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ABSTRACT

A new method for computing homogenized assembly neutron transport cross sections and dif-
fusion coefficients that is both rigorous and computationally efficient is proposed in this paper. In
the limit of a homogeneous hydrogen slab, the new method is equivalent to the long-used, and
only-recently-published CASMO transport method. The rigorous method is used to demonstrate
the sources of inaccuracy in the commonly applied “out-scatter” transport correction. It is also
demonstrated that the newly developed method is directly applicable to lattice calculations per-
formed by Monte Carlo and is capable of computing rigorous homogenized transport cross sections
for arbitrarily heterogeneous lattices. Comparisons of several common transport cross section ap-
proximations are presented for a simple problem of infinite medium hydrogen. The new method
has also been applied in computing 2-group diffusion data for an actual PWR lattice from BEAVRS
benchmark.

Key Words: Transport Cross Section, Diffusion Coefficient, Transport Correction, Monte
Carlo, Cumulative Migration Area

1. INTRODUCTION

Many deterministic nuclear reactor calculations utilize transport-corrected-P0 transport or diffusion
theory to model neutron transport within fuel assemblies and nearby reflecting regions. The accuracy
of such core models is inherently tied to approximations made in obtaining multi-group transport cross
sections or diffusion coefficients. While classic reactor physics textbooks [1, 2] offer insights and plau-
sible arguments for computing transport cross sections and diffusion coefficients, there appears to be
no rigorous theory for, nor quantification of errors introduced by, these approximations. Consequently,
the computational accuracy of both heterogeneous (e.g. explicit fuel pin) and nodal (e.g. homogenized
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fuel assemblies) core calculations is often seriously compromised by inaccurate transport approxima-
tions, and little guidance is available in the literature to assist code developers and analysts in choosing
the appropriate transport approximation.

1.1. Background

The generation of multi-group cross section data for LWR analysis usually starts by identifying some
characteristic “lattice” — be it a pin-cell, a fuel assembly, or a collection of fuel assemblies. For each
such lattice, a very-fine-group transport calculation (e.g., 50 – 10,000 groups) is performed to obtain
the neutron flux and reaction rate distributions within the lattice. Unless this transport calculation
explicitly models anisotropic scattering, an approximation for transport-corrected-P0 cross sections for
each nuclide must be introduced before the multi-group lattice transport calculation can be performed.

In addition, lattice reaction rates and fluxes are used to compute energy-condensed and/or spatially-
homogenized transport cross sections (or diffusion coefficients) for use in downstream multi-group
(e.g., 2 – 100 groups) core calculations. Here, additional approximations are required to compute the
appropriate transport cross section that preserves some selected characteristic of the lattice calculation.

All production lattice physics codes [3–6] make such approximations, often without substantial justifi-
cation. Moreover, the most useful of these approximations are often considered to be proprietary, and
the literature remains largely silent on useful methods. One example might be that of the transport-
corrected-P0 methods that have been employed in CASMO for more than 40 years. Only recently
has Herman [7] published details of the method used in CASMO to generate transport-corrected-P0

cross sections for 1H in LWR lattices. Herman was able to compute CASMO’s “exact” transport cross
section that matched continuous-energy Monte Carlo (MC) neutron leakages (integrated into 70 fine
energy groups) from a slab of pure hydrogen. This transport correction is markedly different from that
computed using the “micro-balance” argument [8] which produces the classic “out-scatter” approxi-
mation — with its transport-to-total ratio of 1/3 for purely isotropic center-of-mass neutron scattering
with free gas 1H model. CASMO developers recognized long ago that this definition of transport cross
section produced excellent eigenvalues for small LWR critical assemblies with large neutron leakages,
while the classic out-scatter approximation produced errors in eigenvalue as large as 1000 pcm. In
addition, SIMULATE-3 nodal code developers observed (more than 30 years ago) that the CASMO
transport cross section also produced two-group diffusion coefficients that eliminated radial power tilts
observed in large 4-loop PWR cores when using the out-scatter approximation.

1.2. Approximation Methods For Transport Cross Sections

Many approximation methods for computing diffusion coefficients has been investigated in the past 40
years, among which the “out-scatter” approximation based on the “micro-balance” argument is prob-
ably the most often used one, assuming that the in-scatter rate of neutrons from energies E ′ to E will



approximately balance the out-scatter rate of neutrons fromE to all other energies. The approximation
can be represented as

∫ ∞
0

Σs1(~r, E ′ → E) ~J(~r, E ′)dE ′ ≈
∫ ∞

0

Σs1(~r, E → E ′) ~J(~r, E)dE ′ (1)

in which Σs1(~r, E ′ → E) is P1 scattering cross section from E ′ to E at ~r, and ~J(~r, E ′) is the neutron
current of energy E ′ at ~r. Based on this approximation, the multi-group transport cross section can be
derived to be the expression in Equation (2).

