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The origin of homochirality, the observed single-handedness of biological amino acids and sugars, has long

been attributed to autocatalysis, a frequently assumed precursor for early life self-replication. However, the
stability of homochiral states in deterministic autocatalytic systems relies on cross-inhibition of the two chiral
states, an unlikely scenario for early life self-replicators. Here we present a theory for a stochastic individual-level
model of autocatalytic prebiotic self-replicators that are maintained out of thermal equilibrium. Without chiral
inhibition, the racemic state is the global attractor of the deterministic dynamics, but intrinsic multiplicative noise
stabilizes the homochiral states. Moreover, we show that this noise-induced bistability is robust with respect to
diffusion of molecules of opposite chirality, and systems of diffusively coupled autocatalytic chemical reactions
synchronize their final homochiral states when the self-replication is the dominant production mechanism for
the chiral molecules. We conclude that nonequilibrium autocatalysis is a viable mechanism for homochirality,
without imposing additional nonlinearities such as chiral inhibition.
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Homochirality, the single-handedness of all biological
amino acids and sugars, is one of two major universal features
of life on Earth. The other is the canonical genetic code.
Their universality transcends all categories of life, up to and
including the three domains, and thus requires an explanation
that transcends the idiosyncrasies of individual organisms and
particular environments. The only universal process common
to all life is, of course, evolution, and so it is natural to seek
an explanation for biological homochirality in these terms,
just as has been done to account for the universality and
error-minimization aspects of the genetic code [1]. This paper
is just such an attempt, using the simplest and most general
commonly accepted attributes of living systems.

The origin of biological homochirality has been one of
the most debated topics since its discovery by Louis Pasteur
in 1848 [2]. There are those who argue that homochirality
must have preceded the first chemical systems undergoing
Darwinian evolution, and there are those who believe homochi-
rality is a consequence of life, but not a prerequisite [3]. There
are even those who argue that homochirality is a consequence
of underlying asymmetries from the laws of physics, invoking
complicated astrophysical scenarios for the origin of chiral
organic molecules [4] or even the violation of parity from the
weak interactions [5,6]! In fact, explanations that are based
on physical asymmetries can only predict an enantiomeric
excess of one handedness over another, and not the 100%
effect observed in nature [7].
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The most influential class of theories for biological ho-
mochirality rest on an idea of F.C. Frank’s, in which there is a
kinetic instability of a racemic (50% right handed and 50% left
handed) mixture of chiral molecules produced by certain auto-
catalytic reactions [8]. The theory additionally invokes a mutu-
ally antagonistic relationship between the two enantiomers of
the chiral molecule, known as “chiral inhibition”, and has led
to a large literature of specific realizations for Frank’s spon-
taneous symmetry-breaking mechanism [8-15]. Although
autocatalysis is an expected prerequisite for early life self-
replicators, the mutually antagonistic relationship between the
two chiral molecules does not seem to be biologically neces-
sary [16] and might in principle depend on when we place the
origin of homochirality with respect to the origin of life [17].

When this mutual antagonistic relationship is replaced by
linear growth and decay reactions, the racemic state becomes
the global attractor of the deterministic dynamics, rather than
arepellor. In this case, the deterministic analysis of the model
indicates that even if the system is initialized in a homochiral
state, it ends up with a final racemic state. However, when the
effect of chemical number fluctuations from self-replication is
taken into account, the system can transition to homochirality
when the autocatalysis is the dominant mechanism for the
production of the chiral molecules [17].

The purpose of this paper is to present a detailed analysis
of this noise-induced symmetry breaking in a nonequilibrium
autocatalytic model of self-replicating chiral molecules with-
out chiral inhibition along with its spatial extension. This
paper is an expansion and elaboration of our paper [17],
which originally reported the emergence of homochirality in an
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autocatalytic model without chiral inhibition by incorporating
the effect of chemical number fluctuation (i.e., multiplicative
noise).

This paper is organized as follows. We start with an
introduction to the basic concepts of chirality of molecules and
biological homochirality followed by an account of Frank’s
spontaneous symmetry-breaking model of homochirality [8]
in Sec. I. This sets the stage for Sec. II, where we replace
the reaction modeling the mutual antagonistic relationship in
Frank’s model by linear decay and growth reactions and show
that even though the racemic solution is the global attractor
of the deterministic dynamics, when the intrinsic stochasticity
of the self-replication process is taken into the account, the
system transitions to homochirality. This transition takes place
when the efficiency of self-replication exceeds a threshold.
The relationship between the transition to homochirality in
this model and the emergence of early life is discussed
in Sec. II C. In Sec. I D, we discuss the nonequilibrium
aspects of our model and the principle of detailed balance.
In particular, we point out that life fundamentally breaks
microscopic reversibility, so that living processes must violate
the principle of detailed balance, reflecting the requirement for
an external energy source to power the system, such as the Sun
or radioactive heating. The stochastic theory for the emergence
of biological homochirality then relies on three key attributes
of life: autocatalysis, the driving far from equilibrium, and
the increasing efficiency of autocatalytic production as life
becomes more efficient and (presumably) complex. This
stochastic mechanism for homochirality depends on intrinsic
noise, and thus it is important to determine how robust it is
with respect to spatial inhomogeneities. In Sec. III, first, we
show that when a well-mixed system described by this model is
perturbed by diffusion of chiral molecules of perhaps opposite
chirality from neighboring well-mixed systems, the system
maintains its homochirality. Then we show that in a continuous
one-dimensional model, the reactions at different points in
space synchronize their final homochiral state, showing that
this noise-induced mechanism for the origin of homochirality
is robust with respect to the spatial extension. Potential
implications of this model and future directions are discussed
in Sec. IV.

I. INTRODUCTION TO HOMOCHIRALITY

In this section, we will give an introduction to the
basic concepts related to chirality of organic molecules and
biological homochirality. A review of spontaneous and explicit
symmetry-breaking theories of homochirality is given in
Sec. I B. The main focus of this work is on spontaneous
symmetry-breaking mechanisms. All of the previous spon-
taneous symmetry-breaking models of homochirality have the
same basic mechanism [15] as Frank’s model [8], which is
reviewed in Sec. I C. Frank has shown that in a population
of self-replicating (autocatalytic) chiral molecules that are
mutually antagonistic, the racemic solution is unstable. While
autocatalysis is expected in a model of prebiotic chemistry,
the mutual antagonistic relationship may not have an obvious
biological justification, nor may it be a generic feature of
early life. Thus it is important to understand whether chiral
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inhibition is a necessary or merely a sufficient condition for
chiral symmetry breaking.

A. Molecular chirality

In 1848 Pasteur discovered that the sodium ammonium salt
of synthetic tartaric acid (known at the time as racemic' acid)
produces two distinct types of crystals known as “+” and “—”
forms, which are mirror images of one another. Pasteur showed
that if we shine linearly polarized light through solutions made
by each one of these two types of crystals, they rotate the angle
of polarization of light in opposite directions. He concluded
that the racemic acid was made of two kinds of molecules with
opposite optical activity, and the asymmetry of the crystals
was related to an asymmetry at the molecular level [2]. A
clear explanation did not emerge until 1874, when van’t Hoff
and Le Bel independently discovered that organic molecules
with a carbon atom connecting to four different groups are not
mirror symmetric, and as a result, the groups can be placed
around the carbon atom in two distinct ways: left-handed and
right-handed order, two configurations that are mirror images
of one another [18,19]. Molecules that are not superimposable
on their mirror image are called chiral (Greek for hand), and
the atom surrounded by four different groups is known as the
chiral center of the molecule.

There are at least three different, but arbitrary, conventions
to determine which one of the two optical isomers (also known
as enantiomers) should be called left-handed, and which one
should be called right-handed:

(1) The (+) and (—) classification based on the optical
activity explained above is important for historical reasons
but is not very useful for our purpose, as there is no way to
determine the optical activity just by looking at the structure
of the molecule. Moreover, the optical activity of the chiral
solutions could also depend on the properties of the solvent.

(2) More commonly used in chemistry is the R/S (re-
ferring to Rectus and Sinister, Latin for right-handed and
left-handed, respectively) nomenclature, where the ordering
of the groups on the chiral centers is chosen based on the
atomic numbers, and can be easily determined by looking
at the three-dimensional structure of the molecule. However,
atomic number is not always the most biologically relevant
criterion, and as it turns out, the R/S classification does not
consistently maintain the ordering of the functional groups
across, e.g., all amino acids.

(3) The D-L (named after Dexter and Laevus, Latin for
right and left, respectively) convention (also known as the
Fisher-Rosanoff convention) is chosen for a molecule if it
can be theoretically derived from R/S-glyceraldehyde without
changing the configuration of the chiral center [20]. This
seemingly arbitrary convention happens to be the one that

!The word “racemic” derives from the Latin for “bunch of grapes,”
and at the time, it was used to refer to crystals of synthetic tartaric
acid, because tartaric acid is naturally found in grapes. However, the
tartaric acid found in grapes does not produce the two distinct crystals,
since it is produced biologically and is homochiral. The word racemic
is nowadays used to mean a 50-50 mixture of two chiral molecules,
which could be misleading knowing the etymology of the word.
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FIG. 1. Ball-and-stick model of a generic w-amino acid and its
mirror image. «-amino acids are organic compounds with a chiral
carbon connected to an amino group (—NH,), a carboxylic acid group
(—COOH), a hydrogen atom (—H), and a side chain (—R) that varies
depending on the particular amino acid. The L or D chirality of amino
acids is determined by the CORN rule: an amino acid is L-chiral
(D-chiral) if by wrapping your left hand (right hand) fingers around
the direction of CORN (—CO, —R, and —N groups in order) your
thumb points toward the direction of the hydrogen atom.

keeps the order of similar functional groups in biological
molecules consistent and makes it possible to compare the
chirality of different molecules with similar groups such as
different amino acids (see Fig. 1).

