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SUMMARY

Effective immunity requires a complex network of
cellular and humoral components that interact with
each other and are influenced by different environ-
mental and host factors. We used a systems biology
approach to comprehensively assess the impact of
environmental and genetic factors on immune cell
populations in peripheral blood, including associa-
tions with immunoglobulin concentrations, from
�500 healthy volunteers from the Human Functional
Genomics Project. Genetic heritability estimation
showed that variations in T cell numbers are more
strongly driven by genetic factors, while B cell counts
are more environmentally influenced. Quantitative
trait loci (QTL) mapping identified eight independent
genomic loci associated with leukocyte count varia-
tion, including four associations with T and B cell
subtypes. The QTLs identified were enriched among
genome-wide association study (GWAS) SNPs re-
ported to increase susceptibility to immune-me-
diated diseases. Our systems approach provides
insights into cellular and humoral immune trait vari-
ability in humans.

INTRODUCTION

Blood is a complex tissue consisting of a very specialized

network of circulating immune cells and soluble factors that
2474 Cell Reports 17, 2474–2487, November 22, 2016 ª 2016 The A
This is an open access article under the CC BY-NC-ND license (http://
are themorphological substrate of the human immune response.

Among immune cells, themonocyte, neutrophil, and natural killer

(NK) compartments are essential for first-line, innate immune

responses, while T cells, B cells, and the latter’s cognate immu-

noglobulin ([Ig] antibody) repertoire are essential for effective

adaptive immune response to a wide variety of pathogens.

Dysregulated immune cell or Ig numbers and/or functions can

lead to an increased susceptibility to infections or to immune-

mediated inflammatory disorders such as autoimmune diseases

or allergy (Cho and Feldman, 2015; Tangye et al., 2012).

Both genetic and non-genetic factors may contribute to varia-

tions in the number and function of human immune cells, as well

as the concentration of soluble mediators, resulting in consider-

able heterogeneity in individual immune responses. Recent

cohort-based studies have highlighted the effect of both genetic

(Brodin et al., 2015; Orrù et al., 2013; Roederer et al., 2015) and

non-genetic factors, including cohabitation, chronic infection,

aging, and microbiome (Carr et al., 2016; Roederer et al., 2015;

Shaw et al., 2013) on the variation of human immune cell levels.

However, a comprehensive analysis characterizing the interrela-

tionship between different immune cell types (innate and adap-

tive) and Ig levels in freshly drawn (non-frozen) human blood

as well as the effect of genetic and non-genetic factors on the

variation in these immune traits has been lacking.

The Human Functional Genomics Project (HFGP) is an initia-

tive comprising several cohorts of healthy individuals and

patients that aims to identify the factors responsible for the vari-

ability of immune responses in health and disease (http://www.

humanfunctionalgenomics.org). While three other studies

accompanying this present study describe environmental (ter

Horst et al., 2016), genetic (Li et al., 2016), and host microbiome
uthors.
creativecommons.org/licenses/by-nc-nd/4.0/).
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(Schirmer et al., 2016) factors that affect pathogen-induced

peripheral blood cytokine responses, this study is a comprehen-

sive assessment of the impact of environmental and genetic host

factors on circulating cell populations, focusing on both T cells

and B cells and including associations of B cells with Ig concen-

trations. Our results provide a full picture of humoral immunity, as

seen in serum Igs, and its interrelationship with immune cell

levels.

We analyzed the determinants of variation in T and B cell

counts and Ig levels by testing the association between immune

traits and non-heritable factors such as age, gender, and sea-

son. We estimated the genetic heritability of different immune

cells and show that the variation in T cell counts is predominantly

(37%) explained by genetic factors, which is in contrast to B cell

counts, which are more strongly influenced by the environment.

We also tested the effect of genome-wide genetic variation on

cell-level variation by using cell-count quantitative trait loci

(ccQTL) mapping and identified eight independent genomic

loci associated with lymphocyte counts, four of which have not

been described before, and with four cell subsets that have

not been characterized in previous studies. We also performed

an integrative genomics analysis by using RNA-sequencing

(RNA-seq) data from blood samples of 628 healthy individuals

to identify putative causal genes, including long non-coding

RNAs, at ccQTLs that may regulate cell counts. Lastly, we

show that the genetics behind ccQTLs partially overlap with

the previously described genetics of immune-mediated/related

disease.

RESULTS

Correlations of Cellular and Humoral Immune
Compartments Highlight Factors that Drive
Inter-individual Variation
Both the cellular and humoral arms of our immune system are

crucial for an effective immune response. However, information

on the interrelationship between the cellular and humoral com-

ponents is scarce. To analyze the underlying patterns of the vari-

ation within these immune components at the population level,

we performed unsupervised hierarchical clustering within our

measured immune cell populations and within Ig levels, after

correcting for age, sex, and season effects. For immune cells,

we identified four clusters of biological relevance (Figure 1A) in

which subpopulations of B cells, T cells, and myeloid immune

cells clustered into clusters 1, 2, and 3, respectively. Cluster 4

contains plasma cells and their precursors, as well as plasma-

blasts, with both groups clustering separately from the B cell

cluster (cluster 1). A subpopulation of CD4+CD45RA+CD27�
Figure 1. Interrelationship between Immune-Associated Cell Subpopu

(A) Unsupervised hierarchical clustering of the correlation within cell subpopulati

(B) A two-dimensional representation of the correlations between each cell type b

cell types. Large circles represent the calculated centroid of the grouped cell typ

(C) Unsupervised clustering of immunoglobulin levels. The color code next to the d

or season.

(D) Heatmap of Spearman correlation coefficients between each independent ce

correlation after FDR correction. *p % 0.05, **p % 0.005, ***p % 0.0005.

(E) Examples of cell subpopulations that are significantly associated with immun
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effector T cells was also present in cluster 4. These observations

suggest that plasma cells and CD4+CD45RA+CD27� terminally

differentiated effector T cells are co-regulated by similar factors.

Moreover, using a nonmetric multi-dimensional scaling

approach, we revealed, in a data-driven way, a separation be-

tween B cells and the other immune subpopulations at the sec-

ond dimension (Figure 1B). This suggests that B cells might also

be co-regulated independently of the other immune subsets.