Σos
tr,g = Σt,g − µgΣs0,g (2)

In the above equation, Σos
tr,g is the transport cross section from the out-scatter approximation, Σt,g is total

cross section, Σs0,g is P0 scattering cross section, µg is the average scattering cosine of neutron, and
all the subscript g denotes the group index. The spatial dependence on ~r is omitted in most equations
in this paper for a clearer expression and generally all the terms refer to the same spatial position.

Since in the perspective of neutrons in nuclear reactor physics, the elastic scattering with 1H can be
seen as purely isotropic in center-of-mass system, µg can be calculated to be 2/3 when thermalization
is not taken into account. This induced an easier way of computing diffusion coefficients by taking µg
to be 2/3 for all groups, which can be shown as

Σas
tr,g = Σt,g −

2

3
Σs0,g (3)

in which Σas
tr,g is the transport cross section from the “asymptotic” out-scatter approximation.

Another approximation method makes the hypothesis that neutron current can not exceed the scalar
flux and it uses scalar flux spectrum instead of neutron current spectrum for weighting P1 scattering
cross sections [9]. The transport cross section computed by this method as shown in Equation (4) can
be called “flux-limited” transport cross section.

Σfl
tr,g = Σt,g −

G∑
g′=1

Σs1,g′→gφg′

φg
(4)

In Equation (4) φg is scalar flux in group g and Σs1,g′→g is the P1 cross section of scattering from group
g′ to group g.



Actually according to P1 theory, the in-scatter can be treated exactly with given multi-group cross
sections. In recent research on transport correction for hydrogen [10], a 70-group library for 1H bound
in water molecules was generated using NJOY [11], including a 70-group P0 and P1 scattering matrix
with thermal scattering effect (using s(α, β) tables for light water molecules). Using the group data,
the multi-group P1 equations can be solved numerically to get the results of flux and current spectrum.
Then transport cross section can be computed directly following the definition as

Σin
tr,g = Σt,g −

G∑
g′=1

Σs1,g′→g ~Jg′

~Jg
(5)

in which Σin
tr,g is the transport cross section with in-scatter calculated directly and the result of this

method will be used as reference for comparison with other approximation methods.

1.3. A Comparison among Different Approximation Methods

To get a sense of the performance of different approximation methods mentioned in the previous Section
1.2, a simple model with pure hydrogen uniformly distributed in infinite medium can be used as a test
problem. The results of transport cross sections Σtr,g and diffusion coefficients Dg computed from
the three approximation methods, including the out-scatter (os) approximation, the asymptotic (as)
approximation and the flux-limited (fl) approximation are compared with those from the in-scatter
(in) method. The ratios of Σtr,g to Σt,g for different group structures in 2/4/10/70 groups are plotted in
Figure 1.

In the 70-group and 10-group cases the flux-limited approximation method can match the in-scatter
results well in the high energy and thermal range, but deviates obviously for the middle energy range
from 100 eV to 1 MeV. While the out-scatter approximation fails to match in high energy range and the
asymptotic method only work for a small energy range. When it comes to few groups such as 4 groups
or 2 groups, all of the approximation methods have a big deviation from the reference results. A more
direct comparison of diffusion coefficients in 4 and 2 groups is illustrated in Figure 2. In the cases of 4
groups and 2 groups, all of the diffusion coefficients of group 1 from the approximation methods have
a deviation as big as 40% lower than the reference results.
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Figure 1. Comparison of multi-group ratio of Σtr,g to Σt,g. (Upper-left: 70 groups; upper-right: 10
groups; bottom-left: 4 groups; bottom-right: 2 groups.)

2. ANALYTICAL DERIVATION AND NUMERICAL RESULTS OF TRANSPORT
CORRECTION RATIO

2.1. Analytical Derivation of Transport Correction Ratio

The analytical transport correction ratio for an isotope with atomic mass A can be derived in infinite
homogeneous medium with the assumption of only down scatter. In this case the diffusion coefficient
can be derived from the second P1 equation [12], as shown in Equation (6).

D(E) =
1

3Σt(E)

[
1 +

3

φ(E)

∫ E
α

E

Σs1(E ′ → E)D(E ′)φ(E ′)dE ′
]

(6)
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Figure 2. Comparison of multi-group diffusion coefficients Dg. (Left: 4 groups; right: 2 groups.)