It is important to note that there is no fixed relation between
the three arbitrary conventions, since a right-handed molecule
in one convention can be left-handed in the other.

Parity is a symmetry of the laws of physics (weakly broken
at small length and time scales by the weak interaction).
In particular, two enantiomers of a chiral molecule have
identical physical, chemical, and thermodynamical properties.
Therefore, chemical reactions producing chiral molecules
from achiral molecules, by symmetry, are expected to produce
solutions of 50% right-handed and 50% left-handed molecules.
Such solutions are called racemic. In contrast, a solution of all
left-handed or all right-handed molecules is called homochiral
or enantiopure.

B. Biological homochirality: A symmetry-breaking problem

Amino acids are building blocks of proteins, and their
chirality plays an important role in the structure and the
function of proteins in living cells. Sugars are often used as a
storage for chemical energy in biological systems, but perhaps
more importantly, sugars play a key role in the structure of
RNA and DNA molecules. The famous double helix structure
of DNA is a result of the chirality of the sugar molecules in its
backbone. Despite the diversity of proteins and their functions
virtually all chiral biological amino acids” are L-chiral,® while
all sugars are D-chiral.

20f the 23 proteinogenic amino acids found in life, glycine is the
only achiral amino acid.

3Some D-amino acids do appear in biological system (e.g.,
D-aspartate is aregulator of adult neurogenesis [21]) and are generated
by enzymes that are specialized in the inversion of the stereochemistry
(of the corresponding L-amino acids) known as racemases and
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Homochirality is particularly surprising, in light of the fact
that all the physical, chemical, and thermodynamical proper-
ties of the two enantiomers of a chiral molecule are identical.
This is due to the symmetry of laws of electromagnetism
under reflection. When life was emerging on the planet, chiral
molecules were formed from simpler achiral molecules that
existed in the early atmosphere and the ocean. Since the initial
state was symmetric (solution of achiral molecules) and the
laws of physics are symmetric, one would expect a symmetric
final state, that is, a biosphere made of a racemic solution
of chiral molecules. A phenomenon in which the initial state
and the corresponding laws of physics are symmetric with
respect to a particular transformation, but the final state of the
system violates that symmetry, is called a symmetry breaking.
There are two resolutions to symmetry-breaking problems:
first, explicit symmetry breaking, when the laws of physics
are only approximately symmetric, or there is an asymmetric
perturbation to the system. Second, in contrast, spontaneous
symmetry breaking happens when the governing laws are
perfectly symmetric, and as a result, the symmetric state is
a final solution, but it may be an unstable solution. In this case,
even the slightest perturbation to the system moves the system
away from the symmetric state.

There have been some attempts to explain homochirality
through explicit symmetry-breaking mechanisms. For exam-
ple, if life was formed from chiral organic molecules that
were produced under a steady radiation of circularly polarized
light, the asymmetric interaction of different enantiomers of
chiral molecules with the light over hundreds of millions
of years could lead to a significant enantiomeric excess [4].
These theories are partly motivated by reports of observation
of slight L-enantiomeric excess of some of amino acids
found in the Murchison meteorite [7,24,25]. Another example
relates to the parity violation of the weak interaction. Unlike
electromagnetic interactions, the weak interaction violates
mirror symmetry [26,27]. Even though weak interactions have
a negligible effect at molecular scales, it has been argued that
it can cause an asymmetry affecting the rate of production of
two enantiomers in a manner that over billions of years could
lead to an observable level of enantiomeric imbalance [5,6].

A common weakness of explicit symmetry-breaking mech-
anisms is that the homochirality achieved is only partial: These
mechanisms lead to an imbalance between the concentrations
of the two enantimeres but do not result in complete homochi-
rality. As a result, there is a common misunderstanding in
the homochirality literature that the origin of homochirality
requires two steps: (1) an explicit symmetry-breaking mecha-
nism to break the symmetry in the initial condition, followed by
(2) amechanism to amplify the initial asymmetry. We believe it
is important to clarify this point for the nonphysicist audience:
If there is a mechanism amplifying the initial asymmetry for
arbitrary small asymmetries, then the symmetric solution is

epimerases. These amino acids cannot participate in protein structures
through ribosomal synthesis but can take part in structure of peptides
(e.g., D-phenylalanine in the antibiotic tyrocidine [22]) through either
posttranslational conversion of L- to D-amino acids or the activity of
nonribosomal peptide synthetases. For a review of the role of D-amino
acids, see, for example, Ref. [23]
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FIG. 2. (a) Phase portrait of Frank’s model: the racemic state is an unstable fixed point (red dot), while the homochiral states are stable
fixed points (green dots). (b) If chiral inhibition is replaced by linear decay reaction, the ratio of D and L molecules stays constant. (c) Adding
even the slightest amount of nonautocatalytic production of D and L molecules makes the racemic state (green dot) the global attractor of the

dynamics.

unstable, and over time the system decays to one of the two
homochiral states, even with a symmetric initial condition; this
is spontaneous symmetry breaking.

The first model of spontaneous symmetry breaking for
homochirality was proposed by Frank in 1953 [8]. There have
been many other models of homochirality since Frank’s model,
but the underlying mechanism for spontaneous symmetry
breaking in all of these models is the same as the mechanism
by Frank [15]. Frank’s model is reviewed in detail in Sec. I C.

C. Frank’s model of homochirality

Frank introduced a model in which the D and L enantiomers
of a chiral molecule are autocatalytically produced from an
achiral molecule A in reactions

A+D5 2D, A+ 00 (1)

and are consumed in a chiral inhibition reaction:*
ki
D+ L — 2A. 2)

The state of this system can be described by the chiral order
parameter w defined as
_ [p]—[u]

Bt B 3
RRRTENTH &)

“In the original model by Frank, the concentration of the molecules
A was kept constant to reduce the degrees of freedom by one, and
the chiral inhibition was introduced by the reaction D 4+ L — &. This
model leads to indefinite growth of D or L molecules and does not
have a well-defined steady state. To resolve this problem, we let the
concentration of A molecules be variable and replaced this reaction
by D + L — 2A, which conserves the total number of molecules. This
conservation law reduces the number of degrees of freedom by one
again. The mechanism to homochirality in the modified model is the
same as the original model by Frank, since the order parameter in
both models obeys Eq. (6).

where [D] and [L] are the concentrations of D and L. The
order parameter w is zero at the racemic state, and +1 at the
homochiral states. In order to determine the time evolution of
the order parameter w, we can use the law of mass action to
set the rates of reactions (1) and (2) proportional to the products
of the concentrations of the corresponding reactants. The result
is the following set of mean field equations for the rate of
change of concentrations of A, D, and L:

d[A]
DTk 2k; [D] [L] — k4 [A] (D] + [L]),
d[D]
—— =k, [A][D] — k; [L] [D],
dt
d[L]
el kq [A][L] — k; [D] [L]. @

The rate of change of w can be derived from the chain rule,
resulting in the mean field equation of motion:

2 Lol + el — o) 5)
dr — 2" @ @)

Equation (5) has three deterministic fixed points: the racemic
state, w = 0, is an unstable fixed point, and the two homochiral
states, w = %1, are stable fixed points. Starting from almost
everywhere in the D-L plane, the system converges to one of
the homochiral fixed points [Fig. 2(a)].

In the context of biological homochirality, extensions of
Frank’s idea have essentially taken two directions. On the
one hand, the discovery of a synthetic chemical system
of amino alcohols that amplifies an initial excess of one
of the chiral states [9] has motivated several autocatalysis-
based models (see Ref. [15] and references therein). On the
other hand, ribozyme-driven catalyst experiments [28] have
inspired theories based on polymerization and chiral inhibition
that minimize [10,14,29] or do not include at all [12,30]
autocatalysis. Further extensions accounting for both intrinsic
noise [15,31] and diffusion [32-35] build further upon Frank’s
work.
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From our perspective, the experimental finding that is
most interesting is that chiral inhibition is not a necessary
part of autocatalytic reaction schemes. A recent important
experimental realization of RNA replication using a novel
ribozyme shows such efficient autocatalytic behavior that
chiral inhibition does not arise [16]. Thus it becomes critical
to ask whether homochirality can arise in the absence of chiral
inhibition. As we will see, the answer is yes: chiral inhibition is
not a necessary condition for symmetry breaking, although the
mechanism is quite different from that envisioned by Frank.