The clustering patterns of Ig (sub)classes formed two major

clusters, one containing IgM and IgG3 and the other containing

IgG, IgG1, IgG4, and IgA (Figure 1C). For the IgM and IgG3 clus-

ter, there is biological evidence associating these two humoral

components. They are known to have the strongest complement

binding capacity, a function that is required for optimal protec-

tion against (intracellular) pathogens (Schroeder and Cavacini,

2010). Interestingly, the regulation of both IgM and IgG3 appears

to be controlled by the cytokines interleukin (IL)-4 and transform-

ing growth factor b (TGF-b), indicating functional homogeneity

under similar regulatory control (Br€uggemann et al., 1987; Coff-

man et al., 1989; McIntyre et al., 1993; Snapper and Paul, 1987).

Having established the hierarchical clustering of immune cell

populations and Ig levels, we analyzed the association between

immune cell counts and Ig levels by using Spearman correlation

(Figure 1). Out of 511 possible relations, nine significant correla-

tions (false discovery rate [FDR]% 0.05) were identified between

Ig subclass and immune cell populations (Figure 1C). CD4+

effector T cells (CD45RA+ CD27�), which cluster with the

plasma cells and plasmablasts (cluster 4), show a significant cor-

relation with IgG levels (r = 0.2, p = 8.5e�6) (Figures 1D and 1E).

This correlation may partly reflect the connection between these

cell types in humans, where effective recall of antibody re-

sponses is dependent on T-cell-dependent memory B cell gen-

eration (Kurosaki et al., 2015). A significant correlation was also

observed between IgM-only B cell levels and IgM serum levels

(r = 0.24, p = 6.3e�8), and a negative was correlation observed

between IgM serum levels and IgD+IgM� B cells (r = �0.2, p =

1.0e�8) (Figures 1C and 1D; Table S1). This correlation between

IgM-only B cells in peripheral blood and IgM in serum suggests

that high levels of IgM-only B cells predict higher levels of plasma

cells in tissue. These results stress the importance of identifying

the key factors driving the underlying inter-individual variation in

the immune system.

Effect of Age, Gender, and Season on the
Inter-individual Variation of Cellular and Humoral
Immune Components
We investigated the distribution of immune cell counts and sub-

set frequencies among �500 individuals in our cohort (500
lations and Immunoglobulin Levels in the General Population

ons.

y non-metric multidimensional scale analysis. Small circles represent individual

es.

endogram represents any significant association of cell count with age, gender,

ll subpopulation and immunoglobulin levels. Stars indicate significance of the

oglobulin levels. Regression line are included for visualization purposes.



Figure 2. Variation of Cell Levels and Composition in the Dutch

General Population

(A) Peripheral-blood white blood cell counts per ml blood (y axis) in 516

individuals (500FG cohort) (x axis).
Functional Genomics Project cohort [500FG] from the HGFP).

We observed substantial variation in total white blood cell

(WBC) counts (Figure 2A) and the levels of the lymphoid and

myeloid cell populations (Figures 2B and 2E) between individ-

uals. We then systematically tested the association of this varia-

tion with age, gender, and season.

Age Is AssociatedwithReduced Lymphoid but Increased

Myeloid Cell Levels

Aging plays a major role in shaping the immune profile

(LeMaoult et al., 1997; Shaw et al., 2013; Solana et al.,

2006). Using Spearman correlation, we observed consistent

correlation with age (64% of the cell subpopulations studied

are significantly correlated), both negative and positive. Aging

was significantly associated (FDR % 0.05, corrected for 73

tests) with a decrease in lymphoid immune cell levels (naive

T cells, B cell subsets) and with a concomitant increase in

myeloid immune cell levels of granulocytes, pro-inflammatory

non-conventional monocytes (CD14++CD16+), and intermedi-

ate monocytes (CD14+CD16+) and levels of proliferating

CD4+ regulatory T cells (Tregs) (Figure 3A; Table S2). To

show the robustness of age effect on immune traits, we

used a resampling. We randomly selected 90% of all the sam-

ples and tested for age effect on immune traits. We iterated

this 100 times and observed that 91% of traits showed

consistent results when compared with the original full dataset

in more than 70% of the sampling iterations (Figure S1). We

also compared the variation within cell counts in younger sub-

jects (lower quartile of age distribution in the 500FG cohort;

median age = 19 years) versus older subjects (upper quartile;

median age = 65 years). We observed significant differences

(p % 0.05) in the variations of CD4+ (CD45RA�CD27+)

effector T cell, NK cell (CD56+CD16�), and CD3+CD56+

T cell subpopulations (Figure S2A). Upon testing of associa-

tions between age and Ig levels, only IgG2 and IgA levels

showed a significant positive correlation age (FDR % 0.05,

corrected for seven tests). These observations support the

hypothesis that immune response shifts class in elderly indi-

viduals with de novo infections, with a restricted adaptive

response being replaced by an innate type of immunity (Le

Garff-Tavernier et al., 2010; Hazeldine et al., 2012; LeMaoult

et al., 1997; Solana et al., 2006).

Gender Is Associated with Different B Cell Subsets

and Ig Levels

We observed a significant increase (FDR% 0.05) in mature B cell

subsets, IgM-only B cells, plasmablast B cells, proliferating and

memory (CD45RA�) Treg cells, NK cell subsets, and IgM serum

levels in women as compared to men (Figure 3B; Table S2). The

significant association between higher levels of IgM-only B cells

(p = 0.0005) and increased serum IgM levels (p = 0.0002) in

women highlights the functional link between the cell type and

its product (Amadori et al., 1995). By using the resampling

approach, we observe that 87% of traits show consistent results

when compared with the original full dataset in more than 70%of
(B–E) Relative cell proportions (y axis) of monocytes, lymphocytes and

neutrophils (B), the lymphoid subpopulations (C), proliferating T cell subsets

(D), and B cell subsets (E). Samples are presented in the exact same order in

each figure.
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Figure 3. Age, Gender, and Season Are Modulators of the Immune Traits

Examples of significant associations (FDR % 0.05) between age (A), gender (B), or season (C) and cell counts or immunoglobulin levels.
the iterations (Figure S1). In men, we observed an increased level

of effector and effector memory T cells (Figure S2C) and a

reduced level of IgG4 and IgA with nominal p values < 0.01

(see also ter Horst et al.)