In Equation (6) α = (A− 1)2/(A+ 1)2. The differential P1 scattering cross sections can be expressed
as

Σs1(E ′ → E) = µ̄
Σt(E

′)

(1− α)E ′
=

2

3A

Σt(E
′)

(1− α)E ′
. (7)

Through the relationship between diffusion coefficient and transport cross section D = 1/(3Σtr),
Equation (6) can be re-written as

1

3Σtr(E)
=

1

3Σt(E)

[
1 +

3

φ(E)

∫ E
α

E

2

3A

Σt(E
′)

(1− α)E ′
1

3Σtr(E ′)
φ(E ′)dE ′

]
(8)

The transport correction ratio is defined as f(E) = Σtr(E)
Σt(E)

. The ratio can be derived as Equation (9)
by rearranging Equation (8) .

f(E) =

[
1 +

2

3A(1− α)φ(E)

∫ E
α

E

φ(E ′)

f(E ′)E ′
dE ′
]−1

(9)

According to slowing down theory, flux density at energy E can be approximated as

φ(E) =

∫ Emax

E

χ(E ′)

ξΣs(E ′)E ′
dE ′ (10)



in which χ(E ′) is the source density at energy E ′ from Watt fission spectrum, and ξ = 1 + α
(1−α)ln(α)

.

It should be noted that in the expression in Equation (9) f(E) is dependent on the integration of f(E ′),
so before solving for f(E) numerically, the value of f(Emax) should be set to unity based on the phys-
ical meaning of transport correction. The analytical result of transport correction ratio is computed by
solving Equation (9) numerically and compared with the methods in Section 1.2 in Figure 3. The ana-
lytical result is not expected to match the in-scatter method perfectly for the approximated flux density
in Equation (10), but the two results show consistent trend over energy, especially for the decreasing
part before reaching the asymptotic ratio of 1/3.
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Figure 3. Comparison of multi-group transport correction ratio by approximation methods V S. ana-
lytical result in down scatter energy range.

3. CUMULATIVE MIGRATION METHOD FOR DIFFUSION COEFFICIENTS

3.1. Theory of Migration Area

In diffusion theory [2], migration area is defined as in Equation (11) and can be proved to be equal to
one-sixth of the average square of the flight distance from the position where a fast neutron is born to
the position where it is absorbed as a thermal neutron.

M2 = L2 + τth (11)



In Equation (11) M2 is migration area, L2 is diffusion area and τth is neutron age of fast neutrons to
thermal. Diffusion area is defined as

L2 =
D

Σa

(12)

where D is diffusion coefficient and Σa is absorption cross section.

Essentially τth is equal to one-sixth of the average square of the flight distance from the position where
a fast neutron is born to the position where it is moderated to a thermal neutron, and L2 is equal to one-
sixth of the average square of the flight distance from the position where a neutron becomes thermal
to the position where it is finally absorbed.

3.2. Multi-group Form and Cumulative Group Quantities

The definition of diffusion area in Equation (12) is considering a neutron from the position where it
becomes thermal, in which case absorption is the only cause for the neutron’s disappearance when
regarding the thermal energy range as a single group. Similarly, if analyzing from the position where
the fast neutron is originally born to the position where it is removed from a given energy range, in
other words, the “partial” migration area when the neutron’s energy is higher than a certain value E0,
the equation will also be justified as

M2(E > E0) =
D(E > E0)

Σr(E > E0)
(13)

in which M2(E > E0) is the cumulative migration area before the neutron’s energy becomes lower
than E0, D(E > E0) is the diffusion coefficient for the energy range of [E0, Emax], and Σr(E > E0)
is the removal cross section for the energy range of [E0, Emax], which will include not only absorption,
but also net down scatter to a energy lower than E0.

Actually from the perspective of energy group, the energy range of [E0, Emax] can be seen as a “broad”
group whose top boundary always starts from Emax. In a multi-group structure, if E0 is the bottom
boundary of group g, then the “broad” group can be seen as a “cumulative group” from group 1 to
group g. The concept of cumulative group is illustrated in Figure 4, in which the group structure is
shown in a pyramid frame with cumulative group g and cumulative group (g + 1) shown in shadowed
parts. Based on this concept, Equation (13) can be re-expressed in the form of cumulative group as

(M c
g )

2 =
Dc
g

Σc
r,g

(14)



Figure 4. Illustration of the concept of “cumulative group”. (Left: cumulative group g, right: cumu-
lative group (g + 1).)

where the superscript c indicates that all the quantities in this equation are for the cumulative group g,
that is to say, the “broad” group from group 1 to group g.