Regardless of the specific model details, all these models
share the three-fixed-points paradigm of Frank’s model,
namely that the time evolution of the chiral order parameter w
is given by a deterministic equation of the form [15]

do

ar
where the function f(#) is model-dependent. The sole excep-
tion to this three-fixed-points model in a variation of Frank’s
model is the work of Lente [36], where purely stochastic chiral
symmetry breaking occurs, although chiral symmetry breaking
is only partial, with w # 0 but |@| < 1. In all models obeying
Eq. (6), the homochiral states arise from a nonlinearity which
is not a property of simple autocatalysis, but, for instance,
in the original Frank’s model, is due to chiral inhibition. To
clarify this, one can repeat the analysis of the rate equations
for a variation of Frank’s model in which the chiral inhibition
reaction (2) is broken down into two independent linear decay
reactions

f) w(l — o), (6)

pAoA, L2 A 7

Figure 2(b) shows that in this modified model, the homochi-
raity is lost, and the ratio of D and L molecules stays constant
over time. The situation is even worse: if the reactions (7) are
even slightly reversible,

kd k(l
D—=A, L=2A4, ®)
ky ky

the racemic solution becomes the global attractor of the
deterministic dynamics [see Fig. 2(c)]. Even starting from
a homochiral state, such a system eventually converges to
a racemic solution. This structural instability of the chiral
inhibition terms in the equation is unphysical, because these
small changes to the reaction scheme should not have a
qualitatively large impact on the outcome.

In Sec. II, we will show that despite the fact that the stability
analysis of rate equations indicates that the modified Frank’s
model without chiral inhibition approaches a racemic steady
state, when the intrinsic noise from the autocatalytic reactions
is taken into account, the system can nevertheless transition to
homochirality under certain conditions.

II. NOISE-INDUCED ORIGIN OF HOMOCHIRALITY
IN PREBIOTIC SELF-REPLICATORS

In this section, we will show that efficient early-life self-
replicators can drive the emergence of universal homochirality,
through a stochastic treatment of Frank’s model without requir-
ing nonlinearities such as chiral inhibition. In our stochastic
treatment, the homochiral states arise not as fixed points
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of deterministic dynamics, but instead are states where the
effects of chemical number fluctuations (i.e., the multiplicative
noise [37]) are minimized. The mathematical mechanism
proposed here [38—41] is intrinsically different from that of
the class of models summarized by Eq. (6). We conclude
that autocatalysis alone can in principle account for universal
homochirality in biological systems far from equilibrium,
when autocatalysis is the strongly dominant mechanism for
the production of chiral molecules.

To be self-contained, we now clarify in what sense chemical
reactions are stochastic and when the stochasticity matters. In
reaction kinetics, the rate of reactions is usually calculated
using the law of mass action. The law of mass action states
that the rate of a reaction is proportional to the product of
the concentrations of its reactants, and the proportionality
constant is defined as the reaction rate. An intuitive explanation
of this law is as follows: A chemical reaction takes place
when its reactants collide with enough energy to overcome
the activation energy of the reaction. The probability of the
collision of these reactants is proportional to the product of
their concentration, and therefore, the expected value of the
number of such collisions per unit time is also proportional
to the product of the concentrations of the reactants. This is
the law of mass action, and it is an intrinsically mean field
approximation.

Near equilibrium, a system of a large number of interacting
chemicals follows Boltzmann statistics and can be approxi-
mated by its expected value. This approximation is possible
because the distribution of various quantities converge to
narrow Gaussian distributions around their mean. This is the
reason that, in calculating rates of reactions, the expected value
of number of collisions is used instead of the actual probability
distribution of the number of collisions per unit time.

However, this property is not generalizable to systems that
are maintained far from equilibrium. For such systems, instead
of using the law of mass action as the expected value of the
number of reactions per unit time, it is more appropriate to
interpret the law of mass action as the probability per unit
time of occurrence of a chemical reaction. Also, instead of the
rate equations for the rate of change of the expected value of
the concentrations of the reactants and the products, we
can write the master equation for the rate of change of
the probability of the system having given concentrations of
reactants and products. A step by step treatment of the master
equation is given in Sec. I B. An intuitive explanation of
the mechanism for the symmetry breaking and its relationship
with the origin of life follows in Sec. II C.

Our proposed reactions [reactions (9)] are chosen as an
effective minimal model in which the transition to homochi-
rality via a noise-induced symmetry breaking in the absence
of chiral inhibition can be observed. Of course, the actual
set of reactions that took place during the emergence of life
leading to the symmetry breaking may involve more chemical
species and more intermediate steps. In particular, the steady
state of our reaction set will be a nonequilibrium steady state
implying that self-replication process has to be driven by an
external source of energy. This could mean that self-replication
may be coupled to other set of reactions, in the same way
that some energy-consuming reactions in biological cells are
driven by ATP hydrolysis. A more detailed analysis of the
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thermodynamical aspects of our model and other variations
are discussed in Sec. II D.

A. Description of the stochastic model

Motivated in part by the experimental demonstration of
autocatalysis without chiral inhibition [16], we propose the
reaction scheme below, which is equivalent to a modification of
amodel by Lente [36] with the additional process representing
the recycling of enantiomers:

A+Dﬁ>2D, A+Lﬁ>2L,
kn kn
A=D, A=0L1L. 9)
kd kd

Compared to Frank’s model, the chiral inhibition is re-
placed by reversible linear decay reactions which model both
recycling and nonautocatalytic production. The rate constants
are denoted by k, with the subscript serving to identify the
particular reaction (subscript a for autocatalysis, d for decay,
and n for nonautocatalytic production). The only deterministic
fixed point of this model is the racemic state [see Fig. 2(c)].
This model can be interpreted as a model for the evolution
of early life where primitive chiral self-replicators can be
produced randomly through nonautocatalytic processes at very
low rates; the self-replication is modeled by autocatalysis
while the decay reaction is a model for the death process.

It is important to note that for the nonautocatalytic reaction
to occur at a very small rate compared to the decay rate,
the self-replication process should be an energy-consuming
reaction (as is the case in biological systems). Hence, in order
to maintain an irreversible self-replication, the system has
to be driven by an external source of energy. This constant
inflow of energy keeps the steady state of the system far from
equilibrium. The source of this driving energy is not included in
our model, as is usually the case in nonequilibrium problems.
For more details on the thermodynamics of this model see
Sec. I D.

Section II B derives an exactly solvable stochastic differen-
tial equation for the time evolution of the chiral order parameter
w from reactions (9), which shows that in the regime where
autocatalysis is the dominant reaction, the functional form of
the multiplicative intrinsic noise from autocatalytic reactions
stabilizes the homochiral states.

B. Master equation, Fokker-Planck equation,
and Langevin equation

Chemical reactions are inherently stochastic, as they rely
on the stochastic collision of molecules with sufficient energy
to overcome the activation energy. The goal of this section is to
derive a master equation for the rate of change of probability
of the system being at a state defined by the concentration of
A, D, and L molecules and a stochastic differential equation
for the rate of change of the chiral order parameter w.

Consider reactions (9) taking place in a well-mixed system
of volume V with total number of molecules N. The state of
the system is defined by the concentration vector (a,d,l) =
(x1,X2,Xx3) = X of the molecules A, D, and L, respectively. We
define the transition rate T'(¥|X) as the probability per unit time
per unit volume of the system transitioning to the state ¥, given
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the initial state X. From reaction (9), there are four types of
transitions characterized by the four rows of the stoichiometry
matrix S:

-1 1 0
-1 0 1

S=11 -1 ol 10)
1 0 -1

corresponding to the reactions that consume A, and produce
D or L, respectively, and the ones that consume D or L and
produce A respectively. The columns of S correspond to the
species A, D, and L respectively, and the negative or positive
signs refer to consumption or production. From the law of mass
action, the transition rates corresponding to different types of
transitions are given by

T(X + €51|X) = (k, + kod)a,
T(X + €52]X) = (k, + kyDa,
T(X + €53|X) = kad,
T(X + €54|X) = kyl,

(11

where the vector §; (with i = 1, ...,4) is the ith row of the
stoichiometry matrix S, € = 1/V is one over the volume V of
the system, €s; are the changes in the concentration vector X
due to a reaction of type i.

Now, the rate of change of the probability of the system
being at a state X at time ¢, P(X,t), is given by

OP(x,1) RN oy
ErTE 4 Z[T(le)P(y,t) —TOl)Px,nl.  (12)
y

Equation (12) is called the master equation [42], and it
describes the time evolution of probability of the system at
a state defined by discrete concentration values. The master
equation is the most accurate description of the individual
level model and can be simulated exactly using the Gillespie
algorithm [43]. In the master equation for reaction (9), most
of the transition rates are zero, except the allowed transitions
specified by Eq. (11). Substituting the allowed transitions from
Eq. (11) in Eq. (12), we obtain

aP(x D_v Z[T(xp-g — €5)P(X — €5,,1)

—T(X + €5;|X)P(X,1)]. (13)

The next step is to take the continuous limit of Eq. (12)
when the total number of molecules N >> 1, to derive a partial
differential equation for the time evolution of the probability
density of finding the system in a state defined by continuous
concentration variables. This equation in known as the Fokker-
Planck equation. We begin by defining the functions F; as

Fi(X,t) = T(X|X + e5)P(xX,1), (14)

so that the master equation can be written as

8P(xt) ZE()? es,,t) Fi(x,1)
. (15)

i=I
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The right-hand side of the master equation can be expanded
ine:
dP(X,1)

=-Ys: S:iiS:
3 Z fa Z i "axaxk
——ZS Si 1 S: °F (16)
BiOLk ”ax]axkaxl )

i,j.k,l

If P(X,t) is analytic in €, before truncation, Eq. (16) is exact
and does not require € to be small. For N >> 1, by the central
limit theorem, the fluctuations are Gaussian, and therefore, the
probability density function P(¥,t) has to obey a second order
Fokker-Planck equation. At this limit, even if € is not small,
we can truncate the series to second order, and after evaluating
the corresponding partial derivatives, we obtain the following

J

ka(d + 1) + aRk, + k,(d + 1))
—kyd — a(k, + k,d)
—kgl — alk, + kql)

BzeZT(z+e§i|E)§i®§i =€
i

where the symbol ® indicates the Kronecker product.