Because we observed a significant effect of gender on

different B cell and Ig levels, we investigated whether this effect

was due to a difference in gender-associated hormone levels.

We first tested whether the immune cell counts correlated

with hormone levels in the 500FG cohort, but found no statisti-

cally significant correlation (Figure S2B). As expected, we

observed lower testosterone concentrations in women than in

men (Figure S2C). Although testosterone has been shown to

inhibit Ig levels of human peripheral-blood mononuclear cells

in vitro (Kanda et al., 1996), our analysis indicates that higher

testosterone levels in women are significantly associated with

increased IgG levels. Moreover, we observed a significant as-

sociation of hydroxyprogesterone with IgG levels in women

(Figure S2C). Hydroxyprogesterone levels vary with menstrual

cycle, being highest in the luteal phase and lowest prior to
2478 Cell Reports 17, 2474–2487, November 22, 2016
ovulation. In men, this hormone showed less variation in serum

levels.

Seasonal Variation Affects Both Cellular and Humoral

Responses

We found a consistent seasonal effect on immune cell subpop-

ulations, with 67% of the measured cell types showing a signif-

icant association with season (FDR % 0.05). B cell subsets

were the most consistently affected, with all B cell subpopula-

tions showing significantly higher levels in winter. Treg, NK(T),

and classical monocytes (CD14++CD16�) were also signifi-

cantly higher in winter, while granulocytes, proliferating CD8+

T cells and CD4+ effector memory cells showed a higher peak

during the summer months (Figure 3C; Table S2). IgG, IgG1,

and IgG4 levels were also higher in winter, with nominal

p values < 0.01 (see also ter Horst et al., 2016). By using the re-

sampling approach, we observed that 94% of traits show

consistent results when compared with the original full dataset

in more than 70% of the iterations (Figure S1). Altogether, these

results point to an important role for environmental factors that



vary with season (e.g., allergies and viral infections) in the regu-

lation of the magnitude of both the cellular and the humoral

immune response (Dopico et al., 2015).

Genetic Factors Explain a Large Proportion of the
Variation in Immune Traits
We observed that cell counts show high variability across indi-

viduals and that this variation could be partially ascribed to

age-, gender-, or season-related factors. To further explore

this inter-individual variation, we estimated the proportion of

variance explained by genome-wide SNPs for each of 73 inde-

pendent cell types after controlling for age, gender, and seasonal

variation. As shown in Figure 4A and Figure S3, the majority of

immune cell population variation is explained by non-heritable

rather than heritable influences. The proportion of immune cell

variation that was explained by genetics varies for each cell sub-

population. It was significantly higher for the 29 T cell immune

traits as compared to the 27 B cell immune traits (median of

30% versus 18%, respectively; Student’s t test, p % 0.05).

Effector memory and effector CD4+ and CD8+ and CD4+ Tregs

were also strongly influenced by genetic factors (Figure S3). The

seemingly interdependent IgD+IgM+ and IgD+IgM� B cell pop-

ulations showed completely opposing heritability estimates

(Figure S3), likely reflecting the heterogeneity of the IgD+IgM+

population, which consists of both T-cell-dependent naive

CD27� B cells and presumed T-cell-independent CD27+ mem-

ory B cells (Weller et al., 2004). Within the innate leucocytes,

more than 50% of the variance in transitional monocytes

(CD14+ CD16+), NK cells (CD3�CD56+), and NK-bright cells

(CD56++CD16�) was explained by genetic variation. There is lit-

tle contribution of genetics to the variation of granulocyte levels.

Notably, 50% (± 20%) of the variance in IgM can be explained

using genotype information. For the remaining Igs, we did not

identify any contribution of genetics to the variance (Figure S3).

Mapping of QTLs in the 500FG Cohort Identifies Eight
Cell Count QTLs
To identify the genetic variants determining cell counts and Ig

levels, we mapped ccQTL and Ig level QTLs (IgQTLs) using

genome-wide SNP genotype data. After controlling for the effect

of age, gender, and season, we identified eight independent

genome-wide significant ccQTLs specific for three cell types:

T cells (five ccQTLs), B cells (two ccQTLs), and NK cells (one

ccQTL) (Figures 4B and 4C; Table 1 and Table S3). Four of these

ccQTLs have been reported before (Table 1, Figures 4A–4D),

providing validation for our analytical approach (Orrù et al.,

2013; Roederer et al., 2015). The other four ccQTLs have not pre-

viously been associated to immune traits. One of these B cell

ccQTL SNPs was also associated to Ig levels, although not at

genome-wide significance (rs62433089, p < 5e�8) (Figure S4F).

The higher numbers of T cell ccQTLs compared to B cell ccQTLs,

when combined with our finding that a greater proportion of the

variance in T cells (but not B cells) can be explained by genetics,

would suggest a stronger genetic component for T cell immunity

when compared to B cells. Furthermore, we also found that the

IgG1 level is suggestively associated with a B-cell-specific

ccQTL (rs10277809, p % 0.001), implying a shared regulation

of B cell and certain Ig levels in blood.
TheMYO1B Locus on Chromosome 7 Is Associated with
B Cell Levels
We found a B-cell-specific ccQTL (rs10277809, chromosome 7)

(Figures 4B and 4C; Table 1) that showed a genome-wide sig-

nificant association with three B cell subpopulations (CD24dim

CD38dim, IgM+-only, and IgM-only memory IgD� IgM+ CD27+

B cells) (Figures 5A and 5B). To explore the biological role of

the MYO1B locus, we mapped expression QTLs (eQTLs) by us-

ing RNA-seq data from peripheral-blood cells of 629 healthy in-

dividuals from the Lifelines Deep (LLDeep) cohort (Tigchelaar

et al., 2015). We observed that SNP rs10277809 affects the

expression levels of both lncRNA RP4-647J21 and the

MYO1G protein-coding gene (Figure 5C). This further supports

our finding that this ccQTL is associated with the abundance of

peripheral B cell subsets in human peripheral blood. Co-

expression analysis and pathway predictions using over

10,000 RNA-seq samples collected from public databases

(Fehrmann et al., 2015) show a significant enrichment of

B-cell-related functions for both MYO1G and RP4-647J21

(Figure 5D).

