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Abstract— Multi-robot deployments have the potential for
completing tasks more efficiently. For example, in simultaneous
localization and mapping (SLAM), robots can better localize
themselves and the map if they can share measurements of each
other (direct encounters) and of commonly observed parts of the
map (indirect encounters). However, performance is contingent
on the quality of the communications channel. In the under-
water scenario, communicating over any appreciable distance
is achieved using acoustics which is low-bandwidth, slow, and
unreliable, making cooperative operations very challenging. In
this paper, we present a framework for cooperative SLAM (C-
SLAM) for multiple autonomous underwater vehicles (AUVs)
communicating only through acoustics. We develop a novel
graph-based C-SLAM algorithm that is able to (optimally)
generate communication packets whose size scales linearly
with the number of observed features since the last successful
transmission, constantly with the number of vehicles in the
collective, and does not grow with time even the case of dropped
packets, which are common. As a result, AUVs can bound their
localization error without the need for pre-installed beacons or
surfacing for GPS fixes during navigation, leading to significant
reduction in time required to complete missions. The proposed
algorithm is validated through realistic marine vehicle and
acoustic communication simulations.

I. INTRODUCTION

Multiple independently working robots can complete tasks
more quickly in many cases. However, there is potential
for even greater efficiency gains if the robots can cooper-
ate. The ability to cooperate is contingent on the robots’
ability to communicate. In this work we consider the task
of simultaneous localization and mapping (SLAM) in the
underwater environment where inter-vehicle communication
is very challenging.

Cooperative SLAM (C-SLAM) can yield better perfor-
mance than single robot SLAM since additional constraints
are added through information sharing of one of two kinds:
(i) direct encounters, where robots are able to make relative
measurements of one another [1], and (ii) indirect encoun-
ters, where robots are able to make relative measurements
through mutual observation of parts of the environment [2].

A visual depiction of the autonomous underwater vehicle
(AUV) C-SLAM scenario is shown in Fig. 1. In the figure,
two AUVs are performing a seabed coverage mission for
mine hunting on orthogonal lawnmower (up and back) survey
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Fig. 1. Multi-AUV cooperative SLAM: Two AUVs navigate through an
underwater environment while scanning the seabed with their sidescan sonar
sensors (yellow). At time t1, vehicle 2 broadcasts an acoustic packet (top
right) that is received by vehicle 1. Vehicle 1 uses the transmitted packet
to calculate a relative range to vehicle 2 (green) and also incorporates the
transmitted features into its local feature map (top left). At some later time
t2 vehicle 1 makes a broadcast (bottom left) which is received by vehicle 2
(bottom right). Note that all communications go through an acoustic channel
which is low-bandwidth, high-latency, and unreliable.

tracks. In the non-cooperative case, the AUVs submerge and
dead reckon using a combination of compass, inertial and
Doppler velocity sensors and position uncertainty will grow
without bound.

Historical methods to bound localization such as long
baseline (LBL) and ultra short baseline (USBL) are costly
and time-consuming to set up and also bound the operational
area of the vehicles [3]. Another alternative is to periodically
surface for GPS data; however, this can be very time consum-
ing in deep water or under-ice applications and is sometimes
undesirable due to covertness concerns.

In the proposed C-SLAM approach, AUVs can make
direct measurements through acoustic ranging, and also com-
municate information about seabed features that they observe
enabling indirect measurements resulting from mutually ob-
served features. As a result, the AUV location uncertainty
will become bounded.
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Terrestrial [4] and aerial [2] applications of C-SLAM have
demonstrated benefits in terms of efficiency and robustness;
however, directly porting these algorithms to the undersea
case is not straightforward. Sensing the environment is
typically achieved with sonars which are of significantly
lower fidelity than visible light cameras commonly used for
terrestrial applications, and communicating though acoustics
is challenging due to its high latency (signals travel at
speed of sound ≈ 1500m/s), reduced throughput (≈ 10-
100 bytes/s), reduced bandwidth (channel sharing with time
division multiple access) and low reliability (≈ 20-50%
dropout rate).

In this work, to the best of our knowledge, we develop
the first multi-AUV C-SLAM algorithm that is specifically
designed to operate solely with low-bandwidth acoustic com-
munications.

We employ a graph-based approach that is able to drasti-
cally reduce communicated packet sizes by locally marginal-
izing out all vehicle pose estimates in between times of
acoustic communications. We perform this marginalization
optimally through Schur complement, rather than simply
compounding measurements (which has been shown to be
inconsistent [5]). This often results in a dense information
matrix which has to be transmitted in order for consistent
estimation and thus may still incur a significantly higher
communication burden than the available bandwidth of the
acoustic channel. To mitigate this issue, we perform commu-
nication reduction via graph sparsification inspired by recent
work (e.g. [6], [7], [8], [5]) that instead seeks to reduce com-
putation complexity. Specifically, we formulate a constrained
convex optimization problem: minimize the Kullback-Leibler
divergence (KLD) between the approximate and true distri-
butions with a matrix inequality consistency constraint. We
formulate the problem over the measurement information
rather than the state information which leaves us free to
design the new approximate measurements [8]. We show that
an appealing choice is to design these new measurements
to follow a predictable structure so that the measurement
Jacobians will not have to be transmitted. Additionally, we
design all measurements to be relative to the pose at the
last known successful transmission time which has two key
benefits: (i) the effect of linearization errors is reduced [6]
and (ii) the algorithm is robust to partial or complete packet
loss since the resulting factor graph will always be fully
connected and consistent. Additionally, we show that for
our choice of measurement structure, the optimization has a
closed form solution. This extends the previous approach [8]
by additionally considering the consistency constraint. The
result is that we can achieve consistent C-SLAM by transmit-
ting only: the new virtual measurement values (means) along
with their associated block diagonal measurement informa-
tion matrices. Consequently, total packet size is proportional
to the number of observed measurements since the last
successful transmission and does not grow with the number
of vehicles in the team or the amount of time that has passed,
even in the case of dropped packets. These packets can be
generated on-demand in realtime onboard the AUVs even in
the case of limited processing capabilities.

II. RELATED WORK

An underwater SLAM solution provides a means of
bounding localization errors without the need for pre-
installed and localized beacon infrastructure. Approaches
with different sensing modalities include: vision [9], sidescan
sonar [10], forward-look sonar [11], and bathymetric sonar
[12]. Our prior work [3] provides a review of recent research
efforts in underwater navigation.

Recently, multi-AUV deployments have also been pro-
posed that utilized the relative ranges derived from acoustic
communications to perform cooperative localization (CL)
underwater. For instance, Fallon et al. [13] propse a system
for localization of a team of AUVs using acoustic commu-
nications from an autonomous surface craft. An alternative
approach is to restrict underwater communications to be
one-way to avoid information double-counting. For example,
survey vs. aid teams [14], or client and server in the origin
state method of Walls and Eustice [15]. Here, we allow fully
bi-direction communication where every vehicle has equal
access to the communications channel. This homogeneous
topology has been used previously for CL [16]. In our recent
work [17], we improve the scalability of [16] to allow larger
team sizes and better robustness to failed communications.

Few if any works have proposed multi-AUV C-SLAM
algorithms. Perhaps the closest known work is Fallon et
al. which uses sidescan sonar landmarks and ranges from a
surface vehicle over multiple sessions [16]. Here, we propose
a method for full C-SLAM, which is more general than the
underwater CL case previously considered.

A. C-SLAM

One issue in C-SLAM [18], [19] is how to find the initial
relative poses of the robots. This can be achieved with
“anchor nodes” in the pose graph formulation [2], directly
from the maps themselves [20], or by requiring the robots
to rendezvous [21], [18]. In this work, we assume such
initialization is known before submergence, since vehicles
start on the surface where they typically have GPS access.

The C-SLAM algorithm in the decentralized data fusion-
smoothing and mapping (DDF-SAM) framework [22], [23]
also marginalizes out the vehicles’ poses. In particular, this
is done in an overly conservative manner in [22], and later
improved by using the concept of an “anti-factor” [23]. In
our method we avoid double counting of information by
removing all other vehicle poses from the factor graph during
acoustic packet generation similar to [22], but restrict the
AUVs only to transmit locally gathered data (as opposed to
forward along data received from others). This may be overly
restrictive in high-bandwidth systems, but it is necessary
in underwater scenarios (where packets are often dropped),
since it allows for reasonable scalability of packet sizes.
The work of [24] uses the condensed measurement approach
introduced in [25]. Specifically, each robot communicates
the following information: (i) the last laser scan, (ii) the up-
to-date estimates of the previous N nodes where N is the
number of nodes since the last transmission, (iii) the indexes
of the other robots’ local maps that they have matched with
their own, and (iv) part of the condensed graph computed



using the process in [25]. This approach can scale well
with respect to the team size, however the packet size is on
the order of 2.5 KBytes. Additionally, each communication
is two-way where packet loss is not considered. Note that
most terrestrial C-SLAM systems are built upon assumptions
of communications throughput and bandwidth, which are
unattainable underwater.

B. Graph Reduction for SLAM

Recently, graph-based SLAM approaches have become
very popular [26]. Old states are not marginalized at every
time step, leading to a sparse solution that can be solved
incrementally and efficiently [27]. Nevertheless, computation
and memory requirements will grow without bound, ulti-
mately requiring some form of graph reduction to enable
long-term operation.

In [28], pose-graph compression is proposed for laser-
based SLAM by utilizing an approximate marginalization
based on the Chow-Liu tree (CLT), while the method in
[29] uses an information criterion to selectively remove
uninformative loop closures. The work of [30] employs a
Euclidean distance criterion for node removal to guarantee
that state-space size grows only with the size of the mapped
environment.

More closely related, recent work has used a convex
optimization formulation for sparsification, where the KLD
is minimized with a consistency constraint [7]. In particular,
Carlevaris and Eustice [5] present the formulation of generic
linear constraints (GLCs), where marginalization induces a
fully connected constraint over the Markov blanket of the
marginalized node. This fully connected constraint is then
sparsified using a CLT approximation. Our prior work [6]
formulates the marginalization process in a similar way while
sparsifying edges uses `1-regularization, which is appealing
in its flexibility as it does not commit to the CLT graph struc-
ture. However, one challenge with this approach is that direct
control over the structure of the resulting sparsified matrix
is lost. Most recently, the work of [8] improves previous
results by allowing non-linear measurements to approximate
the dense constraint with “virtual” measurements which
can be defined arbitrarily and then insightfully formulating
the convex optimization over the measurement, rather than
state, information matrix and proving that it remains convex.
However, designing these virtual measurements is non-trivial
and task specific. In all of these cases [5], [6], [8], the
motivation for variable removal is complexity reduction.
Methods of selecting variables to remove are not described.
In this work, we design a variable removal strategy and
design measurements to address the bandwidth constrained
C-SLAM problem.

III. PROBLEM FORMULATION

Consider that AUVs are equipped with the following
sensor suite: (i) 3-axis compass, (ii) GPS receiver (only
functional at surface), (iii) Doppler velocity log (DVL) for
fore (u) and starboard (v) speed relative to the seabed, (iv)
sidescan sonar (SSS), and (v) acoustic modem. The pose
of vehicle i at time t is denoted by xi(t). Each vehicle
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Fig. 2. Seabed mapping with sidescan sonar. Pings are registered into
images. The vertical axis in the image represents the time of the ping
and the x axis represents the slant range to the seafloor. Using the custom
built automatic target recognition system, features of interest are detected in
the image (highlighted with white circles). These feature observations are
then added to the correct time-stamped pose in the trajectory based on the
location of the object within the image.

has a slot in the time-division multiple access (TDMA)
cycle with which to make an acoustic transmission. Denote
the time of transmission k = 1, . . . ,K as tk. We use the
shorthand notation xik to denote the pose of vehicle i at
either transmission or reception of transmission k. Vehicles
can make relative range estimates of one another (“direct”
encounters) by maintaining synchronized clocks onboard and
calculating the time-of-flight of communication packets [31].
The range measurement made by vehicle i of vehicle j
as a result of transmission k is denoted by zirj (tk). As
vehicles are operating underwater, they are also gathering
sonar seabed imagery (presumably this is the purpose of
the AUV mission). An automatic feature recognition system
is used onboard to extract features from the imagery. The
measurement, zilm(t), represents an observation by vehicle i
of landmark m at time t.

A. Feature Detection from Sidescan Sonar

SSS returns are geo-registered and composed into images
(see Fig. 2). The automatic target recognition (ATR) suite
of tools used was developed at Defense R&D Canada. The
matched filter in the ATR filters for geometric shapes with
shadows (from the sonar insonification) based on templates.
The ATR filters are similar to the existing algorithms [32] but
optimized for mine-like object geometries. The AUV buffers
the SSS data that it collects and then is able to generate the
image and process the targets in situ using a single embedded
processor on the vehicle. This ability to move the full sonar
feature detection pipeline onboard the vehicle is essential for
underwater SLAM.
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Fig. 3. Multi-vehicle factor graph maintained on vehicle i and used
for navigation. In this graph, factors are color coded as follows: yellow:
odometry, cyan: relative range measurements from TOF, magenta: landmark
observations, green: occasional GPS measurements obtained at surface, and
orange: “virtual” measurement resulting from marginalization/sparsification
process presented in Section IV.

B. Multi-AUV C-SLAM with Factor Graphs

In this work, we follow a decentralized estimation
paradigm which is robust to single-node failures. Each
vehicle maintains in its state vector, Xi

C , (i) its own-
vehicle trajectory, (ii) other vehicles’ poses at communica-
tion/measurement times, and (iii) all detected features:

Xi
C(1 : t) , [xi(1 : t), {xj(t1..K)}j∈{1..N}\i,L] (1)

where L , {lm}m=1..|L| is the set of all features; For
visualization, we represent this as a factor graph as shown in
Fig. 3. With mild assumptions (such as additive Gaussian
noise of measurements), we often can convert the SLAM
problem to a nonlinear least-squares (NLS) problem [26],
which can be solved efficiently [27].

C. Bookkeeping with Confirmed Contact Points

To overcome the fact that broadcast packet reception
is unknown until an acknowledgment is successfully re-
ceived, a system of bookkeeping using confirmed ingoing
and outgoing contact points is used [17]. Bookkeeping is
required for vehicles to know which local factors should
be generated to guarantee consistency of the multi-vehicle
estimates maintained by others. Each vehicle i maintains a
set of N−1 incoming and outgoing confirmed contact points.
These contact points are the times of most recent confirmed
successful communications to and from each other vehicle
in the team. Incoming contact points are easily detectable
based on the times at which communications are received.
Outgoing contact points necessitate the use of communicated
acknowledgment bits that are sent in subsequent data packet
transmissions. In the case that an acknowledgement commu-
nication fails, the contact point time will not be updated, in
essence assuming that the previous outgoing communication
had failed. One of the advantages of the proposed measure-
ment structure (see Sec. IV-B) is that it allows robustness to
outgoing packets being dropped and also successful outgoing
packets with dropped acknowledgements.

Algorithm 1 Acoustic Packet Generation Scheme
1: Transmission queue is empty
2: tk1 ← minimum contact point time
3: tk2 ← current time
4: Build local pose graph and solve for LX̂k1,2

(2) and H
(3)

5: Marginalize states tk1+1 : tk2−1 using (4)-(7) to get HR

6: Sparsify result with (13) and (15) to get D̂ the diagonal
consistent measurement information

7: Add local state estimates, Lx̂i2, and L l̂i1:m and measure-
ment information D̂ to transmission queue

8: Push data to the modem hardware for transmission

IV. ACOUSTIC PACKET GENERATION

In this section, we present in detail the core algorithm of
packetizing local data that will be transmitted over the acous-
tic channel. The algorithm (see Algorithm 1) consists of two
main components: (i) marginalization of nodes in between
transmission times, and (ii) consistent sparsification of the
resulting communication graph via convex optimization. In
the sparsification step we enforce three design criteria: (i), we
require that the solution be provably consistent (does not add
information), (ii) we desire that the generated measurements
follow a predetermined Jacobian structure (specifically the
one shown on right panel of Fig. 4), and (iii) given the first
two conditions we obtain the best possible approximation.

A. Marginalization of Intermediate Poses

Sending all intermediate poses between transmissions as
well as all DVL, compass, and landmark observations is
infeasible through the acoustic channel. To reduce data
throughput we wish to relate all feature observations to
states that coincide with acoustic transmissions. This is
achieved through first removing all states corresponding to
other vehicles (and their connected measurements) followed
by a marginalization of own vehicle intermediate poses.
Assume that the contact points times for the transmission as
determined by the bookkeeping process previously described
are tk1 and tk2 .

The states to be marginalized are XM , xi(tk1 +1 : tk2−
1). The landmarks observed between times tk1 and tk2 are
denoted by Li

k1,2
, {lm|(∃zilm(t) ∈ Zi) ∧ (tk1 ≤ t ≤ tk2)},

and similarly all the measurements (except relative range)
obtained by vehicle i between tk1 and tk2 are Zi

k1,2
. As

before we also define Xi
k1,2

, [xi(tk1 + 1 : tk2),Li
k1,2

].
To minimize world-frame linearization errors [5], [6], we

transform all states to be relative to one of the remaining
states. In this case we arbitrarily choose xi1, the own vehicle
state at the last known point of contact. Note that this choice
is arbitrary for the purposes of local marginalization, but it
is important that it is consistent across vehicles such that
incoming factors can be properly interpreted. We denote this
local frame with the preceding superscript L. We formulate
a NLS problem with respect to the desired section of the
pose chain using only the local measurements available from



xi
1 ... xi

2 li1 ... lim
xi
1 xi

2 li1 ... lim
xi
1x

i
2 l

i
1 ... lim

...xi
1 xi

2

...li1 lim ...li1 lim

xi
1 xi

2

...li1 lim

xi
2xi

1

Fig. 4. Left: Intermediate nodes are marginalized from the information matrix H to reduce the amount of data to be transmitted acoustically. Middle:
Marginalization results in a fully dense information matrix HR. Right: We enforce a predetermined sparsity pattern and solve a convex optimization
problem to determine the information matrix Hsparse = FT

R D̂FR corresponding to these new measurements that guarantee estimation consistency.

tk1 ≤ t ≤ tk2 :
LX̂i

k1,2
= argmax

LXi
k1,2

p(LXi
k1,2
|Zi

k1,2
)

= argmin
LXi

k1,2

tk2∑
t′=tk1

||zig(t′)− fg(Lxi(t′))||2Σi
g(t′)

+

tk2∑
t′=tk1

||ziu(t′)− fu(Lxi(t′), Lxi(t′ − 1))||2Σi
u(t′)

+

tk2∑
t′=tk1

∑
lm∈Li

k1,2

||zilm(t′)− f l(Lxi(t′), Llm)||2Σi
l(t
′)

(2)

where fu(·) is the odometry function, f l(·) is the robot-
to-landmark measurement function, and fg(·) is the global
(GPS) function . This problem can be solved by Gauss-
Newton iterations, in which we compute the (approximate)
Hessian (information) matrix of the relative states (LX̂i

k1,2

excluding xi1 [6]):

H =
∑

z∈Zi
k1,2,

(Fz)T (Σz)−1(Fz) (3)

Fz is the measurement Jacobian and Σz is the noise covari-
ance for measurement z.

Once we have H we can proceed to marginalize out the
intermediate nodes as desired through the Schur complement.
Define the states to be marginalized out to be:

LXM , [LXi(tk1 + 1 : tk2 − 1)] (4)

and the connected states to be retained to be:
LXR ,

[
Lxi2

LLi
k1,2

]
(5)

Then we can decompose the Hessian matrix accordingly:

H =

[
HMM HMR

HRM HRR

]
(6)

and write the expression for the information over the remain-
ing states as:

HR = HRR − (HRM )(H−1
MM )(HMR) (7)

where HR now encapsulates all of the information induced
onto the connecting states through the marginalization pro-
cess (subject to linearization error). Finally we can construct
a new constraint that connects all of the connecting states
(as shown in middle of Fig. 4):

ziR , LX̂i
R = LXi

R + η

= r(Xi
R, x

i
1) + η

η ∼ N (0, (HR)−1)

(8)

where r(·) is a function that transforms the nodes Xi
R from

the global from to the local frame relative to xi1 (similar to
the root shift operation in GLC [5]) and LX̂i

R are the optimal
estimates of the remaining states as determined by solving
(2) which do not change through the marginalization process.
It becomes clear from the middle panel of Fig. 4 that the
information matrix is now fully populated. The number of
entries in this matrix will scale O(|Li

k1,2
|2). For even a very

small number of measurements we will exceed the allowable
packet size for acoustic transmission.

B. Consistent Sparsification of the Communication Graph

Since the dense matrix in the middle of Fig. 4 is still
potentially too large for transmission through acoustics, we
need to selectively sparsify it until the bandwidth con-
siderations are met. We formulate the sparsification as a
convex minimization problem whose cost function is the
KLD between the original and the sparsified versions of the
information matrices.

We seek to approximate the distribution N (LX̂i
R, H

−1
R )

with a new distribution N (LX̂i
R, H

−1
sparse). We enforce the

following desired properties onto the new information matrix
Hsparse.



1) Guaranteed consistency: This can be achieved by
imposing the following constraint:

Hsparse � HR (9)

where the � indicates that HR−Hsparse is positive definite.
2) Enforce predetermined sparsity pattern: We decom-

pose the information matrix as follows:

Hsparse = FT
R D̂FR (10)

where FR is the stacked Jacobian of the new measurements
and the block diagonal matrix D̂ contains all of the mea-
surement informations (inverse covariances associated with
these new measurements that we are defining). As such we
have direct control over the structure of FR and can enforce
the desired measurement functions so long as we choose D̂
such that the other constraints are satisfied [8]. Note that
we have chosen a measurement pattern that induces a tree
structure with tree depth equal to two in the resulting factor
graph, where xi1 is at the root. The result is that the Jacobian
matrices follow a fixed a predetermined structure (Fig. 4-
right) which is agreed upon by all vehicles and therefore not
necessary to actual transmit.

3) Best approximation: The objective for minimization
is the KLD between the original Gaussian distribution and
the approximate one which can be formulated in terms of
their information matrices assuming they have the same mean
value [7]:

DKL(N (LX̂i
R, H

−1
R ||N (LX̂i

R, H
−1
sparse))

= −1

2
[ln(

|HR|
|Hsparse|

)] + trace(HsparseH
−1
R )− dim(LX̂i

R)

(11)

C. Convex Optimization Problem and Closed-Form Solution

We combine (9), (10), and (11) and the fact that we know
HR and dim(LX̂i

R) to formulate the following convex opti-
mization over the block diagonal measurement information
matrix D:

min
D∈D

< FT
RDFR, H

−1
R > − ln |FT

RDFR|

subject to FT
RDFR � HR

(12)

where D is the set of block diagonal positive definite
matrices. The Jacobian matrix that we have designed is both
square and full rank (see the right-hand panel of Fig. 4). As a
result, the unconstrained version of in (12) has a closed-form
solution [8]:

D∗i = ({FRH
−1
R FT

R }i)−1 (13)

where the subscript i denotes the i-th block diagonal compo-
nent. However, this solution does not guarantee consistency
so we project the solution onto the consistency constraint’s
domain:

D̂ = argmin
H−1

R �Y
||D∗ − Y ||2F (14)

where || · ||F is the matrix Frobenius norm. This can be
analytically solved by using the eigendecomposition D∗ =
VDdiag(λDi )V T

D and H−1
R = VHdiag(λHi )V T

H , where λDi and

λHi are the eigenvalues of D∗ and H−1
R respectively, and then

computing:

D̂ = VDDiag
(
max{λDi , λHi }

)
V T
D (15)

In our case the reduced Hessian has relatively small size, so
this eigendecomposition can be performed efficiently even
on an embedded processor.

D. Final Packet Contents

The solution to (12) is a new set of |Li
k1,2
| + 1 pairwise

measurements, including one relative-pose constraint:

zi
D̂1

, Lx̂i2 = r(xi2, x
i
1) + η1

η1 ∼ N (0, D̂−1
1 )

(16)

and m = 1..|Li
k1,2
| relative pose-feature measurements:

zi
D̂m

, L l̂im = r(lim, x
i
1) + ηm

ηm ∼ N (0, D̂−1
m )

(17)

where D̂m is the block component of D̂ corresponding to
the m-th measurement.

In order for the packet recipient to be able to reconstruct
the multi-vehicle pose graph shown in Fig. 3, we need to
transmit the pose and feature estimates Lx̂i2,

L l̂i1:m and the
non-zero elements of the block diagonal measurement infor-
mation matrix D̂. In addition, we send the acknowledgement
bits from the last cycle. Importantly, the size of the data
packet scales linearly O(|Li

k1,2
|) with the number of features

detected since the last transmission, constantly with time,
even in the case of dropped packets, and constantly with the
number of AUVs in the cooperative, making this approach
applicable to very large-scale deployments.

V. PACKET RECEPTION

Upon reception of an acoustic packet from vehicle i on
vehicle j, the received measurement values (state estimates)
and associated information matrices are incorporated into
the multi-vehicle factor graph shown in Fig. 3 allowing the
construction of the full multi-vehicle NLS problem:

X̂j
C = argmax

Xj
C

p(Xj
C |Z)

= argmin
Xj

C

∑
zj
g(t)∈Z

||zjg(t)− fg(xj(t))||2
Σj

g(t)

+
∑

zj
u(t)∈Z

||zju(t)− fu(xj(t), xj(t− 1))||2
Σj

u(t)

+
∑

zj
lm

(t)∈Z

||zjlm(t)− f l(xj(t), lm)||2
Σj

l (t)

+
∑

zj

rj
(tk)∈Z

||zjrj (tk)− fr(xik, x
j
k)||2Σr

+ ||Lx̂i2 − r(xi2, xi1)||2
D̂−1

1

+

|Li
k1,2
|∑

m=1

||L l̂im − r(lim, xi1)||2
D̂−1

m

(18)



Fig. 5. Top: Shoreside viewer showing simulated features (blue squares)
and ground truth and estimated locations of each vehicle. The ground
truth vehicles have simulated sidescan sonar swaths that are being used
to detect targets. At the current time, the vehicle on the North-South survey
is transmitted as shown by the green circle. Bottom: Each of the two
vehicles’ decentralized factor graphs. Green triangles show own vehicle
trajectory, other vehicle locations at times of communications are shown
by orange triangles. The feature estimates are shown as blue squares.
Red lines indicate virtual measurements (either pose to pose or pose to
feature), blue lines are sidescan detection measurements, and pink lines
are relative range measurements induced by acoustic communications with
synchronized clocks.

which is solved using a similar technique as the relative case
(2). In the above fr(xik, x

j
k) = ||xik − xjk|| is the range

measurement model and the last two terms are the virtual
measurements received in the broadcast packet.

VI. EXPERIMENTAL RESULTS

The system is implemented with a combination of open
source projects developed at MIT: the mission-oriented oper-
ating suite (MOOS) with interval programming [33], Goby-
Acomms [34], lightweight communications and marshaling
(LCM) [35], and iSAM [27].

MOOS is a middleware and marine simulation software
framework. A single MOOS community resides on each
vehicle and a third as a shoreside for monitoring (see the
top panel in Fig. 5). MOOS applications were written for
simulating sensors, feature detection, the TDMA cycle, and
processing and packaging acoustic packets to and from the
simulated modem. In Goby, packets are defined as Google
Protocol Buffers which are encoded using the dynamic
compact control language at runtime. There is also function-
ality within Goby for simulating the acoustic channel and
enforcing packet size restrictions. Data is parsed in MOOS
and then passed through LCM channels to the backend iSAM
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Fig. 6. Trace of the covariance matrix for three different simulated scenar-
ios. As expected, the uncertainty grows unbounded for no communications.
The performance of our proposed method is close to that of the full-
bandwidth case. In our approach, packets are transmitted every 10s with
a drop rate of 50% and maximum size of 192 bytes.

solver. This backend solver manages the multi-vehicle factor
graph and uses built-in and custom factor definitions to
maintain estimates of the entire vehicle trajectory and feature
locations. Upon receipt of a packet request from MOOS, the
packet relative factor-graph is built, optimized and then the
convex optimization is solved and the packet contents are
sent back to MOOS for transmission.

For a demonstration of the full system please refer to the
attached video 1.

A two-vehicle simulation is shown in Fig. 5. In the
top panel is the shoreside viewer that shows the ground
truth locations of the discovered features (blue squares) as
well as ground truth and estimated locations for each of
the two vehicles. The decentralized multi-vehicle estimates
maintained onboard each vehicle are shown in the LCM
viewers at the bottom.

Fig. 6 shows the trace of the multi-AUV covariance matrix
for three cases: (i) no communications, (ii) the proposed
communication strategy, and (iii) a full bandwidth simulation
which would be unachievable in reality. As evident, the
position uncertainty is higher than the full bandwidth so-
lution, but is nevertheless bounded, which is not the case for
the no communications scenario. Note that the covariances
in all cases grow until about 100s at which time vehicles
start to observe mutual features. The fluctuations in the
covariances are in general caused by the random placement
of the features. During periods of few feature detections,
uncertainties grow. Furthermore, Fig. 7 depicts the root mean
square error (RMSE) of the position estimate as well as the
3σ bound which clearly shows to be bounded and consistent,
thus satisfying the stated objectives.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an underwater C-SLAM framework
for multiple AUVs communicating only through the un-
reliable and low bandwidth acoustic channel. Transmitted
packet sizes are reduced by marginalization of unnecessarily

1Video also available at http://people.csail.mit.edu/
lpaull/projects/AUVCSLAM.xhtml

http://people.csail.mit.edu/lpaull/projects/AUVCSLAM.xhtml
http://people.csail.mit.edu/lpaull/projects/AUVCSLAM.xhtml
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Fig. 7. Root mean squared error (RMSE) vs. time (blue) and 3σ bounds
(red). It is clear that the proposed C-SLAM is able to bound the position
errors and maintains consistency.

local variables followed by sparsification formulated as a
constrained convex optimization. This enables us to bound
the vehicles’ position uncertainties without any pre-installed
beacon infrastructure or having to surface for GPS data. This
framework enables long-term deployment of teams of AUVs
into a variety of less accessible environments such under ice
and in the deep ocean.
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