Equation (17) describes the time evolution of the probability
density of the concentration vector X in the continuous model,
and all further approximations and simplifications can be done
directly on this equation. However, it is more insightful to keep
track of the stochastic dynamics of the concentration variables.
The following is the set of stochastic differential equations
(defined in the Ito sense; see Ref. [37]) corresponding to a
probability density function obeying Eq. (17):

dx - L=

— = H(x)+§@), (20)
dt

where §;, the components of 5 (t), are zero mean Gaussian

noise functions with correlation

(&E@E;)) =

To rewrite Eq. (20) in terms of uncorrelated Gaussian noise
functions, we seek to decompose the matrix B to B = GGT.
This decomposition is not unique and multiple choices for G
exist [44]. It is easy to check that the following 3 x 2 matrix
satisfies the decomposition:

Bi;8(t —1'). @21)

Jalk,d + k) + kqad Jalk, + k) + kgl
G = JVe| —Vatk,d +k,) + kad 0
0 —alkyl + ky) + kql

(22)

For more details on how such decompositions are found, see
Appendix A. Now, for a two-dimensional zero mean Gaussian
white noise 7(¢) with correlation

(i) = 8;x8 — 1), (23)
the correlated noise é’ (t) can be rewritten as g? () = Gi(1) (see
Appendix A). Now, Eq. (20) can be written in terms of 7 as

dx

- = H(E) + GE)ii(2). (24)
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Fokker-Planck equation for the time evolution of P(X,t):

3

0P OH;P) | 1 O(BuP)
> Z 3

0x; ax, 0xk

) a7
=1

where the drift vector H with component H; is given by

H=>"T@E+ €505
ka(d +1) — a2k, + k,(d + 1))
—kdd + a(kn + kad) . (18)
—kgl + a(k, + kul)

The symmetric diffusion matrix B is given by

—kgd — alky + kad)  —kal — alky + ko)
kqd + a(k, + k,d) 0 , (19)
0 kal + alky, + kal)

(

Note that since the Fokker-Planck equation (17) only depends
on B and not the particular choice of its decomposition G, the
probability density function of X and its time evolution do not
depend on G either [44].

To obtain a stochastic differential equation for the time
evolution of the chirality order parameter w, we perform the
following change of variables in Eq. (24):

a n a+d+1
dl—=|r]= d+1 . (25)
[ w d-0n/d+1)

Using Itd’s lemma [37] we can obtain an equation for the time
evolution of the new state vector y = (n,7,).

In general, it is not easy to solve for the joint probability
density of coupled stochastic differential equations (SDE),
but for a single variable first order SDE the steady state
distribution is always exactly solvable. Therefore, we seek
to reduce the number of degrees of freedom in the problem
using the following two facts:

(1) The reaction scheme reaction (9) conserves the total
number of molecules, meaning that the total concentration
n =a +d + 1 is constant.

(2) Simulations show that the concentration r =d + [
settles to a Gaussian distribution around its fixed point value r*,
allowing us to substitute r(t) — r*. Therefore, the dynamics
at long time occurs only in the chiral order parameter .

In the new variables, we find that n = 0, and, by taking the
positive solution of 7 = 0, that is

V(kgn — kg — 2ky)? + 8koknn + kon — kg — 2k,
2k,

*_

9

(26)

we substitute » — r* in the equation for w, and use the rule for
summing Gaussian variables (i.e., an; + by, = +/a? + b2n;
where a and b are generic functions [37]) to express the
stochastic part of the equation using a single noise variable.
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FIG. 3. Comparison between the stationary distribution, Eq. (29),
(dashed lines) and Gillespie simulations of reactions reaction (9)
(markers), for different values of . Simulation parameters: N = 103,
ke =k, = ks = 1.

Expressing the result in terms of the total number of molecules
N = Vn, for N > 1, we arrive at the following stochastic
differential equation for the chiral order parameter w:

do __dkkaV R o
i Nk, OV NS Ty

where n(t) is Gaussian white noise with zero mean and unit
variance. The time evolution of the probability density function
of w is described by the corresponding Fokker-Planck equation
of Eq. (27) given by

P (w,t J [ 2k,k;V
9P(w.1) -2 7 wP(w.1)
ot dw| Nk,
19 [2%
S T2 g )P |. 2
28w2|: N( ") (w,f)] (28)

This is an exactly solvable partial differential equation
with time-dependent solution given in [45]. The steady state
solution of Eq. (28) is given by

k,V

Py(w) =N —o*)* !, with o= T (29)
a
with the normalization constant
. ! _ra+d)
N = [ (1- wz)“lda)i| =27 (30)
_1 V7 T(a)

Equation (29) is compared in Fig. 3 against exact Gillespie
simulations [43] of reactions (9). For «a = o, =1, o is
uniformly distributed. For @ > «,, where the nonautocatalytic
production is the dominant production reaction, P(w) is
peaked around the racemic state, w = 0. For o <« «,, where
autocatalysis is dominant, Ps(w) is sharply peaked around the
homochiral states, @ = 31. The simulations were performed
for N = 1000, where the analytic theory is expected to
be accurate; for much smaller values of N, the theory is
qualitatively correct, but very small quantitative deviations
are observable compared to the simulations.

For finite N and nonzero « smaller than one, the system can
switch from one homochiral state to the other over long time.
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The expected value of this switching time approaches infinity
for large N and small «. See Appendix B for the calculation
of the mean switching time and analytical expressions.

The importance of this treatment is not only in the analytical
results for the probability density function of w, but also the
intuitive picture that Eq. (27) provides to understand the mech-
anism through which autocatalysis leads to homochirality.
We will discuss an intuitive interpretation of Eq. (27) and
the behavior of its solution Eq. (29) in Sec. II C along with the
relationship of this model with the origin of life.

C. Transition to homochirality and origin of life

In Sec. II B we saw that for the reactions (9), in a well-mixed
system of volume V and total number of molecules N, the time
evolution of the chiral order parameter @ obeys the stochastic
differential equation

do _ 2hkaV R T )
_— = —_— — revisite
di Nk, OV NS T

where 7(¢) is a normalized Gaussian white noise with zero
mean defined in the It6 sense [37]. The deterministic part of
Eq. (27)

do  2kkeV

dt — Nk,

w, 31

which could alternatively be derived by reaction kinetic
analysis (see Sec. I C), has one stable fixed point at the
racemic state, consistent with the phase portrait in Fig. 2(c).
The multiplicative noise in Eq. (27) vanishes at homochiral
states and admits its maximum at the racemic state. In order
to determine which one of the two terms is dominant, one can
define the dimensionless parameter « as the ratio of the two
constants 2k,k;V /Nk, and 2k; /N, that is,

k,V
o= —-,

I (32)

It can also be seen in Eq. (28) that « is the ratio that determines
which term is dominant. Note that the steady state solution of
Eq. (27), given in Eq. (29), depends only on . When o > 1,
the deterministic part of the Eq. (27) is dominant, and therefore,
we expect a racemic solution. That is indeed the case, and the
steady state probability density of w is peaked around zero for
large o (see Fig. 3). However, for « < 1, where autocatalysis
is the dominant production mechanism, the amplitude of the
noise term in Eq. (27) is much larger than the amplitude of the
corresponding deterministic term. Since the noise is maximum
at the racemic state, the variable w stochastically walks away
from the racemic state over time and ends up at homochiral
states where the noise term vanishes.

To understand this result physically, note that the source of
the multiplicative noise is the intrinsic stochasticity of the au-
tocatalytic reactions. While, on average, the two autocatalytic
reactions do not change the variable w [see Fig. 2(b)], each time
one of the reactions takes place, the value of w changes by a
very small discrete amount. As a result, over time the value of
o drifts away from its initial value. Since the amplitude of the
noise term is maximum at racemic state and zero at homochiral
states, this drift stops at one of the homochiral states.
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The absence of the noise from autocatalysis at homochiral
states can be understood by recognizing that at homochiral
states, the molecules with only one of two chiral states D and
L are present, hence only the autocatalytic reaction associated
with that chiral state has a nonzero rate. This reaction produces
molecules of the same chirality, keeping the system at the
same homochiral state without affecting the value of w, and
therefore, the variable w does not experience a drift away from
the homochiral states due the autocatalytic reactions.

