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Abstract

Performance results are presented for a multi-threaded version of the
OpenMC Monte Carlo neutronics code using OpenMP in the context of
nuclear reactor criticality calculations. Our main interest is production
computing, and thus we limit our approach to threading strategies that
both require reasonable levels of development effort and preserve the code
features necessary for robust application to real-world reactor problems.
Several approaches are developed and the results compared on several multi-
core platforms using a popular reactor physics benchmark. Our main focus
is distilling a broad range of performance studies into a simple, consistent
picture of the performance characteristics of reactor Monte Carlo algorithms
on current multi-core architectures. Additionally, we speculate on the source
of the observed scaling bottlenecks in terms of the exhaustion of shared
hardware resources, and suggest programming approaches and strategies to
help overcome them.

Keywords: OpenMC OpenMP reactor analysis multi-core shared
memory Monte Carlo

1. Introduction

Monte Carlo (MC) neutral particle transport methods are critical for a
broad range of scientific and engineering domains. Some important exam-
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ples include the design, certification, and operation of nuclear reactors [1],
nuclear fusion [2], radiation shielding, weapons design, medical dosimetry
[3], and cloud radiation [4]. MC methods have a long history of successfully
adapting to leadership class computing architectures, including excellent
scalability on distributed memory platforms [5], innovative approaches for
efficient execution on vector machines [6], and more recently proof of prin-
ciple calculations for stripped down codes on GPGPUs [7].

For prototypical message-passing-based, distributed memory parallel ma-
chines built on scalar architectures, MC algorithms are typically formulated
using the classical history method, where particles are followed one by one
from birth to death. Since particles do not mutually interact and load bal-
ancing penalties are small, for many classes of applications this approach
has shown excellent performance, with current benchmarks achieving near
ideal scalability on up to one hundred thousand processing elements [5].1

Nonetheless, time to solution is still a critical bottleneck in applying
Monte Carlo robustly to many real world problems, and thus for the fore-
seeable future research will need to focus on techniques and programming
strategies to further reduce run time for a desired level of convergence. By
the same token, multi-threaded methods will need to be developed and
improved to achieve good performance even for smaller problems on com-
modity computing platforms. This is because both current and near-future
desktop and supercomputing systems will increasingly require applications
to expose greater levels of fine-grained parallelism to achieve good perfor-
mance. Indeed, it is expected that in the near future hundreds of cores per
node will be commonplace, even for commercial off-the-shelf technologies.
Making use of multi- and many-core hardware will involve identifying new
avenues for parallelism and scaling to far greater overall levels of concur-
rency than current practice.

However, even where algorithmic parallelism can be identified and ex-
posed, it is far from guaranteed that speedups will approach ideal levels
[9]. Multi-core memory hierarchies are far more complex and less scal-
able than typical distributed memory models. This often includes cache
coherency software for distributed L1-cache, including significant penalties
for false sharing on cache lines, shared higher levels of cache, and a shared

1Though not the focus of the current analysis, we do mention that in passing that
this success depends to a large degree on the node-by-node replication of data structures
that for reactor applications are too large to fit in node memory [8], thus significant work
remains on efficient data decomposition strategies for realistic reactor benchmarks.
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bus to main memory. Non-uniform memory architectures (NUMA) can
even further complicate performance, especially when application-friendly
programming models (e.g. OpenMP) have no mechanism to express data
locality. Thus, even where a high degree of algorithmic parallelism can
be formulated, it is often necessary to carefully construct data structures
and manipulate data layouts so as to circumvent potential bottlenecks and
maximize the likelihood of achieving good performance in practice (see e.g.
[9]).

While some of the most popular community MC codes (e.g. [10, 11, 12])
have experimented with on-node threading capability, and some anecdotal
knowledge on performance is shared spontaneously within the community,
we are not aware of any published work that attempts to systematically
elucidate the key issues and test the performance of MC methods on multi-
core architectures. In this work we carry out code modifications and an
associated set of numerical experiments designed to take a first step in this
direction.

Several approaches can be taken to carrying out such a study, on the
one extreme using more sophisticated coding strategies and deeper analy-
ses on highly stripped down "kernel" MC applications, and on the other
hand migrating a full-featured production code in the context of real-world
benchmark calculations. Each approach has its merits and will contribute in
part to the complex overall picture of multi-core performance of MC meth-
ods. In the present work we choose to follow the latter approach, adopting
the production OpenMC [13] code together with the OpenMP library to
thread the critical areas of the application and test on a modified version
of the popular Hoogenboom-Martin [8] reactor benchmark. We emphasize
that the analysis done here is thus of greatest relevance to nuclear reac-
tor analysis – specifically targeting classical calculations for the design and
optimization of reactor cores. While many of the conclusions are relevant
to a broader class of problems, reactor core analysis has unique require-
ments that result in performance profiles in some ways distinct from other
application domains. Details are described in the following section.