PDE4A Locus on Chromosome 19 Affects T Cell Levels
We found a T-cell-specific ccQTL, rs280499 on chromosome 19,

that (Figures 4B and 4C; Table 1) particularly associated with

CD8+ CM CD45RO+ CD27+ cells (Figures 5E and 5F). We then

mapped cis-eQTLs for SNP rs280499 and found its effect on

expression levels of PDE4A (Figure 5G). PDE4A encodes the

protein phosphodiesterase 4A and has been implicated in

T cell differentiation (Peter et al., 2007). PDE4A hydrolyses cyclic

AMP, which modulates a variety of cellular responses to extra-

cellular stimuli, including regulating lymphocyte proliferation

and the biosynthesis of IL-2. Because PDE4A plays a role in in-

flammatory processes, it is therapeutically targeted in the treat-

ment of a number of immune-mediated diseases (Mazur et al.,

2015).

Shared Genetics between Immune Traits and
Immune-Mediated Diseases
Three out of our eight ccQTLs have been previously associated

with immune-mediated diseases (Table 1). In particular,

rs1801274, which is a ccQTL formultiple cell types, is associated

with several auto-immune diseases (Table 1; Figure S4A),

including ulcerative colitis and Kawasaki disease, and has also

been replicated in previous studies (Orrù et al., 2013; Roederer

et al., 2015). On chromosome 19, the SNP rs2164983 associated

to NK cells (Table 1) has been previously reported to be a risk

factor for atopic dermatitis (Paternoster et al., 2011). Further-

more, ccQTL rs280499 overlaps with ImmunoBase regions

associated with immune-mediated diseases such as multiple

sclerosis and rheumatoid arthritis (https://immunobase.org/

studies/). In addition, we make use of ccQTLs and IgQTLs at a

suggestive significance threshold (p < 1e�5) and genome-wide

association study (GWAS) catalog SNPs known to influence sus-

ceptibility to various diseases (Figure 6). Interestingly, SNPs that

affect T cells levels are also enriched for SNPs associated to

auto-inmmune and inflammatory diseases. In contrast, ccQTLs

that affect B cells are enriched for SNPs associated with al-

lergy-related diseases (Figure 6).
Cell Reports 17, 2474–2487, November 22, 2016 2479
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Figure 4. The Genetics of Cell Counts and Immunoglobulin Level Variation in a General Population

(A) Violin plot representing the distribution of the percentage of variance explained by genetics for the immune traits. A total of 29 T cell subsets versus 27 B cell

subsets were analyzed (mean percentages of variance explained by genetics of 29.5 versus 17.7, respectively; Student’s t test, p % 0.05).

(B) Combined Manhattan plot of all cell types. Red dots mark genome-wide significant associations (p % 5e�10). Immune cell types with the strongest asso-

ciation are indicated.

(C) Overview of the association of multiple genomic loci (ccQLTs) and immune cell types. Darkest colors indicate genome-wide significant ccQTLs, while

divergence represents the direction of ccQLT effect.
DISCUSSION

The HFGP project was initiated to better understand the varia-

tion of the immune landscape of human beings and to identify

targets for personalized treatment interventions. To explore the
2480 Cell Reports 17, 2474–2487, November 22, 2016
determinants of variation in T and B lymphocytes and Ig levels,

we tested the association between these immune traits and

both heritable factors and non-heritable factors, such as age,

gender, and seasonality, in the HFGP 500FG cohort of healthy

volunteers.



Table 1. List of Eight Independent Genome-wide Significant Cell Count QTLs

SNP Chr.

Base-Pair

Position

ccQTL

p Valuea Cell Type Name No.b Type Replicated in

Candidate

Genec
Functional

Annotation

Disease

SNPs

rs1801274 1 161479745 5.60e�25 CD4+ naive

CD45RO- CD27+

20 16/T cells Roederer et al., 2015

Orrù et al., 2013

FCGR2Ad

HSPA7d
missense KD, UC, SLE, IBD

rs72744884 2 241782823 2.20e�9 CD4+ EM

CD45RO+ CD27�
1 T cell – KIF1A – –

rs153414 5 153748732 3.60e�8 CD4+ T cells 4 T cell Roederer et al., 2015 GALNT10d intronic –

rs10277809 7 44948953 2.80e�8 IgM-only B cells

(CD24+ CD38+

CD27+ IgM+)

2 B cell – RP4-647J21d

MYO1G

ZMIZ2d

– –

rs2707213 12 6899181 1.30e�9 DP

(CD4+ CD8+)

3 T cell Orrù et al., 2013 CD4d intronic –

rs7403546 15 87871288 2.30e�8 class non-switched

memory

(IgM+ CD38+ CD27+)

1 B cell – AGBL1 – –

rs2164983 19 8789381 2.70e�8 NK bright

(CD56++ CD16�)

2 NK Roederer et al., 2015 ACTL9 – AD

rs280499 19 10489606 5.70e�9 CD8+ CM CD45RO+

CD27+

2 T cell – PDE4Ad – MS, CD, T1D,

RA, UC, IBDe

Abbreviations are as follows: EM, effector memory; KD, Kawasaki disease; UC, ulcerative colitis; SLE, systemic lupus erythematosus; IBD, inflammatory bowel disease; AD, atopic dermatitis;

MS, multiple sclerosis; CD, Crohn’s disease; T1D, type 1 diabetes; RA, rheumatoid arthritis; JIA, juvenile idiopathic arthritis.
ap value from a linear regression model after correcting for age, gender, and month of collection.
bThe number of additional cell subpopulations showing a nominal p value % 1 3 10�6 at this SNP.
cPredicted candidate genes based on eQTL analysis and/or close proximity with the ccQTL.
dGenes with significant cis-eQTL based on �600 RNA-seq samples from peripheral blood.
eOverlapping with ImmunoBase curated regions.
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Figure 5. ccQTLs Associated with B and T Cell Subpopulations in Healthy Volunteers

(A) Locus zoom plot showing a B-cell-specific ccQTL in chromosome 7. Red boxes in the gene area denote a significant eQTL effect (nominal p value % 0.05)

using �600 RNA-seq samples from an independent Dutch LLDeep cohort.

(B) Box-plot of the top associated B cell subpopulation (IgM-only memory IgD� IgM+ CD27) with the genotype.

(C) eQTL box-plot of the lncRNA RP4-647J2.1, which shows a high co-expression pattern with MYO1G, dotted red box in (A).

(D) Gene ontology enrichment analysis of co-expression genes using publically available RNA-seq data (�10,000) indicates that candidate gene RP4-647J21 is

involved in the regulation of B cell activation.

(E) Locus zoomplot showing a T-cell-specific ccQTL in chromosome 19. Red boxmarks the genewith a significant eQTL effect using the LLDeep cohort RNA-seq

data (�600 samples).

(F) ccQTL boxplot of the top associated T cell subpopulation (CD8+ CM CD45RO+CD27+).

(G) Box-plot of cis-eQTL of PDE4A using the LLDeep cohort RNA-seq data.
The abundance of circulating T cells appears to be influenced

more by genetics than the numbers of circulating B cells. This hy-

pothesis is based on our observation that a higher percentage of

variation is explained by genetics for T cells (�30%) than for B
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cells (<�18%) and on our identification of five T cell ccQTLs

versus only two B cell ccQTLs. Most B cell subsets (and Ig levels)

consistently showed seasonality effects, peaking during winter,

suggesting that environmental factors might be more important



Figure 6. Association of ccQTLs with Disease

(A) The percentage of auto-inflammatory-disease-, autoimmune-disease-,

and allergy-associated SNPs with B cell and T cell count QTLs (p % 1E-05).

(B) The percentage of disease-associated SNPs with cell count QTLs

(p % 1E�05).
in driving B cell count variation. This hypothesis is supported by

results of multi-dimensional scaling analysis, revealing a separa-

tion between B cells and other immune cell subpopulations.

Despite the impact of environmental cues on B cell counts, B

cell function is still affected by genetics. Moreover, only one type

of Ig showed a significant genetic component to its variation:

�50% of the proportion of variance in IgM levels was explained

by genetics, while none of the other Igs we measured showed

any genetic component. We also identified an IgM-specific

QTL but didn’t find QTLs for any of the other Igs that we investi-

gated. Both the IgM QTL and the ccQTL associated to IgM-only

B cells, and this may be representative for that part of the B cell

response that has innate-like features, such as the production of

natural antibodies by dedicated B cell types. In contrast, the

adaptive B cell response, featuring receptor editing and affinity

maturation, might be under more stringent environmental con-

trol, as previously reported in a study of the seasonal pathogen

influenza (Baumgarth et al., 1999).

Non-genetic factors such as age and gender have extensively

been associated with changes in immune profiles. Fluctuating

gender-associated hormone levels and the accumulation of

environmental factors, such as an increasing infection burden

with age, both leave a strong imprint on the nature and dynamics

of the immune response (LeMaoult et al., 1997; Shaw et al., 2013;

Solana et al., 2006). Notably, our results appear to support the

hypothesis that aging is associated with an overall decrease in

lymphoid immune cell levels and an increase in myeloid cell

types, as well as increased Treg activity. This suggests that im-

mune response type and regulation is altered toward a more

innate-type of immunity with age, as previously reported (Le
Garff-Tavernier et al., 2010; Hazeldine et al., 2012). In our current

study, we replicate a number of previously reported age-related

changes in the human immune system, such as depletion of

naive B cells and T cells and a concomitant increase of memory

B and T cells (LeMaoult et al., 1997; Shaw et al., 2013; Solana

et al., 2006). We also identify age-related changes in specific

cell subsets, such as monocyte subclasses, granulocytes, and

proliferating T cell populations, that were not reported before.

With regard to gender, we see overall higher immune cell

counts and Ig levels for women, with the notable exception of

effector/memory T cells, which are more abundant in men. The

significant correlation we observed between the higher levels

of IgM-only B cells and increased serum levels of IgM in women

could be explained by the functional link between these cell

types and overall serum Ig levels in humans (Amadori et al.,

1995). The enhanced antibody responses found in women

upon vaccination fits this profile (Butterworth et al., 1967; Rowley

and Mackay, 1969), as does the previously established positive

correlation between estrogens and IgM and IgG levels (Kanda

and Tamaki, 1999).

The generation of heterogeneous human memory T cell sub-

sets, and how they develop upon activation of naive T cells, is

a subject of intense research (Farber et al., 2014). Two develop-

mental models have been proposed. Either (1) memory T cells

arise directly from effector cells or (2) naive cells develop directly

into memory cells without effector stage transition (Restifo and

Gattinoni, 2013). In our unsupervised approach to study the in-

ter-relationship between cell types, we observed that naive

and central memory T cells co-cluster within the T cell cluster,

while effector and effector memory T cells co-cluster with innate

effector cells. Although we weren’t able to decipher the develop-

mental route of these T cell maturation stages, this differential

clustering of more quiescent naive and central memory T cells

versus innate effector-like effector and effector memory T cells

suggests clustering based on function. Meanwhile, the cluster

composed of plasmablast B cells also grouped the T helper

cytokine (Th2) subpopulation, and these two subpopulations of

immune cells have previously been functionally linked given

that they are increased in patients with IgG4-related disease

(Akiyama et al., 2015). Unfortunately, we weren’t able to find

any significant association between IgG4 levels and plasmablast

or Th2 T cells within the general population.

The generation and isotype switching of Ig-producing plasma

cells can be mediated in either a T-cell-dependent or a T-cell-

independent fashion. We found that CD4+ effector T cells

(CD27� CD45RA+) show a strong association with IgG levels,

implying a functional link between these cell types in humans,

which is in line with the finding that effective recall of antibody

responses requires the generation of memory B cells controlled

by T cell subsets (Kurosaki et al., 2015). We found a significant

positive correlation between IgM-only B cell counts and IgM

serum levels and a negative correlation between IgM serum

levels and IgD+IgM� B cells. IgM-only peripheral-blood lym-

phocytes are non-activated resting B cells that resemble

classical, class-switched memory B cells and express higher

levels of mRNA than naive B cells (Klein et al., 1997). Whether

this increase in transcription contributes to higher serum Ig

levels is still unclear.
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The proportion of variance explained by genetics per subpop-

ulation can be quite variable. NK cells display the highest per-

centage of variance explained by genetics. A similar positive

impact of genetics on NK cells was described previously (Roe-

derer et al., 2015). With respect to the effector memory and

effector T cells, high levels of variance explained by genetics

are in agreement with recent findings in twins (Brodin et al.,

2015). We also observed a genetic contribution to Treg counts,

which is in contrast to the study by Brodin et al. (2015). For the

majority of B cell subsets, with the exception of IgD+ IgM�
and transitional B cells, the variance in cell counts explained

by genetics was low (median < 18%). This result could suggest

that B cell immunity is more susceptible to environmental

cues, which is further exemplified by a prominent seasonal effect

on both B cell counts and Ig levels. Additionally, in a recent

vaccination cohort study, it was discovered that the inter- and

intra-individual variations in immune response before and after

vaccination can be influenced by age and gender, which also

corroborates our findings (Frasca et al., 2012; Tsang et al., 2014).

Identifying ccQTLs associated with genomic regions of rele-

vance to disease provides insight into disease etiology. We iden-

tifiedeight ccQTLs, four ofwhichwerenot reportedbefore. Those

specific B cell subpopulations (which had a ccQTL effect) have

not been studied before in the context of the general population.

A multi-omics approach combining cell count data, genomics,

and transcriptomics was applied to identify the functional and

clinical relevance of the ccQTLs. Given the comprehensive anal-

ysis of B cell subpopulations, we identified eQTL-effects on

MYO1G expression and on the expression of a neighboring

lncRNA.MYO1G has previously been implicated in B cell biology

and blood cell numbers in a mouse model (Maravillas-Montero

et al., 2014). Together, these results suggest the involvement of

MYO1G in the active regulation of B cell levels in humans. The

lncRNA might or may not be involved in regulation of MYO1G

expression (Quinn and Chang, 2016). Furthermore, we identified

a T-cell-specific ccQTL in the PDE4A locus that modulates its

expression. The fact that PDE4A is a common therapeutic target

for immune-mediated diseases (Mazur et al., 2015) further sup-

ports an immune-associated role for our ccQTLs.

There are some drawbacks to the approach that we have used

for our current study. A limitation of our and similar studies (Bro-

din et al., 2015; Carr et al., 2016; Orrù et al., 2013; Roederer et al.,

2015) is that circulating immune cells are used and do not repre-

sent the full landscape of human immunity. Strong differences in

immune cell composition have been reported between human

peripheral blood, bonemarrow, spleen, and lymph nodes (Peters

et al., 2013). However, obtaining samples of lymphoid organs in a

cohort of healthy individuals is not feasible for ethical and prac-

tical reasons. Moreover, given the sample size of our study, the

standard error on the calculation of percentage of explained

variance by genetics per trait can be substantial (Yang et al.,

2010). Finally, in this study we were unable to set a discovery-

replication scheme for the immune trait QTL mapping due to

the limited sample size. Despite these drawbacks, we were

able to identify a differential contribution of genetic versus envi-

ronmental factors on lymphocyte subpopulations, we confirmed

previously reported ccQTLs, and we identified ccQTLs for B cell

and T cell subpopulations.
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In conclusion, we assessed the influence of genetics, age,

gender, and seasonality on cell count variation, Ig levels, and

their interrelationship in healthy volunteers participating in the

HFGP. Our findings indicate that T cell immunity has a stronger

genetic imprint than B cell immunity, while the latter might be

driven by environmental factors. We also found eight genome-

wide significant loci associated to cell levels, four of which

were not reported previously. Moreover, we were able to link

immune cell count QTLs to GWAS SNPs associated with im-

mune-mediated diseases. Within the HFGP 500FG cohort, three

complementary studies focus on a broader understanding of the

variability in human cytokine responses. ter Horst et al. (2016)

identified host and environmental factors that contribute to vari-

ation of cytokine responses, while Li et al. (2016) and Schirmer

et al. (2016) mapped 17 new genetic variants and microbiome

factors, respectively, that explain variability of cytokine re-

sponses (Li et al., 2016; Schirmer et al., 2016). Like immune

cell counts and Ig levels, cytokine responses were influenced

by age and gender (ter Horst et al., 2016), and cytokine re-

sponses also revealed annual seasonal dependencies (ter Horst

et al., 2016). Together, these different HFGP 500FG studies pro-

vide important resources for understanding the human immune

response. Future studies using the HFGP cohorts will focus on

assessing the effect of other factors (e.g., microbiome, infection,

and immune-mediated inflammatory disease) on the variation of

immune cell counts and function. These studies will contribute to

the goal of precision medicine in infections and inflammation by

allowing for more accurate predictions of disease status and

better treatment efficacy.

EXPERIMENTAL PROCEDURES

Ethics Statement

The HFGP study was approved by the ethical committee of Radboud Univer-

sity Nijmegen (no. 42561.091.12). Experiments were conducted according to

the principles expressed in the Declaration of Helsinki. Samples of venous

blood were drawn after informed consent was obtained.

Population Cohorts

The study was performed in a cohort of 516 healthy individuals of Western-Eu-

ropean ancestry from the HFGP (500FG; for inclusion criteria and further

description see http://www.humanfunctionalgenomics.org).

Analysis of Immune Cell Composition and Humoral Components in a

Healthy Dutch Population

We measured myeloid and lymphoid immune cell levels by 10-color flow

cytometry (Table S4) and serum Ig (sIg) concentrations by fluorescence

enzyme immunoassay (Immunocap) in 516 Dutch individuals ofWestern-Euro-

pean descent, aged 18 to 75 years, recruited over the years 2013–2014 as part

of the 500FG study within the HFGP (http://www.humanfunctionalgenomics.

org). We focused on a set of 73 manually annotated immune cell subpopula-

tions and seven different classes of Igs (Figure S5). To minimize biological

variability, cells were processed immediately after blood sampling and typi-

cally analyzed within 2–3 hr. Cell populations were gated manually (see

Supplemental Experimental Procedures for details).

Flow Cytometry and Data Analysis

Cells were analyzed within 2–3 hr after sample collection on a 10-color Navios

flow cytometer (Beckman Coulter) equipped with three solid-state lasers

(488 nm, 638 nm, and 405 nm). Calibration of the machine was performed

once a week, and little adjustment to the machine setting had to be made

during the inclusion period of the study. Data were then analyzed using Kaluza

http://www.humanfunctionalgenomics.org
http://www.humanfunctionalgenomics.org
http://www.humanfunctionalgenomics.org


software version 1.3 (Beckman Coulter). The hierarchical gating strategy is

illustrated in Figures S6 and S7. See Supplemental Experimental Procedures

for details on cell processing, reagents, gating, and analysis.

Serum Ig and Hormone Levels

See Supplemental Experimental Procedures.

Genotyping, Quality Control, and Imputation

Volunteers from the 500FG cohort were genotyped using the Illumina Human

OmniExpress Exome-8 v1.0 SNP chip. The genotype was called with Opticall

0.7.0 using the default settings, excluding samples with a call rate % 0.99.

Variants with Hardy-Weinberg equilibrium (HWE) % 0.0001, call rate % 0.99,

and minor-allele frequency (MAF) % 0.001 were also filtered out. Ethnic

outliers were identified by multi-dimensional scaling plots of samples merged

with 1000 Genome data and excluded from further analysis. A total of 482

samples and 518,980 variants passed quality control. For further imputation

of this dataset, we aligned the strands and variant identifiers to the reference

Genome of the Netherlands (GoNL) dataset using Genotype Harmonizer. The

phasing was performedwith SHAPEIT2 version 2 with the GoNL as a reference

panel. Finally, the data were imputed using IMPUTE2 with the GoNL as the

reference panel. Only imputed variants with a quality score R 0.8 were used

for further cell count quantitative loci mapping.

Statistical Analysis

All statistical analysis were performed using the statistical programming lan-

guage R (R Core Team, 2012). Cell counts were normalized using an inverse

rank transformation (IRT) algorithm, shown in Table S5. Ig levels were normal-

ized using a log2 transformation. To properly ascertain cell count correlations,

we first corrected the normalized cell counts for age, gender, and seasonal ef-

fects using a linear model. Associations were then calculated using the

normalized and corrected cell counts via Spearman correlation analysis and

clustered using these coefficients as distance by an unsupervised hierarchical

clustering approach. The same methodology was applied to calculate the as-

sociation between cell counts and Igs. Significancewas declared after multiple

testing correction (FDR % 0.05) (Benjamini and Hochberg, 1995). The

Euclidean distances used on the multi-dimensional scaling between cell types

were obtained based on the Spearman coefficients described above (Ven-

ables and Ripley, 2002).

See Supplemental Experimental Procedures for details regarding statistical

analysis of the association of cell counts or Ig levels with age, gender, and

season.

Cell Count and Ig QTL Mapping

For 442 individuals, absolute cell count data and genotype information was

available. For 407 individuals, Ig levels and genotype data were available.

We calculated parental and grandparental percentages, which are defined

as the percentage of a certain cell type within the subpopulation of cells

from which it was isolated. This was performed for cell counts of all measured

cell types because it has been shown that these percentages tend to reduce

inter-experimental noise and therefore increase statistical power for QTL

mapping (Orrù et al., 2013). Absolute cell counts and percentages were

transformed by IRT (Orrù et al., 2013). Ig levels were normalized using a log2

transformation. We then corrected the IRT cell counts and log2 Ig values using

a linear model correcting for age, gender, and month of sample collection.

Lastly, QTL mapping was performed using a linear model as implemented in

the Matrix-eQTL R package (Shabalin, 2012), where we associated immune

traits to genotype information. A p value < 5e�6 was considered to be

genome-wide significant.

Genome-wide Significant cis-eQTL Analysis

We used the LLDeep cohort (Tigchelaar et al., 2015), composed of 627 healthy

Dutch volunteers, to test for possible eQTL effects of the ccQLTs. For LLDeep,

both gene expression data (obtained through RNA-seq) and genotype infor-

mation are available. We mapped cis-eQTLs for each identified ccQTL within

a 1 Mb window. For this, we fitted a linear model using TMM-normalized

(Robinson et al., 2010) expression data to the genotype information. Given

that the number of tests depended on the ccQTL genomic location for each in-
dependent locus, a threshold of FDR (%0.05) was used, depending on the

number of tests performed in that specific window.

Estimation of Cell Count and Ig Level Heritability

To estimate the proportion of variance explained by genetics, we used a linear

mixedmodel implemented in the GCTA tool (Yang et al., 2010). We applied it to

each of the cell counts and percentages and to Ig levels using the complete set

of genetic variants quantified in our cohort. The immune traits were pre-pro-

cessed as described for QTL mapping using IRT cell counts and log2 Ig values

corrected for age, sex, and month of sample collection. Given the relatively

small sample size, the confidence intervals for heritability estimation can be

wide (Zaitlen and Kraft, 2012).

Raw Flow Cytometry Data

The accession number for the raw flow cytometry data and analyzed data files

are available upon request to the authors (http://hfgp.bbmri.nl). A pipeline is

available regarding further collaborations and access to additional data and

samples.

SUPPLEMENTAL INFORMATION

Supplemental Information includes Supplemental Experimental Procedures,

seven figures, and five tables and can be found with this article online at

http://dx.doi.org/10.1016/j.celrep.2016.10.053.

AUTHOR CONTRIBUTIONS

M.G.N. and C.W. coordinated the recruitment of the cohorts. H.J.P.M.K., I.J.,

Y.L., V.K., M.G.N., and C.W. conceived and directed the study with input from

all authors. R.A.-G., Y.L., I.J., and H.J.P.M.K. analyzed and interpreted the

data. M.A.S. and L.F. provided the computational framework for the study.

P.C.M.U., R.G.M., E.v.R., B.v.C., M.O., S.S., M.J., R.J.X., M.Z., A.E.v.H.,

F.S., and R.T.N. contributed to the data collection. R.A.-G., Y.L., H.J.P.M.K.,

I.J., V.K., S.W., and M.G.N. wrote the manuscript with input from all other au-

thors. M.G.N., L.A.B.J., C.W., H.J.P.M.K., and I.J. acquired funding.

ACKNOWLEDGMENTS

The authors thank all volunteers from the 500FG cohort of the HFGP for par-

ticipation in the study. We thank Jackie Senior and Kate Mc Intyre for

editorial assistance. The HFGP is supported by a European Research Council

(ERC) Consolidator grant (3310372) and an IN-CONTROL CVON grant

(CVON2012-03) to M.G.N., an ERC Advanced Grant (FP/2007-2013/ERC

grant 2012-322698) and a Spinoza Prize (NWO SPI 92-266) to C.W., a Dutch

Digestive Diseases Foundation (MLDS) grant (WO11-30) to C.W. and V.K., a

European Union Seventh Framework Program (EU FP7) grant (TANDEM;

HEALTH-F3-2012-305279) to C.W. and V.K., a Netherlands Organization for

Scientific Research (NWO) VENI grant (863.13.011) to Y.L., a CONACYT-

I2T2 scholarship (382117) to R.A.G., and a scholarship from Brazil’s Science

Without Borders program (11920/13-0) to P.C.M.U. This study made use of

data generated by the Genome of the Netherlands project funded by NWO

(grant no. 184021007), which was made available as a Rainbow Project of

BBMRI-NL.

Received: May 13, 2016

Revised: August 11, 2016

Accepted: October 20, 2016

Published: November 3, 2016

REFERENCES

Akiyama, M., Suzuki, K., Yamaoka, K., Yasuoka, H., Takeshita, M., Kaneko, Y.,

Kondo, H., Kassai, Y., Miyazaki, T., Morita, R., et al. (2015). Number of

Circulating Follicular Helper 2 T Cells Correlates With IgG4 and Interleukin-4

Levels and Plasmablast Numbers in IgG4-Related Disease. Arthritis Rheuma-

tol. 67, 2476–2481.
Cell Reports 17, 2474–2487, November 22, 2016 2485

http://hfgp.bbmri.nl
http://dx.doi.org/10.1016/j.celrep.2016.10.053
http://refhub.elsevier.com/S2211-1247(16)31473-5/sref1
http://refhub.elsevier.com/S2211-1247(16)31473-5/sref1
http://refhub.elsevier.com/S2211-1247(16)31473-5/sref1
http://refhub.elsevier.com/S2211-1247(16)31473-5/sref1
http://refhub.elsevier.com/S2211-1247(16)31473-5/sref1


Amadori, A., Zamarchi, R., De Silvestro, G., Forza, G., Cavatton, G., Danieli,

G.A., Clementi, M., and Chieco-Bianchi, L. (1995). Genetic control of the

CD4/CD8 T-cell ratio in humans. Nat. Med. 1, 1279–1283.

Baumgarth, N., Herman, O.C., Jager, G.C., Brown, L., Herzenberg, L.A., and

Herzenberg, L.A. (1999). Innate and acquired humoral immunities to influenza

virus are mediated by distinct arms of the immune system. Proc. Natl. Acad.

Sci. USA 96, 2250–2255.

Benjamini, Y., and Hochberg, Y. (1995). Controlling the False Discovery Rate:

A Practical and Powerful Approach to Multiple Testing. J.R. Stat. Soc. 57,

289–300.

Brodin, P., Jojic, V., Gao, T., Bhattacharya, S., Angel, C.J.L., Furman, D.,

Shen-Orr, S., Dekker, C.L., Swan, G.E., Butte, A.J., et al. (2015). Variation in

the human immune system is largely driven by non-heritable influences. Cell

160, 37–47.

Br€uggemann, M., Williams, G.T., Bindon, C.I., Clark, M.R., Walker, M.R., Jef-

feris, R., Waldmann, H., and Neuberger, M.S. (1987). Comparison of the

effector functions of human immunoglobulins using a matched set of chimeric

antibodies. J. Exp. Med. 166, 1351–1361.

Butterworth, M., McClellan, B., and Allansmith, M. (1967). Influence of sex in

immunoglobulin levels. Nature 214, 1224–1225.

Carr, E.J., Dooley, J., Garcia-Perez, J.E., Lagou, V., Lee, J.C., Wouters, C.,

Meyts, I., Goris, A., Boeckxstaens, G., Linterman, M.A., et al. (2016). The

cellular composition of the human immune system is shaped by age and

cohabitation. Nat. Immunol. 17, 461–468.

Cho, J.H., and Feldman, M. (2015). Heterogeneity of autoimmune diseases:

pathophysiologic insights from genetics and implications for new therapies.

Nat. Med. 21, 730–738.

Coffman, R.L., Lebman, D.A., and Shrader, B. (1989). Transforming growth

factor beta specifically enhances IgA production by lipopolysaccharide-stim-

ulated murine B lymphocytes. J. Exp. Med. 170, 1039–1044.

R Core Team (2012). R: A language and environment for statistical computing.

http://R-project.org/

Dopico, X.C., Evangelou, M., Ferreira, R.C., Guo, H., Pekalski, M.L., Smyth,

D.J., Cooper, N., Burren, O.S., Fulford, A.J., Hennig, B.J., et al. (2015). Wide-

spread seasonal gene expression reveals annual differences in human immu-

nity and physiology. Nat. Commun. 6, 7000.

Farber, D.L., Yudanin, N.A., and Restifo, N.P. (2014). Human memory T cells:

generation, compartmentalization and homeostasis. Nat. Rev. Immunol. 14,

24–35.

Fehrmann, R.S.N., Karjalainen, J.M., Krajewska, M., Westra, H.-J., Maloney,

D., Simeonov, A., Pers, T.H., Hirschhorn, J.N., Jansen, R.C., Schultes, E.A.,

et al. (2015). Gene expression analysis identifies global gene dosage sensitivity

in cancer. Nat. Genet. 47, 115–125.

Frasca, D., Diaz, A., Romero, M., Phillips, M., Mendez, N.V., Landin, A.M., and

Blomberg, B.B. (2012). Unique biomarkers for B-cell function predict the

serum response to pandemic H1N1 influenza vaccine. Int. Immunol. 24,

175–182.

Hazeldine, J., Hampson, P., and Lord, J.M. (2012). Reduced release and bind-

ing of perforin at the immunological synapse underlies the age-related decline

in natural killer cell cytotoxicity. Aging Cell 11, 751–759.

Kanda, N., and Tamaki, K. (1999). Estrogen enhances immunoglobulin

production by human PBMCs. J. Allergy Clin. Immunol. 103, 282–288.

Kanda, N., Tsuchida, T., and Tamaki, K. (1996). Testosterone inhibits immuno-

globulin production by human peripheral blood mononuclear cells. Clin. Exp.

Immunol. 106, 410–415.

Klein, U., K€uppers, R., and Rajewsky, K. (1997). Evidence for a large compart-

ment of IgM-expressing memory B cells in humans. Blood 89, 1288–1298.

Kurosaki, T., Kometani, K., and Ise, W. (2015). Memory B cells. Nat. Rev.

Immunol. 15, 149–159.
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