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Trapping gases in metal-organic frameworks
with a selective surface molecular barrier layer
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The main challenge for gas storage and separation in nanoporous materials is that many

molecules of interest adsorb too weakly to be effectively retained. Instead of synthetically

modifying the internal surface structure of the entire bulk—as is typically done to enhance

adsorption—here we show that post exposure of a prototypical porous metal-organic

framework to ethylenediamine can effectively retain a variety of weakly adsorbing molecules

(for example, CO, CO2, SO2, C2H4, NO) inside the materials by forming a monolayer-thick

cap at the external surface of microcrystals. Furthermore, this capping mechanism, based on

hydrogen bonding as explained by ab initio modelling, opens the door for potential selectivity.

For example, water molecules are shown to disrupt the hydrogen-bonded amine network and

diffuse through the cap without hindrance and fully displace/release the retained small

molecules out of the metal-organic framework at room temperature. These findings may

provide alternative strategies for gas storage, delivery and separation.
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M
etal-organic framework (MOF) materials are crystalline
nanoporous materials consisting of inorganic nodes
(metal ions or clusters), also referred with secondary

building units, and organic ligands as the connecting units1. Their
high surface areas and micropore structure provide an ideal
environment for adsorbing small molecules, which is the basis of
many important applications such as energy storage and gas
capture and separation2–5, and even biomedicine6. The main
problem for gas storage is the relatively weak adsorption of many
small gases in MOFs. The focus to enhance gas adsorption and
separation has therefore been to develop metal centres that are
more active (for example, exposed metal cations) and to functio-
nalize the ligands by incorporating functional groups such as
amine, hydroxyl and halide in the organic ligands to increase or
tune the guest-host interaction2,4,7. These approaches tend to
target specific molecules, for example, through the formation of
Lewis acid–base pairs, and thus lack a wider applicability4.
Furthermore, it requires novel and potentially complex synthesis
procedures and often leads to a decrease of the internal surface
area7–9.

An alternative approach is to find a way to cap the MOF
microcrystals at the end of the loading process. While previous
work has considered high molecular weight compounds such
as polydimethysiloxane10 or copolymer Pluronic P-123 (ref. 11)
to coat MOFs external surfaces by high temperature vapour-
phase deposition or liquid immersion, these methods have
not been used for and are not compatible with gas storage and
release. Ethylenediamine (EDA) molecules, on the other hand,
have low-molecular weight, relatively high vapour pressure
(B10 Torr, 20 �C) at ambient condition and contain terminal
amine groups in EDA molecules, which are known to interact
more strongly with a variety of MOFs, particularly those with
open or unsaturated metal sites (for example, found in MOF-74)
by forming metal-amine complexes12–14. Moreover, previous
studies have shown that EDA molecules cannot easily penetrate
into MOFs due to their size and strong interaction with the
framework, requiring refluxing in solution (for example, anhy-
drous toluene)12,15,16. For instance, in Mg-MOF-74, that is,
Mg2(dobdc) with dobdc¼ 2,5-dihydroxybenzene dicarboxylic
acid, the best attempts only lead to B0.13 EDA per Mg2þ

metal centre, which is an order of magnitude less than
theoretically possible12,16. The difficulty to fully load EDA in
MOF-74 highlighted by these pioneering studies suggests that,
without extensive refluxing, EDA molecules should only adsorb
on the surface of MOF crystals. They are therefore attractive to
coat external surfaces of MOFs, particularly MOF-74 that has a
three-dimensional honeycomb lattice with one-dimensional (1D)
channels (diameter B14 Å, Supplementary Fig. 1). In addition,
MOF-74 contains a high density of coordinatively unsaturated
metal sites, which are the highest binding energy sites for small
molecules such as CO2, NO, SO2, CH4 and H2 (refs 17–21).
Capping the end of the 1D channels, which constitute the only
diffusion pathway for these small molecules22, could therefore be
effective for storage of many such small molecules.

In this work, we demonstrate, using in situ infrared spectro-
scopy23–25 that is well-suited to determine absolute gas loading25,
that post exposure of MOF-74 crystals to vapours of a ‘sticky’
molecule such as EDA is very effective in trapping weakly bound
small gas molecules (CO, CO2, SO2, C2H4) within the material,
or to prevent their loading into an EDA-capped empty MOF.
A combination of X-ray photoelectron spectroscopy with gas
cluster ion sputtering (GCIS) and low-energy ion spectroscopy
measurements establish that EDA is only adsorbed as a mono-
layer on the exterior surface of MOF crystals (o1 nm thick), that
is, within the outermost pores of the microcrystals, thereby
acting as capping molecules. Ab initio modelling provides an

explanation for this observation and proposes a structure that
accounts for the observed properties. Interestingly, this EDA
barrier is transparent to water molecules that readily diffuse thro-
ugh it and remove pre-adsorbed molecules (for example, CO).
Ab initio modelling attributes such a ‘gate opening’ to the disru-
ption of the H-bonded amine groups of EDA by water molecules.

Results
Characterization of EDA capping with CO molecules. We have
initially focused on CO adsorption in Ni-MOF-74 because CO is
a good probe of Lewis acid adsorption sites and sensitive to the
local cationic environment26,27. Furthermore, the stretch freque-
ncies (n(CO)) of adsorbed and gas-phase species are easily
distinguishable. Moreover, the CO-binding energy is higher in
Ni-MOF-74 (B52.7 kJ mol� 1 determined by isotherm
measurement28) than in other isostructural frameworks with
M¼Mg, Mn, Fe, Co and Zn (ref. 28). In all frameworks, the
isotherms are fully reversible at room temperature, consistent
with weak binding with uncoordinated metal sites through
electrostatic, s and p orbital interactions28.

After activation and CO loading (B40 Torr), the n(CO) band is
first observed at 2,174 cm� 1, then shifts to 2,170 cm� 1 as saturation
is reached (B30 min)28,29; in both cases it remains clearly distinct
from the gas-phase band centred at 2,143 cm� 1 (Supplementary
Fig. 2). The main shift is attributed to the formation of a Ni2þyCO
adduct within the open metal site29. The coverage-dependent shift
(B� 4 cm� 1) is attributed to additional CO–CO lateral intera-
ction and/or potential slight structural rearrangement of the
metal-adduct as the loading increases21,24,29. The occupation
reaches B0.7 molecules per metal site at B40 Torr28. Upon evacua-
tion (pressure o20 mTorr), CO is removed within B30 min as
shown in the red curve in Fig. 1.

If immediately upon evacuation (oB3 s) a CO/EDA gas
mixture (B40 Torr/B4 Torr) is introduced into the cell
(when4B95% CO is still trapped) and kept for B10 min, the
intensity of the CO band remains constant (Supplementary
Fig. 2). Furthermore, when the system is evacuated (pressureo20
mTorr), the CO band decreases by o3% after a 2-h evac-
uation, as shown in the black diamond of Fig. 1. These data
unambiguously show that CO can be trapped by introdu-
ction of EDA vapour, without hindering the total MOF capacity
for CO adsorption.

Detailed information about the nature of the EDA is obtained
in the infrared absorption spectrum (Supplementary Note 1 and
Supplementary Fig. 2): on one hand, the two strong nas,s(–CH2)
vibrational peaks at 2,936 and 2,860 cm� 1 indicate that gas-phase
EDA is clearly present in the CO/EDA mixture, although they
quickly disappear as EDA molecules are adsorbed onto the MOFs
and the cell internal walls. On the other hand, evidence for
adsorbed EDA on or into MOF-74 is provided by a distinct
absorption peak at 1,020 cm� 1 (Fig. 1), corresponding to the
n(C–N) mode of the amine–metal complex30. This peak increases
very slowly during B10 min as EDA adsorbs on the sample.

The stretch mode of initially adsorbed CO gas (2,170 cm� 1)
does not decrease or shift during and after EDA loading, as would
typically occur during co-adsorption of gases inside the MOF
(Supplementary Note 2 and Supplementary Fig. 3 for the case
of NH3 co-adsorption), indicating that the CO molecules not
only remain trapped, but also do not interact with the newly
added EDA molecules. This observation supports our hypothesis
that no EDA molecules penetrate inside the MOF. If EDA
interacted with CO inside MOF-74, the CO stretch frequency
would be shifted either due to displacement to a secondary
binding site or to interaction with EDA. To quantify this
statement ab initio calculations were performed (Supplementary
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Fig. 4 and Supplementary Table 1) and show that, if EDA
penetrated inside the MOF, the CO-binding energy would be
changed only by B3 kJ mol� 1 and its frequency would be shifted
by 5–9 cm� 1, which is not observed.

The above observations and analyses lead us to conclude that
pre-adsorbed CO and post-loaded EDA molecules are spatially
separated, with EDA residing on the periphery of the MOF
microcrystals (after replacing CO molecules only in the outer-
most pores, since the EDA Ebinding¼ 125 kJ mol� 144CO
Ebinding¼ 52.7 kJ mol� 1) and acting as a cap that confines pre-
loaded CO molecules inside the MOF. However, a direct
experimental confirmation of EDA localization is needed.

To test and quantify whether EDA is localized at the surface
(that is, only the outmost pores) of the MOF crystallites, we have
combined X-ray photoelectron spectroscopy (XPS), a surface
sensitive technique, with argon GCIS that provides gentle
removal of surface atoms (particularly appropriate for organic
materials, see ‘Methods’ section). Specifically, clusters of B2,500
Ar atoms can be generated and charged, then accelerated onto the
surface (for example, with 2.5–5 keV). Upon reaching the surface,
the cluster decomposes, dividing its kinetic energy among all the
Ar atoms, that is, each atom carries B1–2 eV kinetic energy.
Consequently, these atoms can only remove surface atoms and do
not disturb underlying bulk atoms of the rather fragile MOF
structure31. After each sputtering cycle, XPS data (Ni2p3/2, C1s,
N1s and O1s peaks) are recorded on the sample post-loaded with
EDA right after the gas exposure measurement (orange line in
Fig. 2a) and after sputtering at 2.5 keV for 28 min (blue line in
Fig. 2a), and 5 keV for 20 min (brown line in Fig. 2a). Since the

MOF contains only O, Ni and C atoms, a comparison of the N1s
core level (N is only contained in EDA) with O1s, Ni2p3/2, and
C1s, provides information on the depth distribution of EDA.
While sputtering at 2.5 keV (B1 eV per Ar atom) for 28 min only
partially removes EDA (N1s signal), sputtering with 5 keV
(B 2 eV per Ar atom) for 20 min fully removes nitrogen. The
remaining minor feature in the N1s spectral region is due to
plasmon oscillations of K2s of the KBr substrate (Supplementary
Fig. 5). The oxygen and Ni signals remain essentially unchanged.
The initial decrease of the C signal is associated with the removal
of adventitious hydrocarbons physisorbed on the MOF surface.
Note that the intensities of N, O and Ni increase slightly after the
initial sputtering as screening by adventitious carbon is removed.
Thereafter, the C1s, O1s and Ni2p3/2 signals remain constant. The
shoulder at 853.6 eV in the Ni2p3/2 peak after removal of EDA is
tentatively attributed to surface reconstruction of the Ni corner
atoms due to displacement (perturbation) of surface atoms.
Importantly, all the above observations clearly point to the
localization of EDA at the periphery (surface region) of the MOF
microcrystals.

To further verify the localization of EDA at the periphery of the
microcrystals, we performed low-energy ion scattering (LEIS)
measurements of EDA-pretreated MOF powders. The ultra-
shallow penetration depth of this technique (B1 nm) makes it
particularly sensitive to elements at the surface. The spectra are
recorded with 3 keV Heþ ions, and sputtering is performed with
5 keV Neþ ions. Figure 2b shows that, after removing
adventitious carbon with a dose of 3.2� 1015 cm� 2 Neþ ions,
there is a clear peak associated with N at B950 eV in addition to

0 20 40 60 80 100 120
0.0

0.2

0.4

0.6

0.8

1.0

2,200 2,100 1,000

b

2,170

2,174 

�(C–N)

Without EDA

With EDA

With EDA
24 ˚C

24 ˚C

100 ˚C, 2 h

0.05

0.05

A
bs

or
ba

nc
e

�(CO)

2,170 

80 ˚C, 2 h

Without 
EDA

1,020

a

Time (min)

N
or

m
al

iz
ed

 in
te

gr
at

ed
 a

re
a

Evacuation

~121 (min)

~91

~61

~31

~120 (min)

~61

~5.3

Wavenumber cm–1

~0.7
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the O peak at 1,100 eV (Supplementary Fig. 6). The N peak has
two components: a surface peak at 960 eV and a subsurface peak
at 940 eV, the latter being attributed to EDA at grain boundaries
or on tilted surfaces. The surface peak completely disappears after
a dose of 2.2� 1016 cm� 2 Neþ ions, confirming that it is located
only at the surface well within 1 nm. Additional sputtering does
not appreciably change the relative intensity of the N signature,
confirming that it originates from EDA at grain boundaries or
tilted surfaces. Together, the XPS and LEIS measurements
indicate that EDA forms a monolayer (o1 nm thick) at the
surface of the MOF microcrystals.

This knowledge makes it possible to model the EDA
arrangement within the Ni-MOF-74 unit cell using ab initio
calculations. We find that the structure shown in Supplementary
Fig. 7a is the most stable and that the binding energy per EDA
molecule increases from 125 kJ mol� 1 for B0.17 EDA per Ni2þ

(1 EDA per unit cell) to 141 kJ mol� 1 for 1 EDA per Ni2þ

(1 EDA per metal centre, that is, saturation). This stabilization of
aggregated EDA molecules arises from H bonding of the head
amine groups (that is, those pointing to the centre of the unit cell,
not strongly bonded to the metal centres), as detailed in
Supplementary Fig. 7a. These findings are consistent with
previous ab initio calculations performed in Mg-MOF-74 in
which the binding energy was found to increase monotoni-
cally with loading from 95 kJ mol� 1 at B0.17 EDA per Mg2þ

to 125 kJ mol� 1 1 EDA per Mg2þ (ref. 12). There is thus a
significant energy benefit to form a complete layer due to EDA
clustering and we conclude that a full EDA layer is completed
within the first unit cell of the MOF. Once the top surface
(o1 nm) is sealed with a complete layer, further EDA diffusion
is not possible due to severe steric constraints. Note that other
alkyl amine molecules (for example, trimethylenediamine, n-pro-
pylamine, ethanolamine) are less effective than EDA molecules to
retain small molecule CO (Supplementary Note 3 and Suppleme-
ntary Fig. 8). This further indicates that the head NH2 groups are
crucial to aggregate EDA into a complete layer. We further model
the diffusion of the CO molecules through the longitudinal
channels of Ni-MOF-74, as described in Supplementary Note 4
(Supplementary Fig. 9 and Supplementary Movies 1 and 2). The
results (Fig. 2c) show that the CO diffusion barrier increases from
0.028 eV for a CO-loaded MOF to 0.68 eV for MOF with a mono-
layer of EDA, that is, a 24-times increase, which is consistent with
our experimental observations.

While CO is clearly trapped at room temperature, the removal
of CO can be completed by mild annealing up to 100 �C under
vacuum (pressureo20 mTorr) and EDA remains mostly unper-
turbed (Fig. 1). The effect of EDA on CO re-adsorption can now
be examined (Supplementary Note 5), using the same loading
conditions (B40 Torr). Supplementary Figure 10 shows that the
CO uptake is dramatically reduced compared with the pristine
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activated MOF-74 (EDA-free), taking over 45 min to reach only
B25% of the CO loading obtained in pristine MOF-74 loaded in
B30 min.

Extension to other small molecules. To test whether EDA acts as
a cap in general, we have used this method with other small
molecules (CO2, SO2 and C2H4, see Supplementary Note 6
and Supplementary Figs 11–14) that are also weakly bonded in
MOF-74 and rapidly diffuse out at room temperature. As shown
in Fig. 3 for Ni-MOF-74 and Supplementary Fig. 15 for Zn,
Co-MOF-74, we find that EDA again provides an effective barrier
to retain those molecules. Furthermore, the same method was
successfully applied to other MOFs structure such as HKUST-1
(ref. 32; Supplementary Figs 16 and 17) to trap CO2 and NO, the
latter being an active biological molecule6.

Exposure to water vapour and release of adsorbed molecules.
The most striking result was obtained with water molecules,
chosen because they can form hydrogen bonds with amine

groups: water was observed to pass through the EDA layer
without any hindrance and was able to remove pre-adsorbed CO
completely. The experiment was started by capping CO molecules
in MOFs under 40 Torr by growing an EDA layer via vapour-
phase deposition as shown in Fig. 1. After evacuation for B1.5 h
(that is, CO still retained), 8 Torr vapour-phase H2O was intro-
duced into the cell and infrared spectra recorded as a function of
time. Figure 4a (and Supplementary Fig. 18) clearly shows that
the adsorbed CO peak dramatically weakens while the water stret-
ching band n(OH) quickly strengthens. Clearly, water molecules
diffuse into the MOF channel and force the pre-adsorbed CO
molecules out through the EDA layer, still present as evidenced
by its characteristics n(C–N) band at 1,020 cm� 1. To quantify the
rate of water penetration, the same experiment was performed
without EDA capping. CO molecules were loaded into Ni-MOF-
74 at 40 Torr for B30 min. Followed by a quick evacuation
(o3 s), 8 Torr H2O was introduced into the cell (Supplementary
Fig. 18). Figure 4b shows that there is no measurable difference in
the intensity decrease of n(CO) and increase of n(H2O) between
pristine and EDA-capped MOF, as though the EDA layer did not
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exist. The dramatically different behaviour of water compared
with other gases is tentatively attributed to the ability of water to
interact with –NH2 through H bonding.

To examine this hypothesis, we have investigated the
perturbation of the EDA adsorption geometry upon adding water
molecules by ab initio calculations. When MOF channels are fully
loaded with EDA molecules, the –NH2 head groups of the
adsorbed EDA molecules point towards the centre of the MOF
represented as blue lines in Fig. 5b. There are six –NH2 divided
into two sets, each one of them making an imaginary triangle
with N atoms at the apex in the middle of the channel, see the
black and red triangles. These two triangles are located in planes
parallel to the page, but not in the same plane. There are six
adsorption sites for water near the linkers (1–6), and two in the
middle of the channel (7 and 8). We observe in Fig. 5c,d that the
addition of H2O molecules clearly enlarges the triangles. For
instance, two water molecules placed at sites 1 and 7 increase the
area of the triangle by tilting the –C–C– and –C–N– bond angles
of several EDA molecules away from the centre of the channel
(Fig. 5d and Supplementary Fig. 19). These water adsorption
states are energetically favourable (Supplementary Fig. 20) since
water molecules establish the hydrogen bonding with –NH2

group, evidenced by the short HyN or HyO distance (Fig. 5c).
By continually adding water molecules up to 4 and 6, the area of
these triangles in most cases becomes significantly larger
(Supplementary Note 7 and Supplementary Figs 19 and 21),
enabling water molecules more easily to enter through the
channel. This ‘gate opening mechanism’ also works for other
MOF structures, leading for instance to the removal of NO
molecules from within HKUST-1 by water exposure.
(Supplementary Fig. 22).

Discussion
We have demonstrated, combining in situ Fourier transform
infrared (FTIR) and ab initio simulations, that small molecules
such as CO, CO2, SO2 and C2H4 can be efficiently trapped
inside the pores of the MOF-74 system simply by introducing
EDA vapour at the end of the loading process. This method
avoids the need to perform complex modification of the MOF
to increase the internal binding energies for each gas molecule.
The EDA molecules are able to block the release of several small
molecules from the 1D channels of MOF-74 due to their prope-
nsity to agglomerate and organize themselves into a hydrogen-

bonded network within the outermost unit cell. This generic
approach is also applicable to other MOFs structures and
overcomes the limitation of weak interactions between guest
molecules and the porous materials. We have further shown
that water molecules can easily penetrate this molecular EDA
barrier layer and displace previously trapped gas, thus
providing a novel method to release trapped gases at room
temperature. The understanding of this selective EDA memb-
rane, derived from combined in situ measurements and ab
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vacuum (o20 mTorr) The error bar of the sharp n(CO) band does not exceed 0.04. (b) Water n(OH) band increase in pristine (blue square) and

EDA-capped (pink diamond) Ni-MOF-74 at B8 Torr vapour phase. The error bar of the n(H2O) broad band is larger due to uncertainties in determining the

baseline in the difference spectra (Supplementary Fig. 18).
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Figure 5 | Relaxed atomic position of EDA molecules inside Ni-MOF-74

channel. Black, red, white, grey and blue spheres represent C, O, H, N and

Ni atoms, respectively. (a) Configuration of 6 EDA molecules before loading

2 H2O molecules. (b) Structural scheme of the Ni-MOF-74 loaded with the

6 EDA molecules, which are represented as blue lines. The numbers in the

figure represent eight possible adsorption sites for the H2O molecules.

(c) Configuration of EDA molecules after adding 2 H2O molecules into site 1

and 8. (d) Perturbation of triangle areas (empty space) induced by loading

2 H2O molecules into site 1 and 7.
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initio calculations, opens up new avenues for gas storage,
delivery and separation, and suggests new applications for
molecular membranes.

Methods
Synthesis of MOFs samples. The MOFs samples including Ni-MOF-74
Co-MOF-74, Zn-MOF-74 and HKUST-1 are synthesized by following the modified
procedure (Supplementary Methods) from refs 32,33. The crystal structures are
confirmed by comparing XRD pattern (Supplementary Fig. 23) and Raman spectra
(Supplementary Fig. 24 and Supplementary Note 8) with literature report. After
thorough solvent exchange as described in Supplementary Methods, the surface
areas reach 913, 1,077, 774 m2 g� 1 for Ni-MOF-74, Co-MOF-74, Zn-MOF-74
(ref. 34), respectively, consistent with the values reported in the original
literature33.

In situ infrared spectroscopy. All infrared spectroscopic data presented are taken
by using a Nicolet 6700 FTIR spectrometer (purchased from Thermo Scientific
Inc., USA) equipped with a liquid N2 -cooled mercury cadmium telluride MCT-A
detector. A high-pressure cell, purchased from Specac Ltd., UK (product number
P/N 5850c), is placed in the sample compartment of the infrared spectrometer with
the sample at the focal point of the beam. The MOFs (powder, B2 to B5 mg) are
gently pressed onto a KBr pellet (B1 cm diameter, 1–2 mm thick) and placed in the
high-pressure cell. The cell is connected to different gas lines (EDA vapour, NH3,
CO, CO2, SO2, CH2CH2 and so on) for exposure and a vacuum line for evacuation.
A pre-chamber is installed close to the cell to mix EDA vapour with other gases
(see the diagram in Supplementary Fig. 25). The samples are then activated by
evacuation (base pressureo20 mTorr) at 180 �C for at least 3 h and then cooled
back to room temperature for gas exposure measurements. All spectra are recorded
in transmission mode from 650 cm� 1 (MCT-A) to 4,000 cm� 1 (4 cm� 1 spectral
resolution).

X-ray photoelectron spectroscopy and gas cluster sputtering. X-ray photo-
electron measurements were performed in conjunction with gas cluster ion beams,
initially developed in the late 90’s (ref. 35). The principle for sputtering with
individual Ar atoms has been well described36. GCIS is particularly attractive to
gently remove the top layers of fragile organic materials37–40. It has been used in
conjunction with XPS to explore the depth distribution of atoms41. When standard
Arþ sputtering is used (B1 keV per Arþ ion), there is considerable perturbation
of the MOF with substantial preferential removal of O and C relative to Ni
(not shown), which makes it impossible to determine the location of EDA.
Therefore, Ar GCIS is used in removing the surface EDA molecules on MOFs
sample. A large cluster (B2,500 Ar atoms) is generated and charged by removal of
1 electron, then accelerated by a 2.5 or 5 keV potential difference. Upon impact, the
kinetic energy of the cluster is distributed among all Ar atoms (that is, B1 or 2 eV
per atom), which is insufficient to penetrate into the MOF, limiting the sputtering
to surface species only. The incidence angle of the cluster is 45�, the bombarded
area is 1� 1 mm2, and the sample is rotated at a rate of 0.2 r.p.m. for 5–15 min and
then 0.5 r.p.m. for 2 min to achieve a uniform sputtering. All the data were
recorded with charge compensation. For XPS measurements, the MOFs pellet used
for infrared measurements is taped on the puck with double sided tape. A Al ka
monochromated source is used with a beam size of 200� 200 mm2. Spectra are
recorded at a 45� takeoff angle with respect to the surface. The base pressure is
typically below 4� 10� 8 Pa and the Ar pressure during the sputtering is
2� 10� 6 Torr.

Low-energy ion scattering. LEIS measurements are performed using a Qtac
analyzer (IonTOF Gmbh, Münster, Germany) using 3 keV Heþ and 5 keV Neþ

as the probe and sputtering ions, respectively. The Heþ current used for the
measurements is B4 nA, and the Neþ sputtering current is B11 nA. The
instrument employs a double-toroidal analyzer that collects all ions scattered
within an angular range of 144–146� and images them according to their energy
onto a position sensitive detector. Samples for LEIS are prepared by pressing the
EDA-pretreated MOF powders into a tungsten mesh and mounting the mesh onto
an SiO2/Si wafer. A 1.5� 1.5 mm2 sample area is analyzed. Neþ sputtering is
performed using the LEIS ion gun, and thus the ions impinge at normal incidence
on the sample, unlike the conventional 45� sputtering geometry.

Ab initio calculations. Ab initio calculations are performed at the density func-
tional theory level, as implemented in Quantum Espresso42. To correctly capture
the crucial van der Waals interaction between the MOF and the guest molecules,
we use the non-local functional vdW-DF (refs 43–46). Ultra-soft pseudopotentials
are used with cutoffs of 544 and 5,440 eV for the wave functions and charge
density, respectively. Due to the large dimensions of the unit cell, only the G-point
is sampled. To model the diffussion process we use a transition-state search
algorithm, that is, the climbing-image nudged-elastic band method47,48. This
method is chosen because it finds the lowest-energy pathway between an initial and
final state, which may well deviate from a straight line (that is, linear interpolation)

between the two. Furthermore, this method allows us to obtain a clear picture
of the interaction between the CO molecule and the EDA molecules blocking
the pores, which cannot easily be obtained by other methods such as ab initio
molecular dynamics. We start from the experimental rhombohedral structure
of Ni-MOF-74 with 54 atoms in its primitive cell and space group R�3. The
description through hexagonal axes is a¼ b¼ 25.719 Å and c¼ 6.741 Å
(ref. 49), and a¼ b¼ 90� and c¼ 120�. We optimized all atomic positions until
the forces are o2.6� 10� 4 eV Å� 1.

Data availability. The data that support the findings of this study are available
from the corresponding author upon request.
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