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Abstract—Oceanic fronts, similar to atmospheric fronts, occur
at the interface of two fluid (water) masses of varying charac-
teristics. In regions such as these where there are quantifiable
physical, chemical, or biological changes in the ocean environ-
ment, it is possible—with the proper instrumentation—to track,
or map, the front boundary.

In this paper, the front is approximated as an isotherm
that is tracked autonomously and adaptively in 2D (horizontal)
and 3D space by an autonomous underwater vehicle (AUV)
running MOOS-IvP autonomy. The basic, 2D (constant depth)
front tracking method developed in this work has three phases:
detection, classification, and tracking, and results in the AUV
tracing a zigzag path along and across the front. The 3D AUV
front tracking method presented here results in a helical motion
around a central axis that is aligned along the front in the
horizontal plane, tracing a 3D path that resembles a slinky
stretched out along the front.

To test and evaluate these front tracking methods (imple-
mented as autonomy behaviors), virtual experiments were con-
ducted with simulated AUVs in a spatiotemporally dynamic MIT
MSEAS ocean model environment of the Mid-Atlantic Bight
region, where a distinct temperature front is present along the
shelfbreak. A number of performance metrics were developed
to evaluate the performance of the AUVs running these front
tracking behaviors, and the results are presented herein.

I. INTRODUCTION

Oceanic fronts, similar to atmospheric fronts, occur at the interface
of two fluid (water) masses of varying characteristics (e.g., tem-
perature, salinity, density, and/or currents). These fronts often also
occur in regions of rapidly changing bathymetry, such as coastal
shelfbreaks, where water from the deep ocean comes in contact with
coastal waters. At these frontal interfaces there may be increases in
biological activity, interesting flow patterns, convergence zones where
pollutants gather, or other water property variations [1]. In particular,
the meeting of two water masses at a front is an important region to
study, as the difference in density between the two water masses
result in vertical velocities that can cause nutrients to be cycled
up from deep in the ocean. This nutrient upwelling plays a critical
role in supporting biological productivity near the ocean’s surface.
Where there are such quantifiable physical, chemical, or biological
changes in the ocean environment, it is possible—with the proper
instrumentation—to track, or map, the front boundary.

In the case of a front boundary defined primarily by a locally high
temperature or salinity gradient, it is possible to use a conductivity-
temperature-depth (CTD) sensor to sample the front. CTD sensors
can be compact enough to mount on board autonomous underwater
vehicles (AUVs) and other small oceanographic platforms. Past
methods for sampling along and across ocean fronts have included

shipboard sampling transects, moored arrays of instruments, and
remote sensing via satellites. Only recently have various robotic
marine platforms been employed for this purpose. Each of these
methods has benefits and drawbacks in terms of sampling resolution
and efficiency, synopticity across a range of spatiotemporal scales,
and resources necessary to perform sampling surveys. As described
by He et al. [1], the field is moving toward employing new AUV fleets
for more synoptic and persistent monitoring of certain U.S. coastal
regions, such as at the Pioneer Array south of Cape Cod, MA, but the
infrastructure has yet to be completed. In addition, environmentally
adaptive autonomous sampling methods for the AUVs to be deployed
at the Poineer Array and similar coastal nodes are not currently being
considered due to the increased computational and technological
complexity over preplanned transects. As a result, environmentally
adaptive autonomous sampling methods are still in the development
and testing phases for the smaller AUV groups. For general reviews
on oceanic adaptive sampling and path planning, we refer to [2]–
[11]. Related works on adaptive front tracking and onboard routing
include [12]–[17].

In this paper, a couple of novel methods for environmentally
adaptive autonomous sampling and tracking along an ocean front
are proposed and implemented using AUVs by employing the Au-
tonomous Adaptive Environmental Assessment (AAEA) and Feature
Tracking method developed by Petillo et al. [18], [19]. AAEA is
described as “a process by which an AUV autonomously assesses the
hydrographic environment it is swimming through in real time. This
assessment is essentially the detection of hydrographic features of
interest and leads naturally to the subsequent active/adaptive tracking
of a selected feature,” [18].

The vehicles used for this work run the MOOS middleware
and IvP Helm autonomy on board, including numerous autonomy
behaviors that control the AUVs’ safety, maneuvering, and sampling
paths. A spatiotemporally dynamic MIT MSEAS (Massachusetts
Institute of Technology Multidisciplinary Simulation, Estimation, and
Assimilation Systems) [20] ocean model of the Mid-Atlantic Bight
(MAB) region off the east coast of the United States is used as a
testing environment for virtual experiments, allowing the evaluation
of these new AUV front tracking methods.

The results from numerous AUV front tracking virtual experiments
(2D) at constant depth are presented, including performance metrics
comparing the adaptive front tracking to preplanned survey methods.
A behavior allowing AUVs to perform 3D front tracking (to sample
the front in the depth dimension, as well as the horizontal plane) is
also explored, and results from virtual experiments are presented.

The specific goals here are to apply AAEA and Feature Tracking
to adaptively sample along and across an ocean front using only the
data collected on board an AUV, gathering a synoptic data set of the
position of the front over time while improving sampling efficiency
and density over current preplanned AUV sampling surveys.
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II. NOVEL CONCEPTS & APPROACH

The approach to front tracking developed here is a novel com-
bination of the real-time adaptive autonomy approach presented by
Zhang et al. [15], [16] and the along-front zigzag method presented by
Cannell and Stilwell [17], resulting in two primary autonomous and
adaptive front tracking methods: 2D front boundary tracking with a
zigzag pattern and 3D front interface tracking with a horizontal helix
pattern. Both of these methods encourage travel in the along-front
direction as well as across-front mapping in real time.

Following the goals stated in Section I, the front tracking methods
proposed here emphasize reduced algorithm and implementation
complexity to improve robustness for deployment in field experiments
in the foreseeable future. In this case, temperature changes are used
as the frontal indicator due to the measurement stability and physical
size of temperature sensors available for small sub-sea platforms.
Temperature, unlike density, can be measured directly, and many
small salinity (conductivity) sensors are sensitive to temperature
changes, thus making temperature the more robust characteristic to
measure.

The front tracking behaviors described here focus on tracing the
front boundary with one AUV in either 2D (constant depth) or 3D
space. The underlying behavior for this employs an initial survey of
the area followed by a zigzagging motion (in the horizontal plane)
back and forth across an isotherm, where the isotherm is detected
and selected by the AUV as the temperature of the front boundary.
As the AUV is collecting temperature and position data, it constantly
updates the frontal isotherm temperature and the estimate of the local
front position. With these continual updates, the AUV is able to adapt
its motion to track the front locally, synoptically sampling along the
front and maintaining coverage across the front, even as the front
moves in space and time.

The single-AUV 2D (zigzag) front tracking (see inset in Fig. 1)
can be directly extrapolated into 3D as a horizontal helix behavior,
where the long axis of the helix is at a constant depth and aligned
in the horizontal plane with the local front line estimate (see Fig. 2),
as in the 2D case.

To increase spatial coverage in the (horizontal) along-front direc-
tion, multiple AUVs may be employed in a follow-the-leader fashion.
Though beyond the scope of this paper, this multi-AUV follow-the-
leader behavior can be coupled with either the single-AUV 2D zigzag
method (Fig. 1) or the single-AUV 3D helix method mentioned above.
Using multiple AUVs can provide synoptic sampling coverage over a
larger spatial scale than a single AUV when the AUVs are distributed
within the front’s characteristic length scale of each other, as sketched
in Fig. 1. Further details regarding the implementation of this multi-
AUV front tracking behavior are found in Chapter 5 of [19].

Other front tracking approaches described in related literature
range from theoretical simulations with AUVs to determine variation
of a front’s position assuming a known environment [15], [16], [22],
to distributing underwater gliders within the frontal boundary of a
plume [23]. The simplicity of our approach—the zigzag motion and
the tracking of an isotherm rather than a temperature gradient (which
may dissipate or change from one stretch of the front to another)—
keeps the complexity of this autonomous and adaptive front tracking
method to a minimum, which is important for reducing the possible
failure modes when deploying this technology in real, dynamic
ocean environments. It is also assumed that, due to computational
and power limitations on real AUVs and the very limited data
transfer available via acoustic communications, the AUVs will have
no outside knowledge (e.g., no satellite data and no ocean models
uploaded or generated on board) of the environment other than
what they collect with their on-board sensors in real time. Thus,
the sampling patterns the AUVs decide upon autonomously must
yield enough environmental information for them to make informed
decisions about where to go next to properly sample the front.

The primary drawbacks to this front tracking method reside in the
cases where the AUV ‘loses’ the primary frontal isotherm, either 1)
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Fig. 1. A conceptual illustration of 2D single- (inset) and multi-AUV front
tracking, exhibiting ‘global’ adaptive follow-the-leader motion of AUVs along
the front and ‘local’ 2D adaptive zigzag motion of AUVs across the front. The
green circles represent the front’s spatiotemporal scales as a distance between
AUVs. When these AUV range circles overlap along a front line, the sampling
may be considered synoptic. Used with permission from [21].
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Fig. 2. A conceptual sketch of the horizontal helix pattern used for 3D front
tracking. The helix’s center axis is at a fixed depth, aligned with the locally
estimated front boundary line (dashed straight line) in the horizontal plane.

by the front advecting away from the AUV faster than the AUV can
move or 2) by the AUV becoming stuck along a local pocket of
isotherm that is greater than O(1 km) in horizontal extent (having
the same temperature as the front) but is not along the primary front,
such as around a slope-water eddy. The former of these cases is
unavoidable—resulting from the propulsion limitations of the AUV
being used—and, thus, is a problem for most front tracking methods.
The latter is difficult to avoid whether tracking a front boundary based
on an isotherm or an across-front gradient value, since local pockets
of the temperature and temperature gradient values may occur on
scales ranging up to the mesoscale, making them hard to distinguish
from the primary front line when all that is available are point
measurements of temperature values that are assumed to be connected
into a line if they share the same isothermal or gradient value with
the front. In order to reduce time the AUV spends ‘lost’ and account
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for the significant spatiotemporal variation of temperature along the
front, a timeout is included in the front tracking behaviors that restarts
the front tracking process, determining a new frontal isotherm to track
near the AUV’s location. If an AUV is stuck in a local mesoscale
temperature pocket, however, it may still re-find and remain in that
pocket after a timeout. This is simply a shortcoming of front tracking
methods such as this, where the AUVs determine and track the front
location based on a locally sub-mesoscale sampling pattern.

Further details of the implementation and algorithms for the front
tracking methods described in this section are provided in Sections
III and IV.

III. 2D FRONT TRACKING

The basic, 2D (constant depth) front tracking method developed
here has three phases: detection, classification, and tracking. This is
sketched out in Fig. 3. Throughout the front tracking exercise, the
AUV is constantly monitoring the water temperature and updating
the maximum and minimum temperature values it has encountered.
In this case, the front is defined as the isotherm with the temperature
half way between the max and min temperatures. It is reasonable to
select an isotherm as the local front line, since isotherms often run
roughly parallel to the actual high-gradient line along the front.

Detection

Classification

Tracking
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FrontBHV_FrontTrack

θ θ

θ = 45˚
= new crossing
= new front estimates
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Local Front Estimate
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Fig. 3. The 2D (constant depth) front tracking method, which is comprised
of three phases: detection, classification, and tracking.

1) Detection: The AUV performs a survey of the local region
to detect the front (loiter or spiral behavior), an isotherm is selected
to represent the front line, and a minimum of three front ‘crossing’
points are collected to trigger the classification phase.

2) Classification: The AUV estimates the local front as a line
using a weighted linear least squares approximation, requiring at
least three crossing points to be within a specific spatiotemporal
range of the current time and AUV position to produce the linear
approximation for tracking to begin.

3) Tracking: The heading of the AUV is set to intersect the front
line estimate at a 45◦ angle. The front estimate is updated when the
AUV crosses the front on that heading, and the heading required to
intersect the front again (also at a 45◦ angle) is determined and set
once the AUV has traveled a specified distance from the front. This
results in a zigzag path along the front as the front shifts over space
and time.

To implement 2D front tracking, the autonomy behavior
BHV FrontTrackNoBdry was developed. This behavior guides a
single AUV through the detection, classification, and tracking phases,

resulting in a zigzag pattern tracing the front line (isotherm), punc-
tuated by loiter and/or spiral patterns when the front is lost or the
behavior is reinitialized.

A more accurate way to detect the frontal isotherm than the
averaging of min and max temperatures is to have the AUV perform a
circle as the initial survey, calculating the temperature gradient in the
azimuthal direction around the circle. The average of the temperatures
at the two locations along the circle where the temperature gradient
peaks can be used as the isotherm temperature that the AUV selects
to track along. This azimuthal temperature gradient front detection
method has not been applied in the virtual front tracking experiments
described in this paper, however it will be integrated into future
iterations of BHV FrontTrackNoBdry.

IV. 3D FRONT TRACKING

Including the third (vertical) dimension in characterizing a front
is important due to features that occur in the vertical water pro-
file, such as thermoclines, pycnoclines, Chlorophyll maxima, etc.
Using a single AUV executing an adaptive horizontal helix behavior
(BHV FrontTrackHelix) along the front line and with the central axis
at a fixed depth, the front through that depth can be estimated as a
plane.

Multiple AUVs may also be employed, each at a different depth,
but roughly vertically aligned, to create a 3D map of a front. Each
AUV would independently perform either 2D adaptive zigzag front
tracking or 3D adaptive helix front tracking, while a separate behavior
would be designed to keep them roughly stacked vertically. This,
however, is beyond the scope of this paper and will not be addressed
further here.

The 3D, single-AUV front tracking behavior designed here,
BHV FrontTrackHelix, is based on the same weighted linear least
squares estimation of the front line at a given depth that is used in
the adaptive front tracking zigzag behavior, but the AUV’s position
is guided by a horizontal helix around the chosen depth’s front line.
In designing this behavior for an AUV, the helix characteristics are
constrained by:

• the AUV’s speed,
• the AUV’s maximum ascent angle (∼ 30◦),
• the desired helix radius (manually selected based on water depth

and depth of AUV),
• and the front line estimate at the helix’s center depth.
The AUV’s desired position on the helix at the current time,

(x, y, z, tnow), is calculated considering the constraints above. De-
tails of this calculation can be found in Chapter 5 of [19].

Section V describes the resulting virtual experiments and data
collected from testing the 2D and 3D front tracking behaviors
described above.

V. VIRTUAL EXPERIMENTS & RESULTS

In order to compare preplanned front mapping missions to adaptive
front tracking missions, a number of virtual experiments were run
with one AUV performing a fixed preplanned horizontal zigzag while
a second AUV used adaptive front tracking behaviors to track the
front it detected. The AUV conducting the fixed preplanned zigzag
shared its start location with that of the adaptive AUV. The head-
ing, amplitude, and period of the preplanned zigzag were selected
based on operator estimation of the front position from a random
snapshot of the front at the AUVs’ operational depth. All AUVs
were assigned the same operational depth (or helix center-axis depth)
in a given virtual experiment, and the virtual experiments ended
when the fixed zigzag mission finished or the virtual experiment
exceeded a specified amount of time (for comparative missions not
involving the fixed zigzag mission). The performance of fixed zigzag
and adaptive front tracking missions was evaluated and compared
using a number of performance metrics, which are described in
Section VI-A. A 4D MSEAS ocean model integrated into the MIT
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Laboratory for Autonomous Marine Sensing Systems (LAMSS) AUV
virtual experiment environment, described in Section V-A, was used
as a realistic oceanographic environment for testing the behaviors
described in Sections III and IV.

A. MSEAS 4D Ocean Model Environment
The MSEAS group at MIT uses oceanographic data coupled

with fluid dynamics and physical oceanography principles to create
4D, spatiotemporally dynamic, gridded ocean models [20]. These
models are provided in NetCDF format with a number of tools
written in MATLAB to read, interpolate, and plot the model data.
MSEAS models were incorporated into the LAMSS AUV virtual
experiment setup to provide a realistic testing environment for the
environmentally adaptive feature tracking missions, including data
extraction and visualization tools.

a) Model Selection for Virtual Experiments: For the ap-
plication of front tracking, the Mid-Atlantic Bight (MAB) region was
selected for the shelfbreak front off the Atlantic coast of the U.S. and
the robust model available for this region. The data input to the MAB
model were from the real-time Shallow Water 2006/Autonomous
Wide Aperture Cluster for Surveillance (SW06/AWACS) exercise that
was carried out in the New Jersey Shelf/Hudson Canyon region over
the time period August–September 2006 [24]–[28].

The environmental parameters available in this MSEAS model
are temperature, T , salinity, S, and zonal, meridional, and vertical
currents, u, v, and w, respectively, at each grid point, (Longitude,
Latitude, Depth, time). The shelfbreak front is most apparent when
looking at salinity (see Fig. 4), but it is also relatively clear in the
temperature signature [1]. Since many temperature sensors are more
robust than salinity sensors, temperature is used as the parameter
that guides the decisions in the front tracking behaviors. However,
accurate salinity, density, or sound speed measurements can also be
used as input to the same front tracking algorithms when they are
frontal indicators.

Fig. 4. A horizontal slice of the MSEAS SW06 model data for the Mid-
Atlantic Bight region. The shelfbreak thermal and salinity front is highlighted
in white through the Mid-Atlantic Bight region. The color variations indicate
the salinity values. The SW06 domain is the full domain bounded by the
black-bordered box. Adapted from [28].

b) AUV Operation Region: Within the model SW06 domain,
two AUV operation boxes were defined in the area where the
Pioneer Array is planned to be deployed with AUVs and gliders
at the shelfbreak. In this region, the model has 3 km horizontal grid
resolution. There is a distinct thermal and salinity front present along
the entire shelfbreak, highlighted in Fig. 4, that was used for testing
the front tracking behaviors described in Sections III and IV.

B. Preplanned Missions
The preplanned mission used in the virtual experiments consisted

of a zigzag across a straight line. The straight-line zigzag was at
constant depth and heading with a fixed amplitude, period, and
number of straight leg segments. The isothermal contour position was
assumed to be known and static for planning purposes (taken from
a random snapshot of a horizontal slice at the AUVs’ operational
depth), but a large coverage area was selected for the survey to
maximize sampling distance across the front and minimize loss of
the front line. Since a snapshot of the temperatures at depth was
used to determine the position and size of the preplanned mission,
the resulting survey area covered by this mission does not always
reflect the position of the dynamic front over time.

C. New Adaptive Missions
The adaptive front tracking missions task a single AUV with

detecting and tracking an isothermal contour representing the
front line, using temperature measurements it collects in situ.
The AUV runs either the 2D (BHV FrontTrackNoBdry) or 3D
(BHV FrontTrackHelix) front tracking behavior to keep it tracking
the front locally. For 2D front tracking, the AUV attempts to track
along the front in horizontal space, crossing the front locally at an
∼45◦ angle to the front line. Since there is a fixed distance traveled
before the AUV turns around to re-cross the front, the resulting
motion under ideal conditions creates an approximately constant
amplitude zigzag pattern that travels along the front boundary as the
front shifts its location in time and space (see Fig. 5). Good front
tracking conditions generally consist of low currents in horizontal
space, such that the front doesn’t move faster than the AUV can
follow, and a gradually curving front line lacking isolated pockets of
high or low temperatures.

Fig. 5. An adaptive 2D front tracking mission with nearly ideal front tracking
at constant depth. The adaptive AUV path is the yellow ‘Unicorn’ line and
the preplanned AUV path is the magenta ‘Macrura’ line, while the frontal
isotherm location is highlighted (at the time of this snapshot) in purple.

When conditions are poor for front tracking, the AUV’s adaptive
front tracking motion tends to yield more clusters of overlapping
loiter patterns, as seen in Fig. 6. This occurs most frequently when
the front line curves sharply or creates a closed loop on the order
of 10 km or less, or when horizontal currents are strong enough to
move the front line away from the AUV faster than the AUV can
move.

In the case of 3D front tracking, a single AUV follows a helical
path with the helix axis locally centered about a fixed-depth frontal
isotherm. Under good tracking conditions, the resulting AUV path
will largely look like a meandering slinky. However, under bad 3D
front tracking conditions, the AUV spends most of its time loitering
at constant depth to try to determine where the local front line is,
similar to poor 2D front tracking runs.
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Fig. 6. An adaptive 2D front tracking mission with poor front tracking at
constant depth. The adaptive AUV path is the yellow ‘Unicorn’ line and
the preplanned AUV path is the magenta ‘Macrura’ line, while the frontal
isotherm location is highlighted (at the time of this snapshot) in purple.

D. Mission Configurations
This section details the specific virtual experiment mission config-

urations used to test the adaptive missions in various configurations
and evaluate the adaptive missions against the preplanned missions.
The dynamics model for Bluefin AUVs was used for all AUVs
in all virtual experiments in order to keep the AUV dynamics
constant. Unicorn and Macrura were the two AUVs selected to run
missions in each virtual experiment. The virtual experiments and their
configurations, goals, and missions for each AUV are summarized
below.

• Runs 24–31: 3D, 2-AUV, 1 adaptive zigzag & 1 adaptive helix,
vary depth & helix dimensions (4 virtual experiments)

• Runs 36–64: 2D, 2-AUV, 1 adaptive & 1 preplanned, con-
stant amplitude and depth, comparative: adaptive & preplanned
straight zigzag (29 virtual experiments)

VI. ANALYSIS

All virtual experiment runs listed at the end of Section V-D will
be qualitatively and quantitatively analyzed here using a number of
performance metrics and observations of the missions’ performance.
For the large batch of 2-AUV virtual experiments comparing the 2D
adaptive front tracking behavior to the preplanned straight zigzag
behavior (Runs 36–64), the overall improvement (or lack thereof) of
the adaptive missions over the preplanned ones will also be quantified.

A. Performance Metrics
A number of performance metrics have been developed to evaluate

and compare the front sampling ability of both preplanned and
adaptive AUV front tracking missions. The variables measured during
the front tracking missions and used to calculate these metrics are
defined in Table I and Eqs. 1–5.

vavg =
1

Nspd

Nspd∑

i=1

(vnav)i (1)

Dtotal =

Npos∑

i=1

√
(xi − xi−1)2 + (yi − yi−1)2 (2)

Dfront = tmissionvavg cos(θ) (3)

Dfrom front =
−a1x+ y − a0√

(a2
1 + 1)

(4)

TABLE I
VARIABLES USED TO CALCULATE PERFORMANCE METRICS.

Variable Significance

tmission Total mission time
vavg Average AUV speed (Eq. 1)

vnav Actual AUV speed at a given time (sample)

Nspd Total number of AUV speed sample points

θ Front intersect angle

Dtotal Total distance traveled (Eq. 2)

Npos Total number of AUV position locations

Dfront

Total possible distance AUV could have tracked along
front, given tmission. Estimated by the best-case
calculation (AUV perfectly tracks the front, crossing
the front at an angle of θ). (Eq. 3)

Don front
Distance AUV tracked along the front line
(≤ Dfront)

Ncross
Number of front crossing points, total, while tracking
front

Dfrom front
Perpendicular distance (closest point of approach) from
AUV position, (x, y), to front estimate line (Eq. 4)

a1 and a0
The slope and intercept, respectively, of the front line
estimate in the local x-y grid

∂T/∂r
Temperature (T ) gradient in the across-front direction,
relative to the front estimate line (Eq. 5)

N+ Number of above-average ∂T/∂r bins

Ntot Total number of ∂T/∂r bins

∂T

∂r
=

∂T

∂Dfrom front
(5)

The performance metrics equations derived from the variables
above are summarized in Table II and are as follows:

ρ = Crossing Density; i.e., how many front crossings were made
by the AUV per unit length of the front line that was tracked.

Dcross = Distance between Crossings; i.e., the average distance
the AUV traveled between front crossings.

ε = Front Sampling Efficiency; i.e., the percentage of Dfront that
was tracked and sampled by the AUV.

ER = Excess Ratio; i.e., how much of the AUV’s travel distance
was in excess of the distance along the front that the AUV captured
the front.

FEE = Front Estimate Error, which compares the |∂T/∂r|max

location to the local estimated front location, as captured by the AUV.
TC = Tracking Confidence, which is an evaluation of the confi-

dence level indicating whether the actual front was followed/sampled
by the AUV, expressed as a percentage. The scaling factor of 2
accounts for the fact that most ∂T/∂r sample bins have below-
average values, and a minority of samples have above-average values
due to sharp peaks in ∂T/∂r in the across-front direction, so at best
it would be expected to see N+/Ntot = 0.5.

Based on the performance metrics defined in Eqns. 6-11 in Table
II, higher Crossing Density (ρ) and Sampling Efficiency (ε) values
indicate better performance tracking along the front, while higher
Distance between Crossings (Dcross) and Excess Ratio (ER) values
indicate worse performance. It is often desirable to maintain some
across-front motion of the AUV as well, thus extremes of huge ρ and
tiny Dcross and ER values are not always optimal. Sailing along the
front is good, but in many cases, crossing the front frequently is also
good.

B. Data Analysis
1) Runs 36–64: 2D, comparing adaptive & preplanned

straight zigzag front tracking: Virtual experiment Runs 36–64
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TABLE II
SUMMARY OF PERFORMANCE METRICS EQUATIONS.

Performance Metric Equation Better Values Significance

Crossing Density
[crossings/m]

ρ =
Ncross

Don front
(6) higher*

How many front crossings were made by the
AUV per unit length of the front line that was
tracked

Distance between
Crossings
[m/crossing]

Dcross =
1

ρ
(7) lower* The average distance the AUV traveled

between front crossings

Sampling Efficiency
[%]

ε =
Don front

Dfront
× 100% (8) higher The percentage of Dfront that was tracked

and sampled by the AUV

Excess Ratio ER =
Dtotal

Don front
(9) lower*

How much of the AUV’s travel distance was
in excess of the distance along the front that
the AUV captured the front

Front Estimate Error
[m]

FEE = Dfrom front@|∂T/∂r|max on a zigzag leg
(10)

lower
Compares the |∂T/∂r|max location to the
local estimated front location, as captured by
the AUV

Tracking Confidence
[%]

TC = 2

(
N+

Ntot

)
× 100% (11) higher

An evaluation of the confidence level
indicating whether the actual front was
followed/sampled by the AUV, expressed as a
percentage

* It is often desirable to maintain some across-front motion of the AUV, thus extremes of these values are not always optimal.

were designed to determine a baseline of performance for 2D adaptive
front tracking versus preplanned straight zigzag front sampling. A
quantitative analysis of preplanned versus adaptive missions has been
performed for the case of single AUVs doing 2D front tracking. The
Unicorn AUV was tasked with 2D adaptive front tracking, while the
Macrura AUV was given a preplanned fixed zigzag pattern to execute.
In all cases, both Unicorn (adaptive) and Macrura (preplanned)
started at the same location and executed their paths over the same
mission duration. Macrura’s preplanned path was selected to cover
the general location of the front near the MAB shelfbreak. Unicorn’s
adaptive zigzag was configured based on the spatiotemporal scales
of the front and the speed limitations of the AUV.

With this setup, 29 missions were completed with both AUVs
starting at (100000 m, 113000 m) relative to two Datum locations:
(38.6◦N, -71.9◦E) and (39.409291◦N, -71.934359◦E). The former
(more southerly) Datum location corresponded with a fixed zigzag
heading of 109◦, while the latter Datum required a fixed zigzag
heading of 101◦ to accommodate the slight change in general heading
of the front north of the shelfbreak. The various performance metric
variables were tracked while the virtual experiments were running
and, after the fact, the performance metrics themselves were calcu-
lated and plotted for both AUVs in post-processing. These results are
shown in Fig. 7, where each color represents a different set of virtual
experiment runs. In order to keep as many parameters constant as
possible, the AUV running the preplanned zigzag (Macrura) tracked
its front crossings based on the frontal temperature that the adaptive
AUV (Unicorn) determined for front tracking.

Based one the performance metrics defined in Eqns. 6-9, higher
Crossing Density (ρ) and Sampling Efficiency (ε) values indicate bet-
ter performance, while higher Distance between Crossings (Dcross)
and Excess Ratio (ER) values indicate worse performance. In the
case of this set of virtual experiments, for all performance metrics,
the adaptive front tracking algorithms are generally an improvement
over using a preplanned zigzag mission for collecting data along a
front.

Additionally, Tracking Confidence (TC) was evaluated for the
adaptive missions based on temperature data binned (by distance
from the front line estimate, into 1 m bins) over entire missions. The
average TC for the adaptive front tracking mission in Runs 36–64 was
59.2%, with a standard deviation of 9.5%. The Tracking Confidence
values, along with the Front Estimate Errors (FEE; averaged over the
FEEleg calculated for each leg in a run) for the adaptive front tracking
missions in each run are plotted in Fig. 8. For 28/29 (96.6%) of the
runs, the magnitude of the mean FEE was less than 400 m (100% had
magnitudes less than 800 m), which is relatively small compared to
the O(10 km) horizontal spatial scale of the MAB shelfbreak front.
The low FEE values mean that the adaptive AUV did a good job
covering the actual front interface (|∂T/∂r|max) while staying close
to the estimated front line when tracking the front, and the middling
TC values (greater than 40% for all of the runs, greater than 50%
for 82.8% the runs, greater than 70% for 13.8% of the runs) mean
that the adaptive AUV sampled close to the front interface in at least
25% of the temperature (and thus |∂Tbinned/∂r|) bins in 82.8% of
the runs.

For the TC and FEE values, it is important to note that the distances
represented by these values (O(100 m)) are much smaller than the
3 km resolution of the ocean model being used for these virtual
experiments. Since the data in the model are linearly interpolated
between the grid points, it is not fully representative of the smaller
scale variations in temperature that would be observed in the real
ocean, and thus these TC and FEE values may not be not accurate
in real ocean environments (or higher-resolution models). However,
these values are accurate for data smoothed or gridded to approx-
imately 3 km resolution, as was used here. In order to get more
accurate TC and FEE results for higher-resolution and real ocean
environments, improvements are still needed to the 2D adaptive front
tracking behavior to make it successful in these environments.

2) Runs 24–31: 3D, adaptive zigzag vs. adaptive helix:
Runs 24–31 evaluated the 3D adaptive helix front tracking mission
against the 2D adaptive zigzag front tracking mission. For these runs,
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Fig. 7. Runs 36–64: Performance metrics for Macrura’s preplanned zigzag missions (filled squares) and Unicorn’s 2D adaptive front tracking missions (open
circles), plotted for each virtual experiment run. Datum: Runs 36–45 at (38.6◦N, -71.9◦E), Runs 46–64 at (39.409291◦N, -71.934359◦E). Preplanned zigzag
heading: Runs 36–45 at 109◦ , Runs 46–64 at 101◦ . Better and worse values for each performance metric are indicated.

Unicorn was assigned to the 2D adaptive zigzag mission and Macrura
to the 3D adaptive helix mission. These missions were centered at
four different depths, and the helix radius was set equivalent to its
center depth while the spacing between helix loops was set to four
times the helix radius (to maintain 45◦ front intersect angles). The
center depths selected for the virtual experiments were 30 m (Runs
24 & 28), 100 m (Runs 25 & 29), 300 m (Runs 26 & 30), and 1000
m (Runs 27 & 31). Each different depth-centered set of missions was
evaluated at two model time ranges. See Fig. 9 for all performance
metrics results.

For most of these runs, the 3D adaptive helix showed reduced
performance (lower Efficiency, higher Excess Ratio, and—for half
of the runs—reduced crossing Density) when compared to the 2D
adaptive zigzag, with the lowest Efficiency and greatest Excess while
the helix was centered at 1000 m, due to the AUV frequently straying
too far from the front over the period of one helix loop. The highest
sampling Densities and smallest Distances between Crossings for the
helix, however, occurred during the runs centered at 30 m and 1000
m. For the helix centered at 30 m this was actually a significant
improvement over the 2D zigzags, since the helix tracked the front
better with a smaller (30 m) radius (analogous to a smaller adaptive
zigzag amplitude) than the adaptive zigzag with a 500 m amplitude
and thus collected a denser sampling of front data. In the case of the
helix centered at 1000 m having comparatively higher Densities and
smaller Distances between Crossings than the 2D adaptive zigzags,
this apparent improvement in performance comes with the caveat
that the helix was continuously losing the front line and returning
to the last detected front crossing location (thus finding a ‘new’
crossing point right next to the previous one) after re-starting the
helix motion, rather than performing the helix behavior to its full
extent. This resulted in a glut of front crossings within a small area
for the helix centered at 1000 m, but very little tracking along the
front using the helix, resulting in very poor performance despite the
seemingly good Density and Distance between Crossings metrics.

This overall reduction in performance from the 2D to the 3D
adaptive front tracking is expected, given that the 3D helix requires
the AUV to travel a longer path (changing depth) as it crosses the
front, rather than gathering many points at the fixed helix-center
depth. Since fewer points are available to the 3D adaptive helix
behavior to determine the presence and location of a front crossing
point at the helix-center depth (there may be as few as two points at
the center depth on a given rotation of the AUV around the helix)
than there are for the 2D adaptive zigzag behavior at constant depth,
there is higher risk of the helix losing the front location as it travels
through depth. For the runs centered at 30 m, 100 m, and 300 m,
in fact, the reduction in performance is somewhat balanced by the
data set being collected, which is 3-dimensional in space rather than
just 2-dimensional. The 3D data set collected by the helix captures
the distribution of temperature with depth, making it possible to
approximate the front’s structure as a plane in 3D space rather than
just as a 2D line. This means it is possible to successfully collect a 3D
spatial distribution of temperature along the front using this horizontal
helix front tracking behavior without the need for a second AUV, with
the concession of a slight reduction in performance compared to the
2D adaptive zigzag behavior.

VII. CONCLUSION

The goals of the work presented in this paper were to apply
AAEA and Feature Tracking to adaptively sample along and across an
ocean front using only the data collected on board AUVs, gathering
a synoptic data set of the position of the front over time while
improving sampling efficiency and density over current preplanned
AUV sampling surveys.

To this end, two adaptive autonomy behaviors were devel-
oped for front tracking in 2D and 3D space, with single
AUVs: BHV FrontTrackNoBdry (2D front-following zigzag) and
BHV FrontTrackHelix (3D front-following helix). A number of per-
formance metrics were developed for comparative evaluation of these
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Fig. 8. Runs 36–64: Tracking Confidence and average Front Estimate Errors for Unicorn’s 2D adaptive front tracking missions, plotted for each virtual
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behaviors. The 2D front tracking behavior’s performance was also
evaluated against that of a preplanned zigzag survey (representative of
current methods used for collecting data along a front). A spatiotem-
porally dynamic MSEAS model of the Mid-Atlantic Bight region off
the east coast of the U.S. was used as a testing environment for virtual
experiments, allowing these new AUV front tracking methods to be
evaluated.

The front tracking behaviors presented here are essentially
isotherm-following behaviors, since the across-front temperature gra-
dient can vary in the along-front direction and the uncertain angle at
which an AUV crosses the front and samples the temperature would
affect the apparent temperature gradient at a given location. The front
tracking behaviors use a three-phase process (conceptualized in Fig.
3) to achieve front isotherm tracking: detection, classification, and
tracking.

Overall, the 2D adaptive front tracking behavior presented here
succeeded in improving front mapping performance over that of
a preplanned straight zigzag pattern at least 58% of the time in
virtual experiments (Runs 36–64: adaptive vs. preplanned straight
zigzag). The performance metrics used to evaluate the adaptive and
preplanned front tracking behaviors are summarized in Table II.
Adaptive front tracking had the largest and most consistent impact
on front Crossing Density (ρ) and Distance between Crossings
(Dcross), where it was an improvement over the preplanned straight
zigzag 89.7% of the time. Adaptive front tracking showed less stark
Sampling Efficiency (ε) and Excess Ratio (ER) improvements over
the preplanned straight zigzag, displaying improved numbers 62.1%
and 58.6% of the time, respectively. It is also apparent that the start
location of the front tracking missions affects the performance of
adaptive versus preplanned front tracking. When the front tracking
missions were moved north onto the shelf from the original mission
area south of the shelfbreak, the adaptive front tracking algorithms
tended to track the front worse than the preplanned zigzag despite
the stronger across-front temperature gradient in the more northerly

location. This was due to a mesoscale slope-water eddy surrounded
by an isotherm of the same temperature as the front that Unicorn
(adaptive AUV) was stuck in while trying to track along the front
north of the MAB shelfbreak. The average Tracking Confidence (TC)
for the adaptive front tracking missions in Runs 36–64 was calculated
as 59.2%, with a standard deviation of 9.5%, suggesting that the
actual shelfbreak front is usually sampled in 25%-34% of the range
bins around the estimated front line. For the majority of the runs,
the adaptive mission’s Front Estimate Error (FEE) value was under
400 m, with standard deviations mostly under 150 m, suggesting
that the adaptive AUV tracked fairly close to the actual front line.
It is important to note here that the TC and FEE values are only
valid for 3 km resolution environments with interpolation between
grid points and may not be valid for higher-resolution models or the
actual ocean environment without further improvements to the front
tracking behavior.

Runs 24–31 (2D adaptive zigzag vs. 3D adaptive helix) suggest
a general reduction in front tracking performance when using the
3D adaptive horizontal helix compared to the 2D adaptive zigzag,
except when using the helix centered at 30 m. This reduction in
performance is due to—and somewhat balanced by—the fact that the
helix is also collecting data over a continuous depth range (rather than
just one depth) along and across the front. That is, the 2D adaptive
zigzag behavior collects all of its data points at a constant depth
(thus, it has a lot of data at the depth at which it is determining the
front), whereas the 3D adaptive helix behavior may have as few as
two points collected at its center depth (at which it is determining
the front) per period of travel around the helix, making the helical
front tracking much more sensitive to spurious data values or smaller-
scale temperature variations than the zigzag front tracking at constant
depth. The 3D motion of the helix will, however, allow the front to
be approximated (in future work) as a plane instead of just a line,
and it adds a depth dimension to the coverage of the front where
helical front tracking occurs.
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Fig. 9. Runs 24–31: Performance metrics for Macrura’s 3D adaptive helix front tracking missions (filled squares) and Unicorn’s 2D adaptive zigzag front
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Ultimately, the added complexity of using adaptive front tracking
to sample along a front must be weighed against the amount of
human-AUV interaction and resources necessary to deploy a pre-
planned AUV survey for the the same purpose. Preplanned surveys
require a significant amount of operator interaction, data processing,
and mission planning between AUV dives to collect the desired
data set. As a counterpoint, adaptive front tracking only requires the
operator or researcher to have a rough idea of where a front might
be, as the AUV will determine the exact location and follow the front
itself, requiring no shipboard data processing and no redeployment or
planning of new missions to maintain sampling along the front. This
significantly reduces the time the AUV spends not tracking the front
(i.e., on the surface awaiting redeployment or conducting a much
larger amplitude zigzag to ensure frontal coverage) and frees up
a ship’s resources for other scientific experiments to be performed
simultaneously. In conclusion, autonomous and adaptive front track-
ing techniques add up-front complexity to an AUV’s software, but,
once implemented, significantly reduce the labor and uncertainty
involved in efficiently gathering a synoptic data set characterizing
an oceanographic front, making the use of autonomous and adaptive
front tracking methods worthwhile.
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