Equation (14) provides a scheme for computing cumulative multi-group diffusion coefficients through
the theory of cumulative migration area, using the one-sixth relationship with the average square of
neutron’s flight distance, as shown as

(M c
g )

2 =
1

6
(rg)2 (15)

where rg is the distance from the position where the neutron is originally born to the position where
it is removed out of the cumulative group g, which is a quantity can be tallied directly in MC code.
Then group-wise diffusion coefficients Dg can be backed out by “unfolding” cumulative multi-group
diffusion coefficients Dc

g using flux-weighting as shown in Equation (16).

Dc
g =

g∑
g′=1

Dg′φg′

g∑
g′=1

φg′
(16)



4. IMPLEMENTATION OF CUMULATIVE MIGRATION AREA TALLY IN OPENMC

In recent years, with the advance in computer technology, it has been investigated widely to utilize
MC codes for generating homogenized lattice few-group cross section data for deterministic full core
simulation, such as MCNP [13], Serpent [14], etc. In Serpent, firstly a continuous-energy Monte Carlo
simulation is run to produce micro-group cross sections for B1 equations, then the B1 equations need
to be solved for critical spectrum, which will be used to re-homogenize the cross sections into leakage-
corrected few-group constants. The generation of micro-group cross sections needs more tally and
computation work, which will make this method computationally inefficient.

In the homogenized few-group cross section data, the method for generating reliable diffusion coeffi-
cients poses a major challenge for the implementation in MC codes, since a rigorous theory for com-
puting diffusion coefficients and transport cross sections is yet to be developed. Based on the theory
in Section 3, the implementation scheme in OpenMC [15] is introduced in this section.

4.1. Tally Scheme for Cumulative Migration Area

In the implementation of the Cumulative Migration Method (CMM) for computing multi-group dif-
fusion coefficients and transport cross sections in OpenMC, the crucial tally is cumulative migration
area. The main events that change neutrons’ energy and flight path is scatter, while the loss of neu-
trons is mainly resulted from absorption. Both down and up scatter should be taken into account in the
cumulative migration area tally.

The tally scheme for cumulative migration area (M c
g )

2 and cumulative number of neutrons tallied N c
g

in one reaction (scatter or absorption) is shown in Figure 5. In the figure of flowchart, g is the group
index of the neutron before a reaction, g′ is the group index of the neutron after a scatter reaction, G is
the total number of groups, and r2 is the square of the distance from the neutron’s birth position to the
position of the reaction.

This tally scheme can be used for any group structure and scores can be tallied directly into the desired
few group structure, which avoids additional micro-group tally for B1 spectrum calculation as in Ser-
pent. In the implementation only one more score of cumulative migration area (M c

g )
2 is added to MC

code, which enables it to be both flexible and computationally efficient.

4.2. Phantom Tracking in Finite Medium

The cumulative migration area is simple to tally in infinite medium, however, in practice most simula-
tions with MC code are in finite geometry. Even though there are many simulations in infinite medium,
the actual practice is using finite geometry with reflective boundary conditions. But according to the
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Figure 5. Flowchart of tally scheme for cumulative migration area (M c
g )

2 and cumulative number of
neutrons N c

g for reactions of absorption and scatter.

theory of cumulative migration area, when a neutron undergoes a reflection on any reflective boundary,
the actual position used in tally and computation should be the position as if there were no boundaries,
which can be called the “phantom” position. Thus for problems with finite geometry and reflective
boundary conditions, phantom tracking for neutrons should be established for the tally of cumulative
migration area.

The phantom tracking for rectangular cuboid geometries has been implemented in OpenMC. The es-
sential idea of the implementation is to utilize three reflectionflags for each Cartesian axis, then the



flight direction as well as position of a neutron’s phantom at any reaction can be inferred by these three
flags. The cumulative migration area is tallied based on the positions of the phantom, instead of the
real neutron.

5. SIMULATION RESULTS AND ANALYSIS

Several simulation problems has been completed using OpenMC with the added feature of computing
diffusion coefficients and transport cross sections using CMM. In this section, the results of a simple
problem of pure hydrogen and a real assembly from BEAVRS benchmark are presented.

5.1. Infinite Medium of Hydrogen

A simple problem of pure hydrogen in infinite medium is modeled and simulated for a comparison of
the diffusion coefficients and transport cross sections computed using CMM and those of the in-scatter
method in Section 1.3.

The model is built as a rectangular cuboid geometry with all reflective boundary conditions. According
to the analysis of phantom tracking in Section 4.2, the cuboid can be in any size and will give the same
results. In addition, the transport correction ratio should be independent of density of the problem,
which has also been tested.

The simulation result is compared with in-scatter method in Figure 6. The transport correction ratio
computed from OpenMC with CMM matched perfectly with in-scatter method, indicating that the
transport cross section as well as diffusion coefficients from these two methods also agree very well.
That is to say, CMM actually generates the same multi-group diffusion data as the data calculated
directly by solving P1 equations.

5.2. 2-group Diffusion Data for a BEAVRS Assembly

5.2.1. Configuration of the Assembly

To further evaluate the effect of the Cumulative Migration Method, it also has been used to generate
2-group diffusion data for a real assembly from BEAVRS benchmark [16]. The assembly simulated is
the 2.4 wt-% 235U with 12 burnable absorber pins, which recently has also been used by Serpent for
computing 2-group constants [17]. The configuration of this assembly can be seen in Figure 7.
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Figure 7. Configuration of the BEAVRS assembly of 2.4 wt-% 235U with 12 burnable absorber pins.

5.2.2. 2-group Diffusion Data

The 2-group constants generated by OpenMC using CMM is compared with those generated by CASMO
and Serpent as shown in Table I1. The group constants compared in the table include diffusion coeffi-

1For the results from Serpent and OpenMC, only the mean value of each parameter is listed in this table. The method of
computing uncertainty for cumulative group quantities is to be investigated in ongoing research. The results from Serpent
and OpenMC are computed with the same total number of neutrons.



cients (D1, D2), absorption cross sections (Σa1, Σa2), net-down scatter cross section (Σs,1→2), fission
neutron production cross sections (νΣf1, νΣf2), surface discontinuity factors (DF s

1 , DF s
2 ) and kinf

calculated using the 2-group data. The 2-group data generated by OpenMC with CMM in Table I is
closer to that of CASMO, especially for the diffusion coefficient of fast group.

Table I. 2-group constants for the BEAVRS assembly of 2.4 wt-% 235U with 12 burnable absorber pins
generated by CASMO, Serpent and OpenMC.

Parameter Serpent CASMO OpenMC

D1 1.397E+00 1.430E+00 1.426E+0
D2 3.933E-01 3.775E-01 3.992E-1
Σa1 8.906E-03 8.908E-03 8.919E-3
Σa2 8.380E-02 8.297E-02 8.408E-2
νΣf1 5.343E-03 5.371E-03 5.380E-3
νΣf2 1.019E-01 1.009E-01 1.019E-1
Σs,1→2 1.835E-02 1.804E-02 1.838E-2
DF s

1 9.947E-01 9.931E-01 9.929E-1
DF s

2 1.060E+00 1.061E+00 1.057E+0
kinf 1.01469 1.01323 1.01281

6. CONCLUSION

The Cumulative Migration Method (CMM) for computing homogenized lattice multi-group diffusion
data using Monte Carlo code is proposed in this paper. To overcome the shortcomings in various ap-
proximation methods for computing neutron transport cross sections and diffusion coefficients, which
have been in use for more than 40 years, the theory of cumulative migration area and its relationship
with transport cross sections and diffusion coefficients is developed for utilization to Monte Carlo tally
schemes.

This method has been implemented in OpenMC and several test problems have been simulated for
generating homogenized multi-group diffusion data. The results demonstrate that it is the P1 diffusion
coefficients, and not the B1 diffusion coefficients, that are totally consistent with diffusion coefficients
computed with CMM. This helps tremendously to settle the longstanding argument over the appropri-
ateness of the P1 and B1 models of diffusion coefficients.

Another distinct advantage of CMM is that no where does one have to make provisions for lattices
that have voids (many deterministic codes opt to spatially homogenize transport cross sections to avoid
singularities caused by voids and the energy collapse one over sigma transport to obtain an accurate
energy collapse). CMM handles void very naturally and no decisions are required regarding the proper
energy collapse.



In addition, one of the most significant accomplishment of CMM is that few group diffusion coefficients
and transport cross sections can be computed directly in the desired few group structure – without the
necessity of tallying fine group cross sections that are currently employed in Monte Carlo B1 or P1

spectrum calculations. These few group diffusion coefficients are exactly the same as those that are
tallied in fine energy group tallies and then collapsed to few groups. Consequently, CMM provides
tremendous simplifications of the tallies needed in Monte Carlo to compute accurate homogenized
lattice diffusion coefficients and transport cross sections.
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