Note that the stationary distribution of w in Eq. (29) is
dependent only on « and is independent of the decay reaction
rate, k;. The only role of this reaction is to prevent the A
molecules from being completely consumed, thus providing
a well-defined nonequilibrium steady state independent of the
initial conditions.

The parameter « is proportional to the ratio of the
nonautocatalytic production rate, k,, to the self-replication
rate, k,. In the evolution of early life, when self-replication
was a primitive function, k, would be small and the value of o
would therefore be large. As life evolved, the self-replicators
would evolve to become more efficient at self-replication and
would be less likely to be produced spontaneously through
non-self-replicating mechanisms. As a result the value of k&,
would increase, while k, decrease, and « would become very
small. Therefore, in our model, we expect that life started
in a racemic state, and it transitioned to homochirality after
self-replication became efficient (i.e., when o <« 1). It is a
necessary weakness of the present state of understanding that
we do not have a dynamical description of «(#), so in this
sense, our theory is incomplete.

It is important to note that all of the previous mechanisms
suggested for homochirality rely on assumptions that cannot
be easily confirmed to hold during the emergence of life.
However, even if all of such mechanisms fail during the
origin of life, our mechanism guarantees the emergence of
homochirality, since it only relies on self-replication and death,
two processes that are inseparable from any living system.

D. Pigs can fly (with jetpacks): Violation of detailed balance
is a necessary condition for homochirality

By construction, our model violates the principle of micro-
scopic reversibility, and in this section, we wish to comment
on this fact and explore its physical origin. The violation of
microscopic reversibility follows because our model explicitly
violates the principle of detailed balance, as is required for
an externally driven system far from equilibrium. Here we
review some thermodynamical aspects of our model, which
we believe have important implications for understanding the
origin of life. Before starting to analyze the model, we would
like to review the history of criticisms to minimal models for
homochirality that violate microscopic reversibility.

In 2009, Blackmond published an essay titled “If pigs
couldfly” chemistry: A tutorial on the principle of microscopic
reversibility [46]. The essay criticizes several kinetic models
of homochirality similar to Frank’s model, with the type of
recycling that exists in our model. Blackmond argues that these
kinetic models are written with arbitrary reactions constants
without a regard for whether reactions with these constants are
thermodynamically feasible or not. The crux of the argument
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boils down to the following: the principle of microscopic
reversibility states that at equilibrium, the rate of the forward
reaction and the reverse reaction are equal for all reactions.
For systems involving recycling, or more generally cyclic
reactions, this principle puts a constraint on the relationship of
the rate constants of the set of reactions that share their pool
of reactants and products. For example, consider the cyclic
reaction set

k1

A B

G

Ty af

Y 33
A e .

C

At equilibrium, the rate of forward and backward reactions
are the same for each reaction, giving rise to the following
relationships:

kilAl = k{[Bl, kBl =KI[Cl, k[Cl=k3[A]l. (34)

Eliminating the concentrations [A], [B], and [C], we have
];—i]f—i:—i =1. (35)
1 %2 K3
This relationship was discovered by Wegscheider in 1901 [47].
It implies that, at equilibrium, the six reaction rates cannot be
chosen independently. In particular, one cannot have a set
of cyclic irreversible reactions, that is, for nonzero k;, ko,
and k3, we cannot set kj, k3, and k3 simultaneously to zero,
at equilibrium. Of course, once a static equilibrium solution
exists, these constants should obey Wegscheider’s conditions,
even away from the steady state, such as during the approach to
equilibrium. This is because reaction constants are constants,
i.e., independent of the extent of reactions. In other words,
Wegscheider’s condition is the condition for the existence of
a static equilibrium solution. The principle of microscopic
reversibility entails that the steady state solution satisfies
detailed balance, i.e., it is an equilibrium state. If a model
has an equilibrium solution, one can derive the rate constants
from the free energy differences. However, in a cyclic reaction
set, not all the free energy differences are independent. As a
result, for a model to have an equilibrium solution, its rate
constants have to obey a constraint, and that is Wegscheider’s
condition.
What does it all have to do with homochirality? There
is a similar situation in the model defined by reactions (9)
because of the recycling and irreversibility of the autocatalytic
reactions. Note that the linear and the autocatalytic reactions
have the same reactants and products, therefore, doing the
same analysis on reactions

ka kn
A+D:\2D, A =D, (36)
ki ky

results in the following condition at equilibrium:

ka[A][D] = k;[D),  ky[A] = ka[D], (37)
which implies
k—” = k—" (38)
kx kg
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This suggests that for this model to have an equilibrium
solution, it cannot have an irreversible autocatalysis and
recycling simultaneously (i.e., k) cannot be zero for a
nonzero k).

Is this a potential source of criticism against our model?
After all, it might seem that every set of chemical reactions
should have a static equilibrium. In fact this is not the case:
every closed set of chemical reactions should have a static
equilibrium. We have made it clear that the stationary solution
of our model is a nonequilibrium steady state, and therefore,
it has to be a driven system with an external source of energy
or disequilibrium. In fact, as we will show in this section, any
system modeling prebiotic chemistry, and more importantly
any model attempting to achieve complete homochirality has
to be a driven model. Like Frank and most other workers
in this field, we chose not to include the external source of
energy in our model for several reasons: (1) it is unnecessary
and not the main point of the exercise; (2) it forces us to
make specific and detailed choices about chemical processes
that have no experimental support in an early life context; and
(3) it obscures the basic mechanisms leading to homochirality.

Before we show why it is necessary for there to be an
external source of energy, in order to give rise to a homochiral
steady state, let us mention a couple of different ways one
can implement such energy sources, keeping the autocatalysis
irreversible.

The reaction set (9) was set up with the idea in mind that
self-replication (modeled by the autocatalytic reactions) has
exclusive access to an external source of energy, as is the
case in all biological systems, and therefore the effective
“reaction constants” (which are dependent on the amount
of energy to which the replicator has access) can be tuned
independently of the other nonautocatalytic reactions. This
can be shown by adding extra molecular species representing
the source of energy.’ For example, modern organisms couple
the hydrolysis reaction of adenosine triphosphate (ATP) that
produces adenosine diphosphate (ADP) and a phosphate (P)
to their autocatalytic cycles in their cells, using the free energy
difference to drive the cycles [48]. Consider the following set
of reactions:

A+D+ ATP 25 2D+ ADP + P,

A+L+ATP 25204+ ADP + P,

n ky
A=—D, A—L. 39
ky ka

These reaction rates are independent of each other. Now,
keeping the concentration of ATP constant (by providing a
constant supply of ATP), the self-replication reactions can be
written in the compact form

k[ATP] k[ATP]
s =

A+D 2D, A+L 2L, 40)

SThe presence of additional molecules species is not strictly
necessary, as the source of energy could be nonmolecular in
nature. Photoactive chemical reactions are examples of energy-driven
systems, whose energy source is not molecular.
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ignoring the inactive compounds, ADP and P. Now we
can simply define an effective reaction rate k, = k;[AT P],
recovering reactions (9). This reaction rate, as promised,
is tunable independently of the other reaction constants; it
depends on the availability of the energy source.

Another potential solution to this problem is to change the
set of proposed reactions to

ka
D‘:\B,

kn

A+DL>2D,

ka
L —=— B. 41
k”

A+Li>2L,

In this model, D and L enantiomers are autocatalytically
produced from a less stable achiral molecule A and decay to a
more stable achiral molecule B. Now, all we need to do to drive
the reactions to a nonequilibrium steady state is to provide a
constant supply of A and continuously remove B from the
system. The free energy difference between A and B will
provide the driving force. Of course, this solution only moves
the nonequilibrium driving from the original reactions to the
precise mechanism that supplies A and removes B from the
system. Unlike the previous solution, this is a different model
with slightly different kinetics. However, it does result in a
homochiral steady state through the same exact noise-induced
mechanism described in this section. That attests to the fact that
our mechanism only depends on self-replication and decay,
and the details of the chemical reactions implementing these
processes are irrelevant. There are other ways to model the
source of driving energy in the system; see, for example,
Ref. [49] for a resolution of a similar problem in another
model of homochirality.

A steady process of self-replication requires a constant
supply of energy, and therefore, an open system. This is
true of all biological systems today, and so has to have been
true during the emergence of life. In general the source of
energy for self-replication could be a constant supply of high
free energy molecules, steady flow of photons from sunlight,
voltage difference across an alkaline hydrothermal vent in
the bottom of the ocean, or any perhaps unknown kind of
interesting chemistry that led to the emergence of life. These
cases may all look like “exceptional cases” compared to typical
test tube experiments done in the laboratory, but it would be
hard to imagine a scenario for the origin of life that does not
involve an external driving force.

The fact that biological systems are driven is not the only
reasoning behind open driven models for homochirality. In
fact there are thermodynamical constraints on the type of
model that could lead to complete homochirality. Perhaps
the most straightforward argument for open driven models
of homochirality with recycling is the following: it is a well-
known fact that amino acids spontaneously racemize over the
time scale of years to millennia depending on temperature and
pH [3,50,51]. Note that this is a very short time scale compared
to geological time scales associated with the origin of life.
Any mechanism for homochirality that does not continuously
recycle the product will end up with a racemic equilibrium
mixture of amino acids. Of course a continuous recycling and
production through a separate mechanism requires a steady
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supply of external driving force leading to a nonequilibrium
steady state.

