,

where ai = i2, and for each index i, a lower value of ai indicates a higher impor-
tance of the input variable xi. Although this tensor product form assumes that all
dimensions are actively interacting with each other, Zhang, Choi, and Karniadakis
[26] have demonstrated that for this particular choice of ai, the effective dimension-

D
ow

nl
oa

de
d 

03
/2

7/
17

 to
 1

8.
51

.1
.6

3.
 R

ed
is

tr
ib

ut
io

n 
su

bj
ec

t t
o 

SI
A

M
 li

ce
ns

e 
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
://

w
w

w
.s

ia
m

.o
rg

/jo
ur

na
ls

/o
js

a.
ph

p



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited. 

MULTIFIDELITY MODELING IN HIGH DIMENSIONS B535

ality of the Sobol function is much lower than d, and an additive representation with
up to second-order interaction terms is capable of capturing more than 97% of the
variance.

This example aims at demonstrating the capability of the proposed framework to
simultaneously handle high dimensions and massive data sets, but also to highlight an
important aspect of the machine learning procedure, namely, the effect of lack of data
in such high-dimensional spaces. This is illustrated by considering two cases corre-
sponding to training a GP surrogate on 104 (Case I) and 105 (Case II) training points
generated by space filling Latin hypercubes in [0, 1]100,000. The high dimensionality
of the problem introduces a computational burden in constructing the hierarchical
decomposition of (12). In particular, we have

(
100,000

2

)
= 49, 950, 000 second-order

interaction terms that need to be computed and stored. To reduce the computa-
tional cost we use the adaptivity criterion proposed by Zhang, Choi, and Karniadakis
[26] that uses information encoded in the first-order component functions to screen
the selection process of active second-order interactions. This yields the additive
autocorrelation kernel

(24) κ(x,x′; θ) =

#F∑
c=1

∏
j∈Fc

e
−
|xj−x′j |

2

2θj +
∑
i∈Q

e
− |xi−x′i|

2

2θi ,

where each member Fc in the set F is a tuple of two-dimensional indices corresponding
to each one of the active second-order component functions, and Q is a set of one-
dimensional indices that contains all dimensions from 1 to d that do not appear in F .
Here, #F = 147 for the Case I training set and #F = 769 for the Case II training
set, using an adaptivity threshold of 10−5 [26]. This construction helps to highlight
the extent to which a purely additive kernel decomposition can capture the full tensor
product response of y(x).

Once the cliquewise kernel hyper-parameters are calculated from each training set,
we arrive at a predictive GP posterior distribution that aims at emulating the input-
output relation encoded in observed Sobol function data with quantified uncertainty.
In Figure 5(a) we show the resulting frequency distribution obtained from probing
the exact solution of (23) and the GP predictors for both cases in 2,000 randomly
chosen test locations that lie within unit hyper-spheres centered at observed loca-
tions. Similarly, Figure 5(b) presents a visual assessment of the predictive accuracy
of both GP predictors. In particular, we observe that the training data considered in
Case II seems adequate for enabling the resulting GP posterior to perform accurate
predictions for unobserved inputs, but the same cannot be claimed for Case I. There,
the lack of training data hinders the predictive capability of the surrogate model as
it affects both the accurate determination of active interactions in the hierarchical
expansion of (12) as well as the identification of appropriate kernel hyper-parameters
that resolve the correlation lengths present in the Sobol data. A similar deterioration
in predictive accuracy is also observed for Case II if the radius of the hyper-sphere
within which the test locations reside is increased. This is expected as the Gaussian
autocorrelation kernel used here has good smoothing properties but limited extrapo-
lation capacity. In such cases one should explore the use of more expressive kernels
such as the family of spectral mixture kernels [25].

Due to the high dimensionality and the large number of observations, the com-
putational cost is dominated by the computation of the component functions in (12)
(69% of the computation), followed by the prediction step (25%). In contrast, for
problems of lower dimensionality and moderately sized data sets (e.g., the borehole
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Fig. 5. Sobol function in 105 dimensions: efficient scaling of GP regression to high dimensions
and massive data sets. (a) Density plot of the frequency distribution of the exact solution y(x?)
(blue solid line) versus the estimated ŷ(x?) (dashed lines) resulting from training a GP predictor
on 104 observations (Case I, green) and 105 observations (Case II, red). (b) Scatter plot of the
exact solution y(x?) (black dashed line) versus the GP predictor ŷ(x?) for Cases I and II. The
comparison corresponds to 2,000 randomly chosen test locations living in unit hyper-spheres centered
at observations. (CPU cost: 11 hours; memory footprint: 90 gigabytes, due to storing the large
training set.)

function case) the cost is typically attributed to learning the hyper-parameters within
each maximal clique.

5. Conclusions. In data-driven stochastic simulations, as the dimensionality of
the system increases there is an increasing need for assimilating more data so that
we maintain a reasonable predictive accuracy. This creates a huge computational
bottleneck since in addition to the exponentially increasing cost due to dimensionality,
we also face the cost due to big data. The present work address this important issue
for first time and proposes a computational framework with overall linear complexity.
This leads to the possibility of sampling hundreds of thousands of dimensions and
using hundreds of thousands of points on a standard desktop computer. The new
framework can be used across different fields for probabilistic design, for parameter
inference under uncertainty, and in data assimilation for weather prediction.

We have presented a tractable data-driven paradigm for computing response sur-
faces of high-dimensional deterministic and stochastic dynamical systems. Although
the developed multifidelity framework generalizes well beyond the benchmark cases
presented here, it does not constitute a panacea for all difficulties. High predictive
accuracy can be expected only when the training data lie on a sufficiently smooth
manifold; hence the study of regions where the response may present discontinuities
(e.g., due to system bifurcations) may be problematic. To some degree this can be
addressed by warping the input space [24], although a more elaborate treatment sug-
gests the adoption of computationally demanding deep GP hierarchies [35]. Moreover,
even in low-dimensional supervised learning problems, the use of Gaussian priors can
be insufficient (e.g., when outliers are present in the data), mandating the use of
more robust non-Gaussian prediction schemes that can be trained only with costly
marginalization procedures (e.g., Markov chain Monte Carlo sampling). Finally, the
merits of employing a multifidelity approach can be exploited only when the available
model outputs exhibit some degree of correlation. In absence of such correlations
any low-fidelity observations are essentially uninformative, and one can only rely on
probing costly high-fidelity models. Despite these limitations, the proposed workflow
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provides an efficient and flexible tool for tackling challenging problems in applied and
computational science, such as uncertainty quantification, data assimilation, inverse
problems, design optimization, and beyond.
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