As a programming model the directive-based OpenMP threading frame-
work has limited semantics for parallelism and its performance can be highly
sensitive to compiler implementations, but it allows easy incremental paral-
lelism that greatly simplifies the migration of large production codes. Fur-
thermore, we argue that the parallelism expressed is extremely simple and
should be easily analyzable by any reasonably efficient OpenMP compiler,
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yielding code not too different from what is possible with high level, intru-
sive threading libraries.

2. Monte Carlo algorithm

2.1. Algorithms
At a high level and ignoring details of the complex treatment of physics

and geometry, the MC transport algorithm can be described very simply.
Let P = R3 × R+ × S2 × Z denote the set of particles (neutrons) uniquely
defined by a physical-space position x ∈ R3, energy E ∈ R+ , direction Ω ∈
S2 (where Sn denotes the n-sphere), and particle id I ∈ Z+. Furthermore,
let B ⊆ P denote a countable subset of particles referred to as a neutron
batch of size |B| = n. The steady-state fission source algorithm then iterates
over batches of particles (batch loop) and tracks them individually (particle
loop) through a sequence of collisions from birth to death (absorption).
Some absorption events will result in nuclear fission and the subsequent
release of additional particles, which then populate the new batch at the
next stage of the algorithm. Our primary focus in this analysis is steady
state calculations, in which case the number of particles is re-scaled so that
no particles are created or destroyed at each iteration of the batch loop. This
is the common strategy for handling eigenvalue problems in reactor analysis,
where the ratio of particles between batch iterations gives an estimate of
the growth rate (eigenvalue), and the problem is solved for the steady state
solution (the true eigenvalue is scaled to unity). This process is continued
until a reasonable convergence criterion is met (either on the eigenvalue or
spatial distribution, a detail which is not important for the present analysis).
A simple pseudo-code description of this algorithm is given in Algorithm
1 below where ν represents the number of new particles generated after
a given fission event, and the rescale operation denotes the resampling of
particles so that none are created or destroyed between batch iterations (to
simulate steady state behavior).

As shown in Algorithm 1, arguably the most natural approach to thread-
ing is to divide particle histories among threads – that is, each thread is
responsible for carrying out the tracking of a subset of particles in a batch.
We refer to this strategy in the present context as coarse-grained threading.
Coarse-grained threading mimics the typical strategy for carrying out dis-
tributed memory parallelism, where the particles in a batch are distributed
evenly among MPI processes (nodes) and key data structures, such as ge-
ometry, tallies, material and cross section data, are replicated across nodes.

4



Algorithm 1 Coarse-grained threading approach
initialize B
while not converged do
#pragma omp parallel for
for p ∈ B do

repeat
move(p)

until absorbed(p)
if fissioned(p) then
create ν new particles {p1, p2, · · · pν}
Bnext ← Bnext ∪ {p1, p2, · · · pν}

end if
end for
B ← rescale(Bnext)
test B, Bnext for convergence

end while

On a hybrid shared/distributed memory system (i.e. a cluster of multi- or
many-core nodes) this approach would simply subdivide the particles by
node in the regular manner, and then within each node further subdivide
by thread. In the former case the key data structures either need to be
replicated, the typical approach, or decomposed and accessed via explicit
message passing. The latter approach is not typical due to lack of locality
in access pattern. In the shared memory case decomposition is not neces-
sary, but various forms of contention in the shared memory hierarchy may
potentially erode scalability.

In Algorithm 1 the move(p) method advances a particle probabilistically
through a series of collisions until absorption and possible fission. In a
reactor core this includes potentially millions of material regions (e.g. when
doing depletion analysis) with hundreds of nuclides. Let J ∈ Z+ denote the
set of all nuclides and M ∈ Z+ denote the set of all material regions in the
reactor core (identified by some integer tag). Let the atomic density function
f : M × J → R denote the atomic density of a given nuclide in a given
material region, and let g : R3 → Z+ denote the material lookup function
– i.e. g selects the material region associated with a given particle position
xp ∈ R3. Finally, define a microscopic cross section table for nuclide j ∈ J
as an element of (R+)NE(j), where NE(j) denotes the number of tabulated
cross section energy levels for nuclide j. Then, Algorithm 2 represents the
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calculation of the macroscopic cross section, X(E), used to advance the
particle in the move() routine.

Algorithm 2 Fine-grained threading approach
m← g(xp)
#pragma omp parallel for
for j ∈ J do
X(E)← X(E) ∪ f(m, j)x(E)

end for

In Algorithm 2, the nuclide loop at each stage in the tracking of a par-
ticle actually involves not one but multiple reaction types (depending on
specifics of the application). For typical reactor applications with hundreds
of nuclides and several reaction types, we find that this nuclide loop typi-
cally consumes 80− 85% of the total simulation execution time. Thus, one
alternative approach, what we refer to as fine-grained threading in the cur-
rent context, involves threading the nuclide search as shown in Algorithm
2. Since the maximum number of nuclides in a region is typically sev-
eral hundred, this strategy is ultimately limited to relatively modest core
counts. When considering many-core architectures, however, we may choose
to implement a hybrid on-node approach that combines both the coarse and
fine-grained strategies. Thus we still consider this a worthwhile approach
to pursue for both the near as well as e.g. exascale computing platforms.

3. Approach to multi-threading OpenMC

OpenMC is an open source Monte Carlo neutron transport code recently
developed at MIT and capable of performing calculations on arbitrary 3D
geometries with continuous-energy cross-sections. It was written with a
focus on scalable algorithms for leadership-class supercomputers and has
demonstrated weak scaling up to hundreds of thousands of processors on
ALCF’s Intrepid and OLCF’s Jaguar supercomputers [5]. The codebase is
written in Fortran 2008 with parallelism provided via MPI. For the purposes
of this study, the OpenMC code was modified using OpenMP directives to
implement the coarse-grained, fine-grained, and hybrid coarse-fine on-node
threading strategies described in the previous section. Since OpenMC is a
relatively mature code with a relatively high degree of complexity aimed
at doing real reactor benchmark problems (e.g. the implementations of
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physics interactions, geometry, and tally filters), we chose to use a directive-
based threading approach as a first step to minimize code modifications.
An overview of the key code changes to implement coarse grained, fine
grained, and hybrid threading is given below. When completed the modified
version of OpenMC was run through a comprehensive test suite to verify
correctness.

3.1. coarse-grained threading
The key aspects of coarse-grained threading include: 1) threading the

main particle loop using the omp parallel for construct – note that the
schedule setting (dynamic, static, or guided) should have some effect on
load imbalances among threads, a topic which is discussed in the following
section; 2) marking key global mutable data structures as threadprivate
– specifically the microscopic cross section cache, the macroscopic cross
section cache2, and the fission bank, and 3) marking all tally increments
as atomic operations during the tracking of a particle. The most common
operation, cross-section data table lookups, is a read-only operation and
thus inherently thread safe. The cross section arrays are therefore kept
in shared memory. In addition, there were a moderate number of code
changes required to overcome shortcomings in the interaction of OpenMP
with advanced Fortran constructs, particularly Fortran pointers.

Regarding the threadprivate variables, the microscopic and macroscopic
cross section arrays, which store respectively the per nuclide and total cross
section value for a given collision, are updated per particle per interaction
and occupy very small amounts of memory; choosing to make them thread-
private is a straightforward decision as it eliminates the possibility of cache
line conflicts (real or false) at negligible additional storage cost. The fission
bank is more subtle. It is updated continuously during the tracking of a
particle and records all necessary information each time a fission event oc-
curs. Since it is updated sequentially each time a thread samples a fission
event, keeping it in global memory requires synchronizing access. However,
as the scheduling of threads in non-deterministic, such an approach will in
general yield different orderings for different executions (even with identical
random number seed). In order to maintain strict (bitwise) reproducibility
of results (a common requirement with reactor licensing authorities), it was

2Here, cache refers to a temporary copy associated with a single interaction of an
individual particle. This is a convenient coding strategy since cross section values need
to be interpolated from large lookup tables on a per interaction basis
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necessary instead to implement threadprivate versions of the fission bank
and explicitly synchronize each thread’s local bank into a global fission bank
at the end of each batch. This obviously increases the memory footprint
but was observed to have little impact on performance.

The specific choice of tally events and filters depends to a large extent
on the particular calculation. For depletion analysis, which is one of the
most critical applications to the reactor designer, we have estimated else-
where an aggregate 1 TB is necessary for robust reactor analyses [14]. For
other reactor (and non-reactor) applications the requirements may be much
more modest. In all cases, though, the tallies require simply incrementing
counters for the range of events of interest. One then has the choice of
creating local counters and aggregating at the end of each batch, or keeping
global counters and synchronizing with atomic annotations of the counter
increments. After experimenting with both and seeing negligible impact
on performance (tally increments are a tiny fraction of overall performance
time), we have adopted the latter approach for simplicity of code structure.

3.2. fine-grained threading
The fine grained threading approach as described in Algorithm 2 is im-

plemented in a straightforward manner by using a parallel for construct
with a reduction operation on the nuclide loop. Since this loop is called
with extremely high frequency (once per collision per particle), one early
observation is that the overhead in creating the parallel region and carrying
out the reduction nullifies any performance gain when the particle under-
goes an interaction in the non-fuel regions of the reactor (i.e. which contain
relatively few isotopes and thus the number of loop iterations is small).
Thus, using the OpenMP if clause, the threaded region was limited to cases
where the interaction took place within the fuel. We point out this still
occupies a significant fraction of the total computational time for a broad
class of applications. Further details are discussed below.

3.3. hybrid threading
Hybrid threading was considerably more challenging to implement within

the OpenMP framework. While OpenMP version 3 contains support for
nested threaded regions, the semantics are extremely limited and make it
awkward to express the required relationships between the variables, par-
ticularly with advanced Fortran constructs.

The key for OpenMC threading was creating threadprivate variables
at nesting level 1 (coarse grained threading across particles) that behaved
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as global variables at nesting level 2 – variables that were private to each
particle but global for all nuclides at each particle interaction. When global
variables are used and thus marked as threadprivate, they are considered
threadprivate at all nesting levels and cannot be marked with a shared
construct in the nested region. To overcome this shortcoming required non-
trivial internal code changes.

One further issue involves the lack of flexibility within the nested threaded
region. Ideally one would like to allow threads to be assigned to the region
dynamically to accelerate particle tracking when particles were interacting
with fuel regions and, rather than remain idle, carry out particle track-
ing when they were otherwise free. Such a dynamic threadpool model was
not possible to express in OpenMP and thus limited the possible available
performance benefit of this approach.

4. Numerical experiments

4.1. Overview
A broad set of numerical experiments were conducted. Of these, we re-

port on a small subset that aim to give a consistent picture of the key scaling
issues. Since our interest is production computing for reactor applications,
we do not focus on the details of architecture-specific optimizations. While
a number of tuning strategies were explored on particular platforms, for the
purposes of the present analysis we take a general view of modern multi-core
architectures and aim to identify potential scalability and the source of any
common bottlenecks that might erode performance.

All of our numerical experiments involve the Hoogenboom-Martin (H-M)
[8] reactor criticality benchmark. We run H-M in two different configura-
tions generally representative of early and late phases of a depletion cycle
–what we refer to as small H-M, with 60 nuclides in the fuel region, and
large H-M, with 360 nuclides in the fuel region. For all experiments the rel-
evant unit of measure is the tracking rate, expressed in number of particles
tracked per unit computational time. For each experiment we use 10 batches
with 50, 000 total particles per batch. These figures were selected by trial
and error to ensure that the batch sizes are large and that the results are
not influenced by initialization time – adding additional particles or batches
does not change the computation rate or any of the other conclusions of this
analysis. While we ran a large range of tally configurations, the multi-core
scaling impact of additional tallies were negligible. Thus, with no effect on
our main conclusions the results reported here use so called inactive batches,
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Computer name Challenger Breadboard Knight Chimera
Institution ANL ANL ANL UDel
Processor IBM PowerPC 450 Intel Xeon X5550 Intel Xeon X5680 AMD Opteron 6164HE

Clock speed 850MHz 2.66GHz 3.3 GHz 1.7GHz
Cores/CPU 4 4 6 12
CPUs/node 1 2 4 4
Cores/node 4 8 24 48

Memory/node 2GB 16GB 20GB 64GB
L1 Cache 32KB private 256KB private 32KB private 128KB private
L2 Cache 2KB private 1MB private 256KB private 512KB private
L3 Cache 8MB shared 8MB shared 12MB shared 12 MB shared

Table 1: Summary of computing platforms used in the study

where minimal tally information is computed and the goal is to converge the
source distribution. Again, the relatively low cost of tallies is a consequence
of the dominance of the macroscopic cross section loop, a characteristic of
steady state reactor physics calculations. For other classes of applications
tally rates may represent a non-trivial fraction of overall performance, and
the conclusions drawn may differ slightly.

4.2. Platforms
We tested the benchmarks on four platforms: the University of Delaware’s

Chimera cluster, Argonne National Laboratory’s Blue Gene/P supercom-
puter, ANL’s Knight cluster, and ANL’s heterogeneous platform Bread-
board. In each case, OpenMC was deployed on a single node and used a
variable number of cores with one OpenMP thread per core. Each node of
the Chimera cluster consists of 4 AMD Opteron 12-core processors which
share 64GB of RAM (4 GB DIMMS). A single compute card of the Blue
Gene/P Challenger system contains 4 PowerPC 850MHz cores and 2GB of
memory. The login node of Knight, on which the performance tