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Abstract 

Critical Heat Flux (CHF) plays a key role in nuclear reactor safety both during normal operation 

as well as in accident scenarios.  In particular, when an in-vessel retention (IVR) strategy is used 

as a severe accident management strategy, the reactor pressure vessel (RPV) cavity is flooded with 

water, to remove the decay heat from the corium relocated in the lower plenum by conduction 

through the RPV wall and flow boiling on the outer surface of the RPV.  The CHF limit must not 

be exceeded to prevent RPV failure.  Therefore, knowledge of the CHF under realistic conditions 

is necessary to assess coolability margins.  Previous studies for prediction of CHF in the IVR 

situation were mostly based on data for as fabricated un-oxidized stainless steel.  However, the 

RPV is made of low carbon steel and its surface has an oxide layer that results from pre-service 

heat treatment as well as oxidation during service.  This oxide layer introduces significant 

differences in surface wettability, porosity, and roughness in comparison to an un-oxidized 

stainless steel surface.  In this study, test heaters were fabricated out of RPV low carbon steel, pre-

oxidized in a controlled high temperature wet air environment, which emulates the surface oxides 

present on the outer surface of the actual RPV; the heaters were then tested in a flow boiling loop 

designed specifically for the IVR conditions.  Up to 70% enhancement in CHF value was observed 

for the oxidized in low carbon steel in comparison to the stainless steel.  
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1. Introduction 

In-vessel retention (IVR) is a severe accident management strategy that is used in a number of 

modern nuclear power reactor designs, such as Westinghouse’s AP1000. In the case of IVR, the 

reactor pressure vessel (RPV) cavity is flooded with water, so the decay heat from the molten fuel 

is removed by conduction through the RPV wall and flow boiling on the outer surface of the RPV. 

Flow boiling heat removal is limited by critical heat flux (CHF). Therefore increasing CHF 

provides a higher safety margin. There is mounting evidence that CHF in both pool boiling as well 

as flow boiling is sensitive to the characteristics of the boiling surface: this is in contrast to the 

earlier CHF models which ignored such effects.  

In pool boiling, the separate effects of surface wettability, porosity, and roughness on pool boiling 

CHF in water were recently examined at MIT [1], using engineered surfaces. This experimental 

work showed that porous hydrophilic surfaces can enhance CHF by 50%-60%. In contrast porous 

hydrophobic surfaces resulted in a reduction of CHF by 97%. This study readily showed the 
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significance of surface characteristics on pool boiling CHF.  Similar trends were also observed 

during the boiling of nanofluids. Precipitation of nanoparticles on the heater surface during 

nucleate boiling alters the surface characteristics of the boiling surface and provides a porous layer 

whose morphology depends on the nanoparticles. This porous layer was proposed as the reason 

for the observed enhancement in CHF of nanofluids boiling [2]. 

There are also several studies which explored the effect of surface characteristics on flow boiling 

CHF, a good review of which can be found in Ref. [3]. Given the importance of CHF in the IVR 

situation, many studies have also focused on different aspects of the IVR flow boiling CHF: the 

University of California, Santa Barbara (UCSB) [4-6], the SULTAN facility in France [7], the 

University of California, Los Angeles (UCLA) [8], the CYBL facility at Sandia [9], and Penn State 

University (PSU) [10]. A brief summary of these works is provided next. A series of studies (1994-

2003) in five configurations were carried out at the University of Santa Barbara. In 1994, 

Theofanous et al. [4] carried out an experiment on the ULPU facility for the lowermost spherical 

segment of the RPV. Stainless steel was used as a heater material and a correlation was developed 

for prediction of the CHF. Later Theofanous and Syri [5] extended the study to SA508, the actual 

RPV material. The CHF values for SA508 were higher than those for stainless steel. However, it 

was not clear whether the CHF difference resulted from the heater material or thermal inertia 

effects because different test sections from these studies had significantly different heater 

thicknesses. In 2003, Dinh et al. [6] carried out a more complete set of experimental data which 

covered different mass fluxes and inclination angles on the same ULPU facility, but again stainless 

steel and copper were used as the heater materials and the term “aging” was used by the authors 

to capture the effect of surface characteristics on CHF.  

The SULTAN facility [7] was a forced convection experiment facility and their experimental data 

covered a wide range of mass fluxes, pressures, subcooling and inclination angles relevant to IVR. 

Stainless steel was used in this study as the heater material.  

Asfia and Dhir at UCLA [8] measured the natural convection heat transfer coefficient on the outer 

surface of a hemispherical heater, and found that the heat transfer coefficient was lowest at the 

bottom of the heater and increased with the polar angle along the spherical segment of the test 

section.  

Yang et al. at PSU [10] conducted a series experiments on a stainless steel heater to investigate the 

effect of surface coating on transient quenching and steady-state boiling. The CHF value for the 

aluminum coated surface was much higher in comparison to the corresponding data without 

coating.  

Recently Jeong et al. [11] measured the CHF of a two-dimensional slice test section made of 

stainless steel grade 304. The tests were conducted at various inlet subcooling and mass fluxes.  

The measured CHF data from this study was slightly lower than the ones measured in UCSB 

experiment [5]. The proposed reason for the observed trend was the difference in test section 

material and thickness (different thermal inertia). Park et al. [12] also executed a CHF experiment 

with a test section in which they varied the radius of curvature, the width and gap size. The results 

from this experiment were in good agreement with Jeong et al. [11] data, as the same heater 
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material was used in both studies. DeWitt et al. [13] measured the CHF of nanofluids (water + 

0.001Vol% alumina) for the geometry and flow conditions relevant to IVR, using a stainless steel 

surface, and found an average enhancement of 70% in CHF with respect to the pure water case. 

It is interesting to note that, in all previous IVR CHF studies (except the one by Theofanous and 

Syri [5]) the boiling surface material was stainless steel. However, the reactor pressure vessel 

(RPV) is made of low carbon steel and its surface has a relatively thick oxide layer that results 

from pre-service heat treatment and oxidation during service. This oxide layer introduces 

significant differences in surface wettability, porosity, and roughness in comparison to an un-

oxidized stainless steel surface, which affect CHF. 

Very recently, the effect of heater material on CHF was considered by Park et al. [14] who used 

downward facing curved heaters made of stainless steel grade 304 and SA508. For all the test 

conditions the CHF values were higher for SA508 in comparison to stainless steel. Oxidation of 

carbon steel in the aqueous environment was proposed as a reason for the enhancement of the 

CHF.  

All of these studies suggest the importance of measuring CHF with a heater having surface 

characteristics as close as possible to the actual outer surface of the RPV. In this paper a systematic 

study to examine the effect of surface characteristics of low carbon steel surfaces is presented.  

Specifically, test heaters were fabricated out of RPV low carbon steel, pre-oxidized in a controlled 

high temperature environment, emulating the surface oxides present on the outer surface of the 

actual RPV; the heaters were then tested in a flow boiling loop designed specifically for the IVR 

conditions.  

 

2. Experimental Method 

2.1.Facility 

Figure 1 presents a schematic diagram of the two phase flow loop facility that was used for flow 

boiling CHF measurements in this study. Reference [15] provides extensive details of the 

experimental apparatus used here. Briefly, the experimental setup is a closed loop flow system 

equipped with a centrifugal pump, flow meter, pre-heater, test section, accumulator, and 

condenser. The test section in the flow system is made of stainless steel 316. The rectangular flow 

channel is 1.4 cm wide, 2 cm deep, and 31.7 cm long. Characteristics of the test section were 

designed to be hydro-dynamically similar to the vessel/insulation gap in an AP1000 through 

scaling analysis which can be found in Reference [15]. The test section was designed to have single 

sided downward facing heating and the flexibility to be mounted at different angles from vertical 

(90o) to horizontal (0o). The test heaters are resistively heated flat plates with studs at each end to 

provide a connection for DC electrodes, attached to two 18 kW DC power supplies operated in 

parallel. The joule heated test heater is 1 cm wide and 24 cm total length in size (Figure 2). A 2-

hp centrifugal pump was used to circulate the working fluid in the loop. The pump is appropriate 

for temperatures up to 180 oC with a low net positive suction head. A turbine type flow meter is 

utilized on the experimental apparatus to measure the mass flow rate in the range of 165 to 1,651 

kg/m2s. A 2 kW pre-heater was also implemented to control the test section inlet temperature as 

shown in Figure 1. An accumulator was used to accommodate volumetric expansion of the 
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working fluid during heating. A shell and tube heat exchanger was used to reject the heat. A data 

acquisition system was employed to record the output of all instruments. Calibrations were 

completed for all the measurement devices. The error on the measured CHF is estimated to be 4%, 

based on propagation of the uncertainty of the instruments used.  

 

 
Figure 1. MIT CHF flow loop [15] 

 

 
Figure 2. Schematic of the heater with wetted surface facing down (dimensions are in inch); 

heated length equals 20 cm. 
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2.2.Heater preparation 

Two materials were tested in this study: stainless steel grade 316 (SS316) and low carbon steel 

(18MnD5). The heaters were categorized in two groups unoxidized heaters (i.e. SS316 and 

18MnD5 without any oxidation) and oxidized ones (oxidized 18MnD5). Before CHF test or any 

oxidation, heaters were sandblasted and cleaned with deionized water, acetone and ethanol. 

Controlled oxidation was performed in an oxidation facility (Figure 3).  

 
Figure 3. Oxidation facility used in this study.  

 

The synthetic air (AI B300) provided by Airgas Inc. is used for oxidation. The air was sparged 

through a room-temperature water flask to establish a controlled 3% vol. humidity of the air prior 

to delivery to the tube furnace. Some humidity is needed to increase the adhesive properties of the 

oxide layer [16]. The temperature of the furnace was set to 625±10 oC for 8 hours. A representative 

temperature track for one of the oxidized heaters is shown in Figure 4. Temperature was ramped 

up to 625 oC and held constant for 8 hours prior to the cooling down process.  

 
Figure 4. Temperature track of an oxidized heater (8 hours oxidation treatment).  
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3. Results and discussion  

3.1.Oxidation and surface characterization 

Low carbon steel (18MnD5) was selected for the purpose of this study as 18MnD5 is the French 

alloy used in the fabrication of RPVs. SA508 is the alloy used in the US for RPVs. Table 1 shows 

the chemical composition of SA508 and 18MnD5. Clearly both materials have a very similar 

chemical composition.  

 

Table 1. Chemical composition of 18MnD5 as well as SA508 (MMR group, Inc.) 

Chemical  

composition 
C Mn Ni Mo P S Si Cr 

18MnD5 0.2 1.51 0.6 0.46 <0.01 0.003 0.26 0.22 

SA508 0.21 1.29 0.59 0.56 0.014 0.014 0.3 0.05 

 

Oxidation of 18MnD5 heaters was carried out with a furnace as explained in the last section. Oxide 

layers as thick as 40 µm were fabricated in this experiment. While the oxidation behavior of low 

carbon steel is expected to be similar to that of pure iron [17], the microstructure of the oxide layer 

could be very complex and is dependent on the heat treatment, oxidation environment, and alloying 

elements present in the steel. From the iron-oxygen phase diagram (Figure 5) it is clear that above 

570oC there are three stable oxide phases, i.e. Wustite (FeO), magnetite (Fe3O4) and hematite 

(Fe2O3). After a very thin layer of oxide is formed, the kinetics of oxidation will be controlled by 

outward diffusion of iron atoms and inward diffusion of oxygen atoms through that oxide layer. 

Therefore, oxide layers on the steel surface generally have a layer of Wustite (FeO) closest to the 

substrate with the lowest oxygen content, an intermediate magnetite layer (Fe3O4) and a final 

oxygen-rich thin hematite layer (Fe2O3) [18]. X-ray diffraction analysis was carried out for the 

oxidized heaters (Figure 6). It can be seen that the peaks match well with the XRD patterns of 

magnetite and hematite which confirms their existence. 

 

 
Figure 5. Iron-Oxygen phase diagram [19] 



7 

 

 
 

Figure 6. XRD pattern of an oxidized heater. 

 

The appearance of the unoxidized 18MnD5 heater after sand blasting and oxidized heater after 

oxidation is shown in Figure 7. The oxidation was quite uniform and adherent for the oxidized 

heaters.  

 

  
 

Figure 7. (a) Unoxidized and (b) oxidized heater appearance.  

 

Surface properties are crucial in determining the boiling heat transfer performance of the system. 

One of the key surface properties in boiling is wettability of the surface of interest. Static contact 

angle of the surface is representative of the surface wettability and can be measured by a contact 

angle goniometer setup. Contact angle measurement was executed for all heaters in this study. 

Contact angle measurements of an unoxidized 18MnD5 heater compared to the oxidized heaters 

show a reduction of contact angle from 45 degrees to zero (Figure 8 (a) and (b)). This observation 

suggests that the surface after oxidation becomes super-hydrophilic. In fact, all the treated heaters 

in this study were super-hydrophilic. For SS316 the contact angle drops from 85 degrees before 

CHF test to 25 degrees after the CHF test. The contact angle of unoxidized 18MnD5 was also 

dropped from 45 degrees before CHF test to 5 degrees after the test.  
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Figure 8. Contact angle measurement on (a) unoxidized 18MnD5, (b) oxidized 18MnD5 (8 hrs 

DO) 

 

To develop a better understanding of the surface characterization for each heater, scanning electron 

microscopy (SEM) images were acquired before and after CHF test (Figure 9). 

 

    
Figure 9. SEM image of the oxidized heater before (left) and after (right) the CHF test.  

 

The surface structure of an oxidized 18MnD5 sample was flowery (whisker-like), Figure 9. It can 

also be seen in Figure 9 that the texture of the surface was unchanged by the CHF testing.  

The oxidation thickness was also measured by SEM. Heaters are cut and mounted in epoxy and 

prepared for oxidation thickness measurement. Figure 10 shows the oxidation thickness for an 

oxidized heater. Figure 10(a) shows the SEM image of the oxidized low carbon steel cross section 

(40 µm). Energy dispersive X-ray spectroscopy (EDS) was also executed on our oxidized heater 

for elemental analysis. Figure 10(b) shows an EDS line scan data. It is clear that the iron 

concentration is much higher in the 18MnD5 side of the heater, and that in the oxide layer the 

oxygen concentration increases and both (iron and oxygen elements) drop in the epoxy (light gray 

region). 
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Figure 10. (a) SEM image of the oxidized heater crossed section, and (b) EDS analysis of the 

oxidation thickness.  

 

3.2. Critical Heat Flux Test 
Two test conditions were chosen for the CHF tests:  

- Test condition I: 90 degrees (vertical) test section, 500 kg/m2s mass flux, 7 degree 

subcooled, and atmospheric pressure. 

- Test condition II: 45 degrees test section, 1000 kg/m2s mass flux, saturation temperature, 

and atmospheric pressure. 

 

For each test condition, a given heater material and surface state was tested twice, for repeatability.  

The experiments were carried out in a quasi-steady state manner with incremental power changes, 

and with time provided between each step for the system to reach equilibrium. An example of the 

power history for a test is shown in Figure 11. Electrical resistance of the heaters is measured as 

the DC power supplies are operated in constant current mode. The sharp reduction in heat transfer 

at CHF causes a fast increase in sample temperature. Since the electrical resistivity of steel 

increases with temperature, CHF results in a large and sudden increase in the heater resistance and 

therefore heat flux. Nearly all of the CHF tests run ended with heater failure due to the thermal 

stresses. The average of three values of the heat flux, right before the sudden increase in the heater 

resistance, is reported as the CHF value for that test. These three values are shown in Table 2 as 

an example for one of the treated heaters under the test condition I (i.e. 500 kg/m2s mass flux, 

vertical test section and 7 degree subcooled).  
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Figure 11. Power increment versus time for one of the treated heaters. 

 

Table 2. Data for three time steps just before CHF for one of the treated heaters under test 

condition I (90o, 500 kg/m2s, 7oC sub). 

 
 

CHF values for different oxidized/unoxidized heaters are shown in Table 3 and Figure 12. 

  

Table 3. CHF data for various conditions and heaters  

Heater 
CHF (MW/m2) 

90o, 500 kg/m2s, 7oC sub 

CHF (MW/m2) 

45o, 1000 kg/m2s, sat 

SS 316 1.73 1.24 

SS 316 1.74 1.26 

18MnD5 (unoxidized) 2.15 - 

18MnD5 (unoxidized) 2.24 - 

18MnD5 (oxidized) 2.21 2.12 

18MnD5 (oxidized) 2.20 - 

Time

points just

prior to

CHF (s)

Exit Pressure

[Bar]

Mass flux

[kg/m
2
s]

Test 

section 

angle

Tsat @ Exit 

[C]

Tout bulk 

[C] 

Tin bulk 

[C]  

Exit

quality

CHF 

value 

[MW/m2]

Tsat - Tin Tsat - Tout

6 0.97 573 90 98.62 93.92 87.67 -0.00851 2.21 10.95 4.70

4 1.09 536 90 101.95 93.91 87.66 -0.01396 2.21 14.29 8.05

2 1.04 586 90 100.55 93.91 87.66 -0.01241 2.21 12.89 6.64

Average 1.03 565 90.0 100.37 93.91 87.66 -0.01163 2.21 12.71 6.46
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Figure 12. CHF data for test condition I (90o, 500 kg/m2s, 7oC sub) (left), and test condition II 

(45o, 1000 kg/m2s, sat) (right). 

 

It is clear that there is an enhancement in CHF value for the case of oxidized as well as unoxidized 

18MnD5 in comparison to SS316. Up to 30% and 70% enhancement in CHF value was observed 

in the case of oxidized 18MnD5 in comparison to SS316 for test condition I and II respectively. 

The hydrophilic structure of the oxide on top of the heater is proposed as a reason for the observed 

enhancement in CHF value. Future work will determine the porosity of these surfaces to 

investigate the influence of capillary wicking. In the case of unoxidized 18MnD5 enhancement in 

CHF was up to 27% in comparison to SS316 under the test condition I which is quite similar to 

30% in the case of oxidized 18MnD5. Post-CHF SEM image of unoxidized 18MnD5 reveals a 

presence of a porous structure, with the thickness of a few microns (Figure 13). This observation 

along with a measured super-hydrophilic nature of the post-test surface provides a plausible 

explanation for the observed enhancement of CHF value even in the case of unoxidized 18MnD5 

[1].  

 

 
Figure 13. Post-CHF SEM image of the unoxidized 18MnD5. 

 

This analysis confirms that the initially unoxidized 18MnD5 surface was modified during boiling, 

likely from oxidation by water. The same observation was made for SA508 [13]. Ref. [20] reports 

that application of a current to low carbon steel in contact with water causes electrochemical 

oxidation of the steel surface.  
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4. Conclusion  

Effect of surface oxidation on flow boiling CHF value was determined in this study. It has been 

shown that the flow boiling CHF value can be enhanced by altering the surface characteristics 

through oxidation. Low carbon steel was oxidized in a controlled environment. This surface is 

very similar to the one in RPV during the IVR scenarios. Two test conditions were selected for the 

purpose of this study. Test condition I: 90 degrees (vertical) test section, 500 kg/m2s mass flux, 7 

degree subcooled, and atmospheric pressure, and test condition II: 45 degrees test section, 1000 

kg/m2s mass flux, saturation temperature, and atmospheric pressure. Up to 30% and 70% 

enhancement in CHF value was observed in the case of oxidized 18MnD5 in comparison to SS316 

for test condition I and II respectively. Superhydrophilic properties of the surface is proposed as 

the main reason for the observed enhancement. It was also observed that even in the case of 

unoxidized 18MnD5 the heaters were oxidized during the experiment. Post-CHF SEM image 

reveals the formation of a few micron thick oxidation on the surface of heater. This surface change 

leads to 27% enhancement in CHF value for the case of unoxidized 18MnD5 in comparison to 

SS316 under the test condition I. This observation clearly shows that although oxidation enhances 

CHF value by altering the surface characteristics, the oxidation thickness, in the range studied 

here, is not an important factor.  
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