This argument goes deeper than amino acids: there is
no closed dilute® system with a completely homochiral
equilibrium. Suppose that the equilibrium state of a system
is homochiral for at least one type of the chiral molecules
in the system. Let us make a replica of the system and
replace half of those chiral molecules with their mirror images.
This transformation does not change the internal energy, U,
of the system, since both of the chiral molecules have the
same internal energy. It does not change the pressure or the
volume of the system either, since all the physical properties of
the two chiral molecules are identical by symmetry. However,
the entropy of the racemic replica is larger than that of
the homochiral system. Therefore, the Gibbs free energy,
G =U + pV — TS, of the racemic mixture is lower than that
of homochiral mixture, and the homochiral solution cannot be
the equilibrium solution of the system; over long time, such
homochiral solution will racemize. Only a continuously driven
mechanism can keep such system in a homochiral state over
long time, and that state will be a nonequilibrium steady state.

III. NOISE-INDUCED HOMOCHIRALITY IN SPATIALLY
EXTENDED SYSTEMS

Let us suppose for the moment that life started through
autocatalytic reactions in alkaline hydrothermal vents in the
bottom of the ocean [52] (this is just an example, and what
follows does not depend on the details of the origin of life
scenario). Now, whatever symmetry-breaking mechanism we
propose for the origin of homochirality in this prebiotic world
should be robust in the following sense: First, consider two
nearby hydrothermal vents. In the absence of diffusion, over
time, each one becomes homochiral through some symmetry-
breaking mechanism. This homochirality should be robust
with respect to the perturbation caused by, e.g., molecules
of opposite chirality diffusing from the other vent. Second,
over time the particular choice of homochirality should be
synchronized over all of the sources of production of these
chiral molecules.

In this section, we will show that the noise-induced
homochirality mechanism suggested in Sec. II is robust with
respect to these two criteria. In Sec. III A we define the spatial
extension of our model as a set of well-mixed reaction patches
diffusively coupled to their neighbors. The Fokker-Planck
equation for two diffusively coupled patches is derived in

The diluteness assumption is implicit in many of these types of
arguments. For example the idea that one can deduce the rate constant
from the free energy difference to use in the law of mass action
depends on the assumption that there is a free energy per molecule
independent of the concentrations of other molecules (otherwise, this
rate constant will not be constant and will depend on the extends
of all reactions in the system. The Wegscheider condition does not
hold in such case, even when there exist a well-defined equilibrium).
This assumption is valid only when we ignore the interactions in the
system, which can be done for dilute systems. The argument of this
paragraph without the diluteness condition will completely fail, for
example, in homochiral crystals that can be stable as a closed systems.
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Sec. 1II B, followed by a perturbation theory analysis in
Sec. III C, showing the first robustness criterion for our
model holds when autocatalysis is the dominant production
mechanism. In Sec. III D we study the one-dimensional spatial
extension of the model in the continuum limit, where we see
that the correlation length for the chiral order parameter di-
verges as the nonautocatalytic reaction rates approaches zero.
Moreover, we show simulation results for a one-dimensional
system of diffusively coupled patches at pure autocatalytic
limit, where the patches synchronize their final homochiral
state. This indicates that the pure autocatalytic limit of our
model is robust with respect to the second robustness criterion.

A. Description of the spatially extended model

Consider the following spatial extension [53] of the model
described in Sec. II: let reactions (9) take place in a set of M
well-mixed patches of volume V, while molecules can diffuse
between neighboring patches with diffusion rate . The set
of neighbors of each patchi,i =1, ..., M, is denoted by (i)
(e.g., for a linear chain, (i) = {i — 1,i 4+ 1}) and molecules of
species A, D, and L in patch i by A;, D;, and L; respectively.
In summary, the following set of reactions defines the spatial
model:

n kn
Ai =D;, Ai=—=—=1L,

ka ka

i=1,...,M,

ka
Ai+L — 2L,

J € (). (42)

ka
A; +D; —> 2D,

Di =—Dj, Li—Lj,

A similar analytical treatment to that of Sec. II B results in
the following set of coupled stochastic differential equations
for the time evolution of the chiral order parameter w;, of each
patch i (we will see a step by step derivation of the special
case M = 2 in Sec. III B):

dw; 2knkqV
W: Nk w,—i—(SZ(a)j—a),

JEli)

,/2"" - m(t)+\/>€,(wt) 43)

where now N represents the average number of molecules per
patch, n; are independent normalized Gaussian white noises,
&; are zero mean Gaussian noise with correlation

EDE ) = |2 (1 — wiwx)si

keli)

+ (0] + @7 = 2)xiy(J) |8 = 1)), (44)

and x(j) is equal to one if j € (i) and zero otherwise.

B. Two-patch model: Fokker-Planck equation

Let us analyze the homochirality in each patch of the
spatial extension of our model described by reactions (42) with
M = 2. We can follow the procedure explained in Sec. II B
to obtain a Fokker-Planck equation for the time evolution of
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the probability density of the system being at a state with
concentrations ay, dy, l|, az, d», and [,. Again we can reduce
the number of variables using the following facts: (1) the total
concentration n;, =ny+n, =a;+di +l +a+dr, + 1, is
conserved; and (2) simulation shows that in long time, the
variables ry =d| + 1y, r, = dy + I, and A = n; — n, settle
to Gaussian distributions around their fixed point values
ri =r, =r" and A = 0. We make the following change of
variables:

ap n; a+di+L+a+dy+ 1,

d A ay+di+l—ay—dy— 1

ll r _ d] +11

as - ry - dz +lz (45)
d» o) (di —1)/(dr + 1)

153 55} (dr — 1)/ (dr + 1)

using It0’s formula. Now the dynamics occurs only in & =
(w1,0,). For large average number of molecules per patch
N > 1, the resulting Fokker-Planck equation for the time
evolution of the joint probability density function of w; and
w, Q(&,1), reads

90 _ ia«Lw), 0,1 i BZ(UUQ)
2

ot ow (46)

i=1 i,j=1

Note that the above sums are now over the patches, and not
over species as in Eq. (17). The Jacobian matrix L is given by

2kik,V (1 0 —1 1
=2t (0 1>+5<1 _1), 47)

and the diffusion matrix U by

2kaq (1 — w? 0
U= W( 0 1 -}

2(1 —a)la)z) 0l +ws—2
!
Ty <w1 taR—2 21— ww). (48)

This Fokker-Planck equation describes the time evolution of
the probability density of stochastic variables obeying the
spacial case, M = 2, of Eq. (43).

C. Two-patch model: Homochirality

Does a system described by reactions (9) stay homochiral
when diffusively coupled to similar systems? To answer this
question, we need to analyze the homochirality in each patch of
the spatial extension of our model described by reactions (42)
with M = 2. In Sec. III B, we showed that the joint probability
density of chiral order parameters of two diffusively coupled
patches obeys Eq. (46). The probability density function of the
chiral order parameter of a single patch, Q(w) is defined by

+1 +1

Os(w,w)dwr =
1 1

Os(w) = Os(wr,w)dw, (49)
where Q;(w;,w;) is the stationary solution of Eq. (46). We first
analyze the condition for each patch reaching homochirality
using perturbation theory, in the case of slow diffusion. For
8 ~ ky/N or smaller, we can treat the diffusion deterministi-
cally by ignoring the last term in Eq. (48). To solve for Q,(w),
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we begin by rewriting Eq. (46) as a continuity equation,
»0+V-J=0, (50)
which defines the probability current J as [37]
J=Ld Q- 1iv.-o. (51)

By the conservation of probability, at steady state, the total
probability flux J; through each vertical section of -, plane
must be zero:

+1 +1 . 1
/ Jy1der = / [(Lw)le—anl(Ulle)]dwz

1 1

2k, ] 5
Qs(wl)wl[w( —a)— i|

+1
+(S/ wr Qs(w1,wp)dwy, = 0. (52)
—1

The last integral can be evaluated using Bayes’s theorem

+1 +1
5/ w2 Qs (w1,wr)dw, = 5/ w2 Qs (wr|w1) Qs(wr) dws
-1

=68 Q@) (@)w, = 0%, (53)

which is of order 8% for small 8, since, (w2)w, (the expected
value of w, given w;) vanishes at zero §, and therefore, is of
order § for small §. In this regime, Eq. (52) provides us with a
differential equation for Q,(w) with the solution

04() = Z(1 — ?* 5, (54)

where the normalization constant Z is given by
SN 1
_ F(Ol + 2%, + 5)
JT F(oz + %)

This result shows that the critical & below which the distribu-
tion of chirality in each patch becomes bimodal, up to the first
order correction in &, is given by

(55)

o~ 11— 8£,
2ky
We can now turn to the case of high diffusion. Recall that the
patches are defined as the maximum volume around a point in
space in which the system can be considered well mixed. This
can be interpreted as the maximum volume in which diffusion
dominates over the other terms acting on the variable of interest
(in this case w). From Eq. (43), this condition is fulfilled for
8 ~ 2kqa/N.Inthe vicinity of the transition « is of order unity,
therefore the condition becomes § ~ k;/N. For § > k;/N,
the whole system can be considered well mixed and has the
critical value of o, «™™ = 1, from the well-mixed results
(see Sec. II B). Note that o scales with the volume, and the
volume of the whole system is two times the volume of each
patch, i.e., 2V. This indicates that in a single patch

for 6 ~ 0. (56)

ac~ 4, ford > 0. (57)
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FIG. 4. Parameter a?*" in the two-patch system as a function of
the diffusion rate §. Gillespie simulations (markers) are compared
against Eq. (56) (solid blue line) and Eq. (58) (dashed red line).
Simulation parameters as in Fig. 3.

Now we can interpolate between these extreme limits, asymp-
totic to 1/2 for large § and to Eq. (56) for small §:

5 + 25* 7
(x(‘:—, = —_—,
26 + 26* N

Figure 4 shows agreement between o, measured from
Gillespie simulations of the two-patch system and Eq. (58). At
the parameter regime below the o, curve in Fig. 4, individual
patches are homochiral. Also, we find that the correlation
between the homochiral states of the two patches increases
with diffusion rate §, and they become completely correlated
when § ~ k;/N or more. In this regime the system reaches
global homochirality.

(58)

D. One-dimensional model of homochirality
and the correlation function

In Sec. Il C we saw that chiral molecules produced
through autocatalytic processes in a spatial model stay at
least locally homochiral even in the presence of diffusion,
when autocatalysis is the dominant production mechanism. In
other words, the noise-induced mechanism for homochirality
is robust with respect to diffusion. But does the system stay
globally homochiral? To answer this question, let us examine
the continuous limit of Eq. (43). In the continuum limit, the
noise term &; (a side effect of diffusion on a discrete lattice)
can be neglected. What is left of Eq. (43) in the continuous
form can be written as

0 2k, k N 2k R
20— R (,7) + D VP + | (1 — ) (2. 5),
ot nk, n

(59)
where the Gaussian noise n(¢,x) is defined by its moments
(@, Xm(" X)) = 8(t — 1) 8(x = X) (60)
and
(n(t,%)) =0, (61)

and the diffusion coefficient D = § V?/P. After a change of
variable (not shown here) Eq. (59) can be converted to a
special case of what Korolev et al. [54] call “stochastic Fisher-
Kolmogorov-Petrovsky-Piscounov equation [55,56] with ad-
ditional terms describing mutation”. We follow Ref. [54] to
derive an equation for the time evolution of the two-point
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correlation function defined as
B(t.X1,%2) = (w(t,.X))(t,X2)). (62)

The correlation function ¢(t,%1,x,) is a function of two
stochastic variables w(¢,X;) and w(t,X,), and its time derivative
can be calculated using Itd’s lemma from Eq. (59). The result
has a beautiful closure property, where the right-hand side can
be written in terms of ¢:

4k kg
nk,

ad I - o
E(p(tﬂxlv-xz) = - ¢(I,X1,X2)

2k4 - o - >
+ (1= ¢(x1x1) 008 — x2)

+D(VZ + V2)$(t.%).%2). (63)

The two-point correlation function, ¢(¢,%1,X2), in Eq. (63)
depends only on ¢ and ¥ = X — X, for spatially homogeneous
initial conditions. With this simplification we have

a%fb(tic') = 2D V¢(1,%) - %[qﬁ(m?) = 118()
n

4k, k N
— (1, 5). (64)

In one dimension, the steady-state solution of Eq. (64) can be
obtained by setting the right-hand side equal to zero, and for
¢(x) = ¢(00,x), we have

92 2ky Ak, ky
2D —¢(x) — —[o(x) — 118(x) — ¢(x) =0, (65)
0x n nk,
with the solution
2knkg
e V "Dk x|
P(x) = B (66)
1+ kg

The expected value of w? is given by ¢(0), and ¢(x)
exponentially decays from this value with the length scale

r= o (67)
nhkd

Therefore this length scale ¢ defines a correlation length. This
correlation length diverges as k, approaches zero, indicating
that in the pure autocatalytic limit of this model, at steady state,
the entire space synchronizes its choice of homochirality to the
same uniformly homochiral state. Figure 5 shows the result of
simulation of reactions (42) in one dimension with M = 100
patches at the limit k, — 0. The simulation is initialized with
a uniformly racemic state. The homochiral islands of D and
L form very quickly at the beginning of the simulation and
compete until the entire space becomes uniformly homochiral.
Here is an interesting fact about this spatial extension: Let
us define the correlation volume V = (2¢)? (this is the volume
of the correlated cube from —¢ to ¢ on each dimension), where
the dimension D = 1 in this case. In terms of the correlation
length and the correlation volume, the two-point correlation

function is given by
e I¢ e I¢
¢(x)_1+2%_1+2a‘ (68)
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Time «10%

FIG. 5. Gillespie simulation of scheme reaction (42) for a one-dimensional system of M = 100 patches, starting from racemic state and
ending with all the patches in the same homochiral state @ = —1. Simulation parameters: N = 1000, k, = k; =1, = 1073, and k,, = 0.

Thenew & = k, )/ k, is the o from the well-mixed case defined
in Eq. (29) with the volume substituted by the correlation
volume, V = V. The expected value of w? at each point is
given by

$(0) = (69)

1+2a’

which is exactly the same if calculated from Eq. (29):

1

(w2)=/ 0’ P(w)dw

-1
_F(OH'%) : 2 a1, |

This shows that there is a correlation volume around every
point in space in which the system behaves as though it is a
well-mixed system with that volume.

IV. SPECULATIVE REMARKS AND FUTURE DIRECTIONS

We have proposed a mechanism for the initial symmetry
breaking of the first self-replicating chiral molecules that
only relies on minimal assumptions that are inseparable from
the origin of life, namely a nonequilibrium chemical system
involving self-replication and decay. We have also established
the spatial stability of this mechanism and its robustness with
respect to diffusion in a simple one dimensional system. But
there is more to the problem of homochirality. Here are a few
examples of important questions left unanswered in the field.

The field clearly lacks a theoretical framework to explore
how the homochirality of different chemical compounds are
related: Why do all amino acids have the same handedness,
and what is the relationship between the chirality of, e.g.,
sugars and amino acids. Did different organic molecules
become homochiral in a particular order, or was there an
interdependence between homochirality of different types of
molecules forcing the homochirality to occur at the same time
for all the organic compounds involved in the origin of life?

Once the initial symmetry breaks in one of the species,
the system is no longer symmetric. The homochiral solution
of one of the chiral compounds interacts differently with
other chiral molecules, and in theory, could select for a

particular enantiomer of other molecules.” Despite this fact,
there are interesting problems that are worth investigating
related this synchronization, the solution to which depends
on the mechanism of origin of life.

We are long way from having all the details on the origin
of life to be able to find the order through which various
chemical compounds have become homochiral. The answer to
this question relies on the answer to a different question: when
did homochirality arise with respect to the origin of life? Were
first self-replicators very simple chemical compounds, or were
they chemical complexes made of several molecules?

If one believes the RNA world picture of the origin of
life [57], perhaps homochirality started with homochirality
of sugars, and when the first ribosomes were formed, they
could force their choice of chirality on the amino acids. In
contrast, if the first self-replicating complexes involved both
amino acids and nucleic acids [58], or if self-replication first
manifested in multistep processes involving both peptides and
nucleic acids (as it is the case in modern organisms), the
problem becomes more complex. In such scenarios, one should
develop more complex models involving several chiral species
with their replications coupled. The interaction network of
various chiral molecules involved in self-replication can be
arbitrarily complex, but one can get away with just modeling
a cyclic autocatalytic reaction set of N species. That is
because all statistical properties of complex autocatalytic
reaction networks can be computed by reducing the network to
cycles, and the entire behavior is determined by one dominant
cycle [59].

We speculate that even in the second scenario, where the
first self-replicators involved both amino acids and nucleic
acids, the presence of a ribosome-like molecule could be
responsible for coordination of the chirality of different types
of amino acids. It is important to note that the ability of
polypeptides to form « helices and S sheets relies on the
uniform homochirality across all amino acids [60].

Another potential future direction in this paradigm is to
model the evolution toward homochirality. We have shown
that when the efficiency of self-replication is higher than a

"This is how modern organisms maintain their homochirality; all the
enzymes are asymmetric and their asymmetric shape can restrict their
interactions with other chiral molecules to a particular enantiomer,
selecting one of the two symmetric reactions.
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threshold (that is when the majority of self-replicators are
produced through self-replication, and not spontaneously), the
population transitions to homochirality. We also argued that
even if the system starts with inefficient self-replicators, over
time, they evolve to become more efficient at self-replication
and therefore transition to homochirality. A potential model
to show this process can be constructed by allowing the
rate of the self-replication reaction to perform a random
walk through each generation (modeling stochastic changes in
self-replication processes) and show that in such population,
the population average of the parameter « that describes
the efficiency of self-replication increases over time with no
extra assumptions. This model is mathematically challenging
since the reaction rates depend on the particular random walk
trajectories that ancestral lineage of each self-replicator has
taken, but the numerical simulations should be tractable.

From the experimental side, we would love to see a confir-
mation of the noise-induced symmetry-breaking mechanism in
an externally driven system with recycling to clarify the time
scales associated with this phenomenon in a real experimental
setting. Such experiments could be performed using template
replicating RNA (similar to those used in Ref. [16]). These
experiments need to be performed in nonequilibrium open
flow systems with recycling, where reactants are constantly
added and products removed from experiment.

Finally, in this work, we have shown that homochirality (if
emerged through the mechanism proposed) does not depend
on specific chemical details of origin of life; it relies only
on the defining characteristics of life, i.e., nonequilibrium
self-replication and decay. This property of our model has
a distinct prediction with important implications in the field of
astrobiology, that is, if chiral life were to be found outside of
our planet, it has to be homochiral, while its choice chirality
for different molecules need not agree with similar terrestrial
molecules. When or if appropriate technology is developed
to detect homochirality from a distance, homochirality can be
used as a more robust biosignature in search for extraterrestrial
life.

V. CONCLUSION

In conclusion, a racemic population of self-replicating
chiral molecules far from equilibrium, even in the absence
of other nonlinearities that have previously been invoked,
such as chiral inhibition, transitions to complete homochirality
when the efficiency of self-replication exceeds a certain
threshold. This transition occurs due to the drift of the
chiral order parameter under the influence of the intrinsic
stochasticity of the autocatalytic reactions. The functional
form of the multiplicative intrinsic noise from autocatalysis
directs this drift toward one of the homochiral states. Unlike
some other mechanisms in the literature, this process does
not require an initial enantiomeric excess. In our model,
the homochiral states are not deterministic dynamical fixed
points, but are instead stabilized by intrinsic noise. Moreover,
in the spatial extension of our model, we have shown that
diffusively coupled autocatalytic systems synchronize their
final homochiral states, allowing a system solely driven by
autocatalysis to reach global homochirality. We conclude that
autocatalysis alone is a viable mechanism for homochirality,
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without the necessity of imposing chiral inhibition or other
nonlinearities.
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APPENDIX A: DECOUPLING GAUSSIAN NOISE

Consider a set of coupled stochastic differential equations

-

dx - >
i H(Xx)+&@), (A1)
1
where & (i € {1,...,n}), the components of &(¢), are zero
mean Gaussian noise functions with correlation
(Ei(DE;j(1) = By j8(r —1'). (A2)

We would like to rewrite Eq. (Al) in terms of some set
of independent Gaussian white noise functions 7;(¢) (i €
{1, ...,m} for some m) with the correlation

min; (") = & ;8¢ —1).

If we can find an n x m matrix G such that B = GG, then it
is straightforward to show that &(¢) = G#(z):

(&g () = <Z Gium(®) Y G ,-,m,<r/)>
k 1

= Z GixkG i {m(m(t"))
kil

(A3)

= Z GikGjidkid(t —1')
el

=Y GikGJ 8(t — 1) = B ;8(t — ). (A4)
k

Now Eq. (A1) in terms of 7(z) is given by

dx A+ GF
i (x) + Gn(2).
This decomposition is not unique and multiple choices for G
exist [44]. Perhaps the simplest choice is given by the n x n
matrix G = B'/2. Note that matrix B is symmetric positive
definite and therefore, is diagonalizable and has a well-defined
real symmetric square root. Hence GGT = GG = G? = B.

The Fokker-Planck equations derived from a set of reactions
or species interactions have a B matrix with the particular
structure (see, e.g., Sec. II B)

(AS5)

m

B=ZY}§i®§i,
i—1

where ; is the ithrow of an m x n stoichiometry matrix S. For
such B, there is a particular choice of matrix G whose matrix
elements have simpler analytic expressions compared to the

(A6)
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square root choice:

Gij=vT;Sji (A7)
It is straightforward to show that GGT = B:

(GGT),; = Z GivGjx
k

= Z\/?ksk.i\/?ksk,j
k

= (Z Ty sk ® Ek) =B, ;. (A8)
k i,j

The number of columns, m, of matrix G from this method

is the same as the number of reactions from which the

Fokker-Planck equation is derived. In the special case, where

the stoichiometry matrix S has rows that are multiples of each

other, there are simpler choices of G obtained by reducing

the rows of S before calculating G through the following

procedure: Suppose, for example 5; = a5;. Then, we simply

remove the row j of S (and the corresponding T;) and replace

T; by T; + a? T;. The reason that this row reduction works is

that the reduced matrix S and corresponding 7 define the same
matrix B as before:

m
B:ZTk§k®§k

k=1
o+ TS5 Q5+ + T8 Q5 + -
"'+Ti§i®§i+"'+a2Tj§i®§i+"'

= Lisi®@5+ (T +a’ T)s ®35;. (A9)
ki, j

APPENDIX B: MEAN SWITCHING TIME

Let us define the dimensionless time T as
2tky (B1)
T=—".
N

In terms of 7, Eq. (27) becomes

d_a) = —aw+ mrz(r), (B2)

dt
with
(n(on(x)) = 8(x — ). (B3)
We follow Ref. [41] to calculate the mean switching time from
one homochiral state w = —1 the other v = 1. We impose

an absorbing boundary condition on the final state for the
probability density of w:

P(1,t)=0 (B4)
with the initial condition
P(®,0) =d6(w+1). (B5)

To find the probability density of the switching time, p(7), we
use the fact that the probability of switching happening after
the time 7 is the same as probability of that the system has not
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been absorbed by the boundary before time t:

00 1
/ o(zhHdt’ :/ P(w,T)dw. (B6)
T —1

The switching time probability density function can be
calculated by differentiating both sides with respect to 7. Let
us define G(1’,w; 1) as the probability that the system has not
been absorbed by the boundary at time t given that it started at
some point w at time t’. This probability satisfies the backward
Kolmogorov equation

S wws 420 —w2>‘;2762 —0, (B
with the terminal condition
G(r,m;1) =1, (BY)
and the absorbing boundary condition
G(t',1;7) =0. (B9)

In terms of G, the probability density, p, of the absorbing time
given the initial condition (t’,w) is given by
0
plt’w) = — - G(T'w; 7). (B10)
T

We define the mean absorbing time, given the initial
condition (t/,w) by
o0
(T = / rp(t|’ w)dr. (B11)
-

Assuming G decays sufficiently fast at T — oo limit, we have

o0 00 8
(T)vw f (|t w)dt = —f 1—G((,w;1)dt
0 o 0T

o0
= —rG(r’,a);r)‘? —l—/ G, w;1)dt

T’

:t’—i—/ G(t',w;t)dt (B12)
o

Now, we can integrate Eq. (B7) to obtain a differential
equation for (t)

o
2

0 1 0
I—awo=(t)ro+ 501 = wz)ﬂm,w =0,

where we have used the fact that the probability G only
depends on the time difference T — ¢’ (Markovian property)
and therefore

0
at’

(B13)

a o0
(T)rvw=1+ —/ G(t',w;1)dt
87:/ P

> 9
=1 +/ — G w;1)dt — G(t',0;T')
o ot

9
=1 —/ —G(t,w;1)dt — G(t/,w; 1)
o 0T
=1-G(',w;00)=1. (B14)
There are two boundary conditions, the first one at w = 1:

(T =1 (B15)
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FIG. 6. Mean switching time, (f), from one homochiral state
to the other as a function of «. Analytical result (solid red line)
from Eq. (B19) compared with the Gillespie simulation results (blue
points). The analytical expression is valid for small o where the
system is homochiral. For « close to 1 or greater (where the system is
expected to stay racemic), to accurately predict the mean switching
time, one needs to keep track of higher order term (in 1/N) in
the corresponding Fokker-Planck equation. Simulation parameters:
ka=1,k, =1k, =1, N=1000,and V = «a.

The second one at w = —1 is a tricky one. We know that
the dynamics has a naturally reflecting boundary at w = —1,
because of the way the ratio w is defined confines it to
[—1,1]. Given this reflecting boundary condition, a stochastic
trajectory staring at @ = —1 can only move in one direction,
with the velocity —aw = «. Therefore,

d
B16
5 (B16)

1
(T>t’,w = -
o
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The solution for Eq. (B13) with these boundary conditions is
given by

() "—w?3F| 1,10+ L3 2, w°
Titw =T —@ 1, TS W
, 3472 )
mweot(ma)  H_y +log(4)
1 -2« 1 -2«
B Jrol(@) Fi(3.0;3;0?)
T(ax+1)
where , I, are hypergeometric functions, H_, is generalized

harmonic number evaluated at —«, and I" are gamma functions.
Mean switching time () = (), _; is given by

, (B17)

27 cot(ma)
(1) = ————
1 — 2«
Going back to the dimensionful variables, the mean switching
time (¢) is given by

(B18)

N cot(mar)
(1) = Tl —2a)
a(1 —2a)

The mean switching time approaches infinity for small «, large
N, or small k,. Figure 6 shows that this analytic result agrees
with the Gillespie simulation of reactions (9) when the system
is in the homochiral regime « < 1. To find the mean switching
time for the parameter regime « > 1 (where the system is
expected to stay racemic), we need to keep track of higher
order terms in the Fokker-Planck approximation when deriving
Eq. (27) [41].
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