
Location Utility-based Map Reduction

Ted J. Steiner, Guoquan Huang, and John J. Leonard

Abstract— Maps used for navigation often include a database
of location descriptions for place recognition (loop closing),
which permits bounded-error performance. A standard pose-
graph SLAM system adds a new entry for every new pose into
the location database, which grows linearly and unbounded in
time and thus becomes unsustainable. To address this issue,
in this paper we propose a new map-reduction approach that
pre-constructs a fixed-size place-recognition database amenable
to the limited storage and processing resources of the vehicle
by exploiting the high-level structure of the environment as
well as the vehicle motion. In particular, we introduce the
concept of location utility – which encapsulates the visitation
probability of a location and its spatial distribution relative
to nearby locations in the database – as a measure of the
value of potential loop-closure events to occur at that location.
While finding the optimal reduced location database is NP-
hard, we develop an efficient greedy algorithm to sort all the
locations in a map based on their relative utility without access
to sensor measurements or the vehicle trajectory. This enables
pre-determination of a generic, limited-size place-recognition
database containing the N best locations in the environment.
To validate the proposed approach, we develop an open-source
street-map simulator using real city-map data and show that
an accurate map (pose-graph) can be attained even when using
a place-recognition database with only 1% of the entries of the
corresponding full database.

I. INTRODUCTION

In the popular pose-graph formulation of simultaneous local-
ization and mapping (SLAM) [1], the map is represented by a
graph of vehicle poses as nodes and measurements as edges.
Consecutive poses are connected by (inferred) odometry
measurements, and nonconsecutive poses whose appearances
(i.e., the sensed information describing the locations) overlap
are connected by loop-closure measurements that repre-
sent location revisits. Location appearances are stored in
a database, and typically each pose contains a reference
to an entry in this database. If a new pose’s appearance
matches an appearance already in the database, a loop-
closure measurement will be added between the associated
poses and subsequently be utilized to reduce the uncertainty
of the map estimates. In the canonical pose-graph SLAM
system, a new pose and location appearance are added at
every time step. This causes the map to grow unbounded over
time, which clearly is unsustainable. All location appearances
are stored permanently on the chance that the vehicle returns

T. Steiner is supported by a research fellowship from the Charles Stark
Draper Laboratory in Cambridge, Massachusetts. All map data presented in
this work is copyright OpenStreetMap contributors and available under the
Open Database License.

T. Steiner and J. Leonard are with the Computer Science and Artificial
Intelligence Laboratory (CSAIL), MIT, Cambridge, MA 02139, USA.
Email: {tsteiner,jleonard}@mit.edu

G. Huang is with the Department of Mechanical Engineering, University
of Delaware, Newark, DE 19716, USA. Email: ghuang@udel.edu

−3

−2

−1

0

1

2

3

N
o
rt

h
 (

k
m

)

−3 −2 −1 0 1 2 3

East (km)

Fig. 1: Street intersections in Seattle, Washington, which are
sorted based on their location utility as proposed in this
paper. Such utility is a combination of the probability that a
location is visited on any point-to-point shortest-time route
through the environment and a spatial distribution term (see
Section III), and is used to select a reduced location database
for a storage/computation-constrained SLAM system, seek-
ing to minimize map uncertainty without a priori knowledge
of the vehicle trajectory. Note that in this graph, dark red
denotes the maximum utility while dark blue is the minimum.

to the location at some point in the unknown future. However,
it is important to note that not all of these locations, and
thus the associated loop-closure measurements, are equally
informative for a navigational task. In practice, a vehicle
often has stringent resources available, including data storage
and computational power. Thus, it is desirable to know which
locations will be the most useful in the future so that they
can be given priority in a size-limited database.

To better understand the need for reducing location databases
in practice, consider a “Google Maps-like” system from
which a vehicle can query routes and a minimal location
database for a specified region. This database must be
computed a priori in order to facilitate loop closure when
navigating an unknown route within the region. This means
that the database can not be delivered pre-associated to
poses, so instead the first pose with an appearance match
is associated to that database entry.

To that end, in this paper, we first introduce the notion of
location utility, which is a measure of a location’s informa-
tiveness based on its potential loop-closure measurements

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/83232898?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

and is defined independently of any particular vehicle tra-
jectory. The location utility encapsulates the structure of the
environment and the vehicle motion provided by the knowl-
edge of the vehicle’s path planner and a high-level network
model of potential paths in the environment. We show how
limited, but commonly available, prior information can be
used to significantly reduce the amount of data required for
vehicle navigation in path-based environments, such as street
networks (e.g., see Fig. 1). We further show how entries in a
limited-size databased of location appearance can be selected
to maximize the total utility of the database. Moreover,
we provide an efficient approximation algorithm to sort all
locations in a map according to their utilities, which allows
for an optimal reduction in database size according to the
memory limitations of a system. In particular, the main
contributions of this work are the following:

• We, for the first time, introduce the concept of location
utility, which is a measure of location’s informativeness
and is used to facilitate location selection, independently
of vehicle trajectory and sensor measurements. Further-
more, based on this utility, we formulate map reduction
as an integer programming (IP) problem.

• We develop an efficient greedy algorithm for (approx-
imately) solving the formulated IP and thus the map
reduction problem, which is, in general, NP-hard.

• We develop an open-source street-map pose-graph sim-
ulator using real city-map data. To validate the proposed
approach, we perform extensive tests using this simula-
tor with many different city maps.

Note that the problem of location database reduction treated
in this paper is related to, but distinct from, three well-
known problems: measurement selection, bounded mapping,
and sensor placement. In particular, our approach formu-
lates a sensor placement problem to maximize information
content of loop-closure measurements of a subset of loca-
tions in the environment. Because our “sensor” locations
are determined prior to navigation, we must place them
according to expected measurements, different from other
map reduction techniques. Because the loop-closure loca-
tions are pre-selected, the location database does not grow
during operation, resulting in a partially bounded-size map.
If desired, poses without loop-closure measurements can be
marginalized out without consequence to achieve a truly
bounded-storage map.

II. RELATED WORK

Pose-graph SLAM entails solving a large least-squares prob-
lem over all poses. To do so efficiently, most solvers ju-
diciously exploit sparsity in the problem structure [2]–[6].
This sparsity results from odometry constraints affecting
only consecutive poses and loop-closures being occasional
and limited. In some cases, such as long-duration, multi-
session systems, the graphs grow too large to solve in
real-time. To mitigate this issue, pose-graph sparsification
algorithms can be used to reduce the number of poses
and constraints in a map, thus improving efficiency. These

algorithms work exclusively in the pose-graph solver, or
“back-end.” Carlevaris-Bianco et al. [7]–[10] consolidate
densely connected regions of a pose-graph into Generic
Linear Constraints (GLCs), while Huang et al. [11] use `1-
optimization to consistently remove weak edges in the graph.
Sparsification approaches have been used in conjunction with
location saliency metrics [12] in order to weight the opti-
mization towards retaining the database entries that are most
likely to be recognized [13], but do not explicitly incorporate
the likelihood of revisit. Note that all graph sparsification
approaches have involved removing or replacing constraints
after they have already been added to the graph. In contrast,
in our database selection, we do not have access to the
full graph when determining which predicted constraints to
enable through the limited database.

Constraint selection has been applied in the SLAM front-end,
which generates the odometry and loop-closure constraints.
Keyframe-based approaches reduce the number of constraints
in visual SLAM by keeping only a subset of measurement
frames [14]. Kretzschmar et al. [15] estimated the mutual
information of laser-scan measurements with regard to an
occupancy grid, only incorporating new measurements when
they are sufficiently informative. They marginalize out old
poses to bound map growth to a fixed memory size. Ila et
al. [16] only add measurements when they are sufficiently
distant in information space. Wang et al. [17] use Kullbach-
Leibler divergence to decide whether to incorporate a pose
and its associated feature observations in feature-based
SLAM. While effective at map constraint compression, all
of these approaches first compute the actual constraint before
determining whether or not to incorporate it into the map,
whereas we do not have access to the actual constraints, and
instead must evaluate the value of potential constraints. Fur-
thermore, in order to enable future loop-closure constraints,
these constraint selection approaches maintain full location
databases even when constraints are not added to the graph,
thus the databases still grow continuously in time.

Rather than focusing explicitly on map sparsification, other
approaches have sought to bound map growth. The reduced
pose-graph [18] bounds the number of poses (and thus the
size of the location database) by area rather than time.
Whenever a location is revisited, the system adds a constraint
to the existing pose rather than establishing a new pose.
RTAB-Map [19] bounds the map by computation required
for search. They divide the location database into active and
inactive locations, with only the active ones being searched
for loop closure, and the inactive being promoted to the
active when a nearby active location is visited. However,
like the above methods, these approaches require access to
the actual measurements in order to reduce the map.

In determining which locations to close loops, we introduce
a new optimal sensor placement problem in the context
of vehicle localization. Krause et al. formulate an optimal
sensor problem by placing sensors to maximize the mutual
information of sensed and unsensed locations using learned
Gaussian processes [20]. Beinhofer et al. [21] and Allen et al.

���������

��������	

������
��

���

��

�

�
�
�
�

� � � �
�

����

(a)

���������

���������

�������	

��������

���������

���

���

���

���

�
�
�
�

� � � � ��

����

(b)

Fig. 2: Effects on error covariance for a sequence of 11 poses due to: (a) adding additional loop-closures, and (b) changing
their spatial distribution. The average pose uncertainty ε (7b), which we aim to minimize, is provided in the legend. Note
that in these plots, we have assumed that loop-closure constraints are added to already-well-estimated poses in the map,
thus modeling them as location priors.

[22] formulate sensor placement problems to place artificial
navigation landmarks and sonar beacons, respectively, along
pre-defined trajectories for localization. Vitus and Tomlin
[23] formulated an optimal sensor placement problem in
which a vehicle deploys a limited set of sensor beacons in the
environment to minimize its navigation estimation error. Our
location database selection involves choosing a limited-size
subset of the locations in the environment prior to navigation
at which potential loop-closure measurements will be most
beneficial to any trajectory through the environment.

III. DESIGN OF UTILITY-BASED LOCATION SELECTION

A SLAM solution seeks to minimize the errors of map
estimates using odometry and loop-closure measurements.
It is known that if only using odometry measurements, the
SLAM estimation errors will grow unbounded, while this
can be compensated by using loop-closure constraints to
bound errors as well as reduce uncertainty. Fig. 2 shows an
example of possible error covariances of a segment of a pose-
graph containing 11 pose nodes, given various combinations
of loop-closure constraints. If we assume that all loop-
closure measurements are equally precise, the two sources
of map covariance variation are the number and spatial
distribution of loop-closure measurements. The average pose
covariance is reduced as additional measurements are added
(see Fig. 2a), and, for a fixed number of constraints, the
average pose covariance is minimized when the constraints
are maximally distributed (see Fig. 2b). This motivates us to
introduce the following location utility metrics that will be
used to sort and reduce the locations in the map.

A. Location Utility

The utility of a location is defined as being proportional to
the covariance reduction for all poses in the map resulting
from all predicted loop-closure measurements that involve
that location. Therefore, location utility is composed of the
following two factors:

• The probability of a location being visited and recog-
nized for a given map.

• The covariance reduction due to loop closing at that
location (which is approximately proportional to the
distance traveled since the most recent loop closure).

Note that without knowledge of a specific trajectory, these
two factors become independent, and reflect the total number
and spatial distribution of the loop-closure measurements in
the map. That is, the probability of a vehicle traversing a
location in the map is independent of the spatial distribution
of the location database as long as the location database is
not used by the path planner.

Linear combination of the above two utility measures yields
the total utility, u of a database location, `, i.e.,

u` =
v`
vmax

+ λ
d`

dmax,`
(1)

where v` is the joint probability of a route visiting and
recognizing the location, normalized by the maximum such
probability for the region, vmax, d` is the minimum distance
to another database location or the region boundary, nor-
malized by the maximum distance to any database location,
dmax,`, and λ is a tunable weighting parameter. Note that,
while this does form the core definition of location utility,
this definition is not necessarily complete. For example, it
may make sense in some application-specific situations to
include an additional term in (1) to represent the complexity
at that location of the task to be performed relative to position
uncertainty. In what follows, we explain these two utilities
in detail.

1) Probability of visit: This probability encodes the envi-
ronment and routing structure, and is the probability that
a vehicle route within the environment passes through and
recognizes a given location. Specifically, using Bayes rule,
we define it as follows:

v=P (visit)P (recognize
∣∣visit)=P (visit, recognize) (2)

P (visit), is obtained using a modified form of the between-
ness centrality [24] of the network of traversable routes in
the environment, in which the specified location node, `, is
additionally allowed to be the start, s, or end, t, of a network
path. Specifically, for all routes from every location in the
world to every other location, we count the number of times

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

N
o
rt

h
 (

k
m

)

−1 −0.5 0 0.5 1

East (km)

Fig. 3: Street map of Island of Malé (also see Fig. 7a), whose
intersections are colored to show probability of visit (3),
ranging from dark red (maximum) to dark blue (minimum).

each location is traversed, nst,`, and divide this by the total
number of routes in the region, nst:

P (visit) =
∑
s 6=t

nst,`
nst

(3)

These routes should be computed using the same method as
the one used by the vehicle’s path planner. If sample sensor
measurements are available for locations in the environ-
ment, the location recognition probability can be estimated
from a saliency score such as [12], otherwise we assume
P (recognize|visit) = 1. An example of the probability of
location visit in a street network is shown in Fig. 3.

2) Spatial distribution: The covariance reduction resulting
from a loop closure in a map is approximately proportional
to the distance that the vehicle has traveled since the last loop
closure. This is due to the fact that accumulated odometry
error is typically proportional to the distance traveled. A
lower bound on this distance, d, can be computed as the
minimum of either the Euclidean or shortest-path distance
from the specified location, `, to the nearest database entry,
`D, and to the region boundary, B:

d` = min
[
min

(
dist(`, `D)

)
, λB dist(`, B)

]
(4)

where λB is used to reduce the impact of the region boundary
and can be chosen with a priori knowledge.

It should be noted that computing both v and d requires that
the potential routes in an environment are available before-
hand, which is the case in most operational environments
(e.g., streets, buildings, and warehouses). The database only
stores the appearance of locations, while the locations of
the specific database entries are estimated online. A prior on
the positions of the database locations, if available, can be
additionally provided.

B. Location Selection

Once we have determined the utilities for all the locations
in the database, we now seek to maximize the database
utility for a given number of locations. To this end, by

specifying a maximum allowable database size, we can
formulate the following nonlinear integer programming (IP)
problem:

argmax
`

J := `Tv + λ`Td

subject to `T ` = |D|
`i ∈ {0, 1}, vi ∈ [0, 1], di ∈ [0, 1], ∀i

(5)

where ` is a vector of binary switching variables representing
all possible database locations and |D| is the size of the
database. Vectors v and d are normalized by their maximum
values to remove the unit conflict. λ is a tunable weight-
ing parameter that determines the trade-off between explo-
ration and exploitation, which is commonly encountered in
robotics [25]. Specifically, λ > 1 indicates an emphasis on
exploration, or spatial expansion, for database entries, while
λ < 1 emphasizes exploitation of especially “good” loca-
tions, which are commonly revisited. This tradeoff decreases
in significance as |D| grows large.

IV. A GREEDY ALGORITHM FOR LOCATION SORTING

Directly solving the constrained optimization problem (5)
is an instance of IP with binary switching variables, which
is NP-hard [26]. Thus, in order to make location database
sorting computationally tractable, we use a greedy approxi-
mation algorithm that iteratively adds the remaining location
with the highest utility score to the database.

By greedily growing the database, we effectively assume that
the optimal database of size N is included in the optimal
database of size N + 1. While this assumption does not
generally hold, it does lead to a nice property. The infor-
mation contained in an accurate loop-closure measurement
is non-negative, i.e., adding a constraint to the graph cannot
increase map uncertainty. We can extend this statement to
say that adding a location to the location database without
removal therefore guarantees at worst a null-effect on pose
uncertainty, because for any possible trajectory, adding a
location to the database can never result in fewer loop-closure
detections. This means that the utility of a greedily-selected
location database is nondecreasing with database size for any
trajectory.

The greedy database growing problem is formulated as such:
Given a list of all possible locations, L, and a database of
locations, D (L, find the optimal next location `:

argmax
`

v` + λd`

subject to ` ∈ L, ` /∈ D
(6)

where v and d both contain elements normalized to range
[0, 1] and are computed using Algorithms 1 and 2, respec-
tively, and λ is the weighting parameter. It is important to
point out that since Algorithm 1 runs in O(|L|), Algorithm 2
in O(|L||D|), and solving (6) in O(|L| − |D|), the full
algorithm runs in O(|L||D|) for each iteration. We stress that
the proposed map reduction strategy exploits the structure
resulting from both the environment (a network of sparse

Algorithm 1 Compute normalized v

1: Inputs:
Locations L, Location database D,
Visit probabilities vL

2: v← zeros(|L|)
3: for x in L do
4: if x /∈ D then
5: v[x]← vL[x]
6: end if
7: end for
8: v← v/max v

Algorithm 2 Compute normalized d

1: Inputs:
Locations L, Location database D, Region
boundary B, Boundary repulsion weight λB

2: d← zeros(|L|)
3: for x in L do
4: if x /∈ D then
5: dD ← zeros(|D|)
6: for k in D do
7: dD[k]← dist(x, k) . Euclidean distance
8: end for
9: dD[|D|+ 1]← λB dist(x,B)

10: d[x]← min dD

11: end if
12: end for
13: d← d/max d

paths) and optimal route planning, and is especially intended
for long-term persistent navigation.

V. EXPERIMENTAL RESULTS

In this section, we demonstrate pose-graph SLAM using
limited-size location databases computed by the proposed
greedy algorithm presented in the previous section. Since
an optimal location database is inherently trajectory-specific
(i.e., a truly optimal database would contain only locations
traversed by the trajectory), we must evaluate our reduction
strategy for many potential trajectories within an environ-
ment. Unfortunately, there is no existing localization dataset
that has these characteristics, which motivates us to develop
a new dynamic simulator that is capable of generating
relative-pose measurements for multiple trajectories through
a network of traversable paths.

A. Street-Map Simulator

We built a brand-new routing and pose-graph simulator in
Julia [27] that can simulate a taxi-like vehicle driving in
a city through a succession of waypoints.1 We use publicly-
available real map data from OpenStreetMap.org to ini-
tialize a street network for a given region. Routes through the

1Available at https://github.com/tedsteiner/PoseGraphSimulation.jl.git.

−0.5

0

0.5

N
o
rt

h
 (

k
m

)

−1 −0.5 0 0.5 1

East (km)

Fig. 4: Best 5 (red), 10 (red + green), and 15 (red + green +
blue) locations selected for a minimal database for a region
of Cambridge, Massachusetts.

network are generated by randomly selecting 50 waypoints
within the network and computing the fastest-time driving
route through them respecting one-way streets with Dijk-
stra’s algorithm using the Julia OpenStreetMap.jl
package.2

For fastest-time routing, we assign reasonable speed-
limits to the six classes of streets that are provided by
OpenStreetMap.org (residential, freeway, etc.). For
simplicity and without loss of generality, we assume that
the streets are infinitesimally narrow.

Poses are established every 20 meters along the route and at
every street intersection. Relative-pose constraints (odome-
try) are generated between all successive poses. Loop-closure
constraints are generated whenever the vehicle traverses an
intersection described by the location database. We assume
that loop-closure detection is not directionally dependent and
that loop-closures provide full-rank measurements. We limit
our location database to only the street intersections within
the region in order to reduce computational requirements,
and loop-closure constraints are always added between the
current pose and the first pose at that location. In order
to facilitate direct comparison of location selection meth-
ods, our simulator first generates a route and all possible
measurements (including Gaussian noise). Multiple pose-
graphs can then be created for a common trajectory with
identical measurement noise, adding loop-closure constraints
according to any desired location database. The iSAM [2]
and RISE [28] algorithms are then used to assemble and
solve the pose-graph SLAM problem.

As our performance metric, we use the estimation error
variance of position and trajectory, given by:

σpos =
√

Qpos,xx +Qpos,yy (7a)

ε =

N∑
n=1

σpos,n
N

(7b)

where Qpos is the marginal position covariance matrix of
a pose. Note that (7a) gives the standard deviation of the

2Available at https://github.com/tedsteiner/OpenStreetMap.jl.git.

����

�

���

�
��
�
�
�

�� ���� � ��� �

���	
�

(a)

����

�

���

�
��
�
�
�

�� ���� � ��� �

���	
�

(b)

Fig. 5: Results of solving a simulated pose-graph representing driving around Cambridge, Massachusetts for approx. 75
km using: a) a location database containing all 712 street intersections, and b) a dramatically reduced database of only 15
pre-selected intersections (0.5% of the full database of 3,375 poses). The true positions of the selected database entries are
shown in red. It is clear that, due to the high quality of the 15 selected locations, the topology of the map is still captured.

position estimate of a single pose, while (7b) is the average
standard deviation over the trajectory. Moreover, because the
performance of the limited location database is inherently
route-dependent, we compute several routes (either 20 or 50,
depending on the dataset) and use these routes to generate the
associated pose-graphs for each dataset presented. In order to
combine and compare these results, we normalize the mean
trajectory error, ε, by the error achieved when using the “full”
location database containing all street intersections in the
map, εfull:

εratio =
εreduced − εfull

εfull
(8)

For visualization, we display εratio averaged over many
randomly generated routes to eliminate trajectory-specific
effects.

B. Location Utility-based Map Reduction

In Fig. 4, we depict the 5, 10, and 15 best loop-closure
locations for a vehicle driving within a portion of Cam-
bridge, Massachusetts, computed using the greedy location
sorting/selection algorithm presented in Section IV.

In Fig. 5, we show two example pose-graph solutions for a
76.6 km trajectory through Cambridge, Massachusetts con-
taining 3,375 poses. Fig. 5a is computed with all 712 street
intersections described in the location database (roughly
equivalent to 20% of the poses, though many locations are
never actually encountered during the trajectory), and Fig. 5b
is computed with only the 15 highest-utility locations (see
Fig. 4) in the database. While the smaller database gives
a noisier result, the underlying network structure is still
distinctly visible, and the vehicle state knowledge is likely
sufficient to carry out basic navigational tasks. For example,
by inferring path crossings as intersections, uncertainty-
cognizant pose-graph-based path planners, such as [29]–
[31], could be used to plan routes within such a reduced
graph.

��������	
	����
���������
��

�

�

�

�

�

��

��

��

�
��
��
�
��
�
�
�
��
��
	

��
�
�
�
�
�

� � � � � �� �� ��

����������	������������
����	��!"#

Fig. 6: Comparison of average pose uncertainty when using
location databases selected using our method vs. randomly
for a vehicle navigating in Cambridge, Massachusetts.

C. Comparison to Alternative Selection Methods

We additionally compare our approach to three alternative se-
lection methods: (i) random selection, (ii) total loop-closure
maximization, and (iii) maximal spatial distribution. Fig. 6
compares the error ratio of pose-graphs using our location-
utility-based greedy database selection method to selecting
random location databases for 50 routes, for databases con-
taining up to 100 locations in Cambridge, Massachusetts
(Fig. 4). Our approach results in significantly better accuracy
than randomly selecting locations.

We further extend this comparison to five additional cities
with various regular and irregular street networks. Figs. 7a-
7e show the street maps and top 15 highest-utility locations
for these cities, and Figs. 7f-7j show all street intersections
in the map color-coded by their greedily-computed utility
scores. Fig. 8 shows that our greedy selection algorithm
performs well for all of these cases in comparison to random
database selection, especially in the cases of the largest maps.
Furthermore, we see that our algorithm favors both major
intersections and locations spatially distributed between them

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

N
o
rt

h
 (

k
m

)

−1 −0.5 0 0.5 1

East (km)

(a) Island of Malé

−1.5

−1

−0.5

0

0.5

1

1.5

N
o
rt

h
 (

k
m

)

−1.5 −1 −0.5 0 0.5 1 1.5

East (km)

(b) Seattle

−1.5

−1

−0.5

0

0.5

1

1.5

N
o
rt

h
 (

k
m

)

−2 −1 0 1 2

East (km)

(c) Lower Manhattan

−2

−1

0

1

2

N
o
rt

h
 (

k
m

)

−3 −2 −1 0 1 2 3

East (km)

(d) San Francisco

−3

−2

−1

0

1

2

3

N
o
rt

h
 (

k
m

)

−3 −2 −1 0 1 2 3

East (km)

(e) Moscow

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

N
o
rt

h
 (

k
m

)

−1 −0.5 0 0.5 1

East (km)

(f) Island of Malé

−1.5

−1

−0.5

0

0.5

1

1.5

N
o
rt

h
 (

k
m

)

−1.5 −1 −0.5 0 0.5 1 1.5

East (km)

(g) Seattle

−1.5

−1

−0.5

0

0.5

1

1.5

N
o
rt

h
 (

k
m

)

−2 −1 0 1 2

East (km)

(h) Lower Manhattan

−2

−1

0

1

2

N
o
rt

h
 (

k
m

)

−3 −2 −1 0 1 2 3

East (km)

(i) San Francisco

−3

−2

−1

0

1

2

3

N
o
rt

h
 (

k
m

)

−3 −2 −1 0 1 2 3

East (km)

(j) Moscow

Fig. 7: The best 1-5 (red), 6-10 (green), and 11-15 (blue) street intersections (top) and all street intersections sorted based on
loop-closure utility (bottom) for five major cities around the world, with maximum database sizes ranging from 535 to 2811
locations, increasing from left to right. In all cases, our algorithm favors both locations on major highways and locations
spatially distributed evenly between them.

Island of Malé
Seattle
Lower Manhattan
San Francisco
Moscow

0

5

10

15

20

25

30

35

ra
ti

o
 (

A
v
g
 o

f
2
0
 R

o
u
te

s
)

0 10 20 30 40 50
Locations Permitting Loop Closures ()

Fig. 8: Comparison of average pose uncertainty using lo-
cations selected by our method (solid lines) vs. randomly
(dashed lines) for a vehicle navigating in five cities.

for all city styles tested.

We also compare our results to two alternative database
selection methods: (i) maximizing the predicted number
of loop closures, and (ii) maximizing spatial distribution
between database entries. These are the two extreme cases
[see (6)]: λ = 0 (pure exploitation) and λ = ∞ (pure
exploration). Our algorithm offers a balance between these
two effects, λ = 1 (equilibrium). Fig. 9 shows εratio for
each of these cases, averaged over 50 fastest-path routes
with identical measurement noise. We see that both of
these terms are independently valuable, but our balanced
combination outperforms both approaches. In general, we
found the results to be fairly insensitive to the specific value
of λ chosen.

���������	
��
����
���	
��
�������

�

�

�

�

�
�
��
��
�
��
�
�
�
��
��
	

��
�
�
�
�
�

� � � � � �� �� ��

�	����	
����������
���		����	� �����!�

Fig. 9: Comparison of the effects of the two objectives that
form the “location utility” on pose smoothing covariance.
The green line determines location utility using only visit
probability (v), the red line uses only distance (d), and the
blue line uses an equal combination of the two terms. Note
that all three approaches are initialized using the location
with maximum P(visit) for |D| = 1.

VI. CONCLUSIONS AND FUTURE WORK

Our results have shown that the locations at which loop-
closure events occur can be sorted according to their expected
reduction in map uncertainty for a general, unknown route,
even without access to the pose marginal covariances or
actual measurements. In particular, the proposed location
utility consists of the visit probability and spatial distribution
of database locations. We have shown that the structure of
a network environment and vehicle motion can be encoded
in our measure of location utility, which in turn improves
reduced-size location database performance. Using location

utility to construct limited-size location databases, an ac-
curate pose-graph can be constructed even when using a
location database less than 1% the size of that of a typical
pose-graph SLAM system. The proposed greedy-selection
algorithm can additionally be used as a design tool to
estimate the minimum data storage required to navigate in an
environment within a specified position uncertainty.

While this work is limited to a priori computation of location
databases, which requires vehicle routing information and
the network of potential paths, it opens the door to future
work such as learning the environment structure online and
managing a reduced-size location database in real-time (i.e.,
when to replace locations in a fixed-size database).

REFERENCES

[1] G. Grisetti, R. Kummerle, C. Stachniss, and W. Burgard, “A tutorial
on graph-based SLAM,” IEEE Intelligent Transportation Systems
Magazine, vol. 2, no. 4, pp. 31–43, 2010.

[2] M. Kaess, A. Ranganathan, and F. Dellaert, “iSAM: Incremental
smoothing and mapping,” IEEE Transactions on Robotics, vol. 24,
no. 6, pp. 1365–78, 2008.

[3] R. Kuemmerle, G. Grisetti, H. Strasdat, K. Konolige, and W. Burgard,
“g2o: A general framework for graph optimization,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
2011.

[4] S. Thrun, Y. Liu, D. Koller, A. Y. Ng, Z. Ghahramani, and H. Durrant-
Whyte, “Simultaneous localization and mapping with sparse extended
information filters,” The International Journal of Robotics Research,
vol. 23, no. 7-8, pp. 693–716, 2004.

[5] R. Eustice, H. Singh, and J. Leonard, “Exactly sparse delayed-state
filters for view-based SLAM,” IEEE Transactions on Robotics, vol. 22,
no. 6, pp. 1100–14, 12 2006.

[6] J. Vial, H. Durrant-Whyte, and T. Bailey, “Conservative sparsification
for efficient and consistent approximate estimation,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2011, pp. 886–93.

[7] N. Carlevaris-Bianco and R. M. Eustice, “Generic factor-based node
marginalization and edge sparsification for pose-graph SLAM,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2013, pp. 5748–55.

[8] ——, “Long-term simultaneous localization and mapping with generic
linear constraint node removal,” in Proceedings of the IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2013, pp.
1034–41.

[9] N. Carlevaris-Bianco, M. Kaess, and R. M. Eustice, “Generic node
removal for factor-graph SLAM,” IEEE Transactions on Robotics,
2014.

[10] N. Carlevaris-Bianco and R. M. Eustice, “Conservative edge sparsifi-
cation for graph SLAM node removal,” in Proceedings of the IEEE
International Conference on Robotics and Automation, Hong Kong,
China, 6 2014, pp. 854–860.

[11] G. Huang, M. Kaess, and J. J. Leonard, “Consistent sparsification for
graph optimization,” in Proceedings of the European Conference on
Mobile Robots, 2013, pp. 150–7.

[12] A. Kim and R. M. Eustice, “Combined visually and geometrically
informative link hypothesis for pose-graph visual SLAM using bag-
of-words,” in Proceedings of the IEEE/RSJ International Conference
on Intelligent Robots and Systems, 2011, pp. 1647–54.

[13] P. Ozog and R. M. Eustice, “Toward long-term, automated ship
hull inspection with visual SLAM, explicit surface optimization, and
generic graph-sparsification,” in Proceedings of the IEEE International
Conference on Robotics and Automation, Hong Kong, China, 6 2014,
pp. 3832–9.

[14] K. Konolige and M. Agrawal, “FrameSLAM: From bundle adjustment
to real-time visual mapping,” IEEE Transactions on Robotics, vol. 24,
no. 5, pp. 1066–77, 2008.

[15] H. Kretzschmar and C. Stachniss, “Information-theoretic compression
of pose graphs for laser-based SLAM,” The International Journal of
Robotics Research, vol. 31, no. 11, pp. 1219–30, 2012.

[16] V. Ila, J. M. Porta, and J. Andrade-Cetto, “Information-based compact
pose SLAM,” IEEE Transactions on Robotics, vol. 26, no. 1, pp. 78–
93, 2010.

[17] Y. Wang, R. Xiong, Q. Li, and S. Huang, “Kullback-Leibler divergence
based graph pruning in robotic feature mapping,” in Proceedings of
the European Conference on Mobile Robots, 2013, pp. 32–7.

[18] H. Johannsson, M. Kaess, M. Fallon, and J. J. Leonard, “Temporally
scalable visual SLAM using a reduced pose graph,” in Proceedings
of the IEEE International Conference on Robotics and Automation,
2013, pp. 54–61.

[19] M. Labbe and F. Michaud, “Appearance-based loop closure detection
for online large-scale and long-term operation,” IEEE Transactions on
Robotics, vol. 29, no. 3, pp. 734–45, 2013.

[20] A. Krause, A. Singh, and C. Guestrin, “Near-optimal sensor place-
ments in Gaussian processes: Theory, efficient algorithms and empir-
ical studies,” The Journal of Machine Learning Research, vol. 9, pp.
235–84, 2008.

[21] M. Beinhofer, J. Müller, and W. Burgard, “Effective landmark place-
ment for accurate and reliable mobile robot navigation,” Robotics and
Autonomous Systems, vol. 61, no. 10, pp. 1060–9, 2013.

[22] R. Allen, N. MacMillan, D. Marinakis, R. I. Nishat, R. Rahman,
and S. Whitesides, “The range beacon placement problem for robot
navigation,” in 2014 Canadian Conference on Computer and Robot
Vision, 2014, pp. 151–8.

[23] M. P. Vitus and C. J. Tomlin, “Sensor placement for improved robotic
navigation.” in Robotics: Science and Systems, 2010.

[24] L. C. Freeman, “A set of measures of centrality based on betweenness,”
Sociometry, pp. 35–41, 1977.

[25] S. Thrun, W. Burgard, and D. Fox, Probabilistic robotics. MIT press,
2005.

[26] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein et al., Introduc-
tion to algorithms. MIT Press Cambridge, 2001, vol. 2.

[27] J. Bezanson, S. Karpinski, V. B. Shah, and A. Edelman, “Julia: A
fast dynamic language for technical computing,” arXiv Computing
Research Repository, vol. abs/1209.5145, 2012.

[28] D. Rosen, M. Kaess, and J. Leonard, “RISE: An incremental trust-
region method for robust online sparse least-squares estimation,” IEEE
Transactions on Robotics, vol. PP, no. 99, 6 2014.

[29] R. Valencia, J. Andrade-Cetto, and J. M. Porta, “Path planning in belief
space with pose SLAM,” in Proceedings of the IEEE International
Conference on Robotics and Automation, 2011, pp. 78–83.

[30] R. Valencia, M. Morta, J. Andrade-Cetto, and J. M. Porta, “Planning
reliable paths with pose SLAM,” IEEE Transactions on Robotics,
vol. 29, no. 4, pp. 1050–9, 8 2013.

[31] H. Carrillo, Y. Latif, J. Neira, and J. A. Castellanos, “Fast minimum
uncertainty search on a graph map representation,” in Proceedings
of the IEEE/RSJ International Conference on Intelligent Robots and
Systems, 2012, pp. 2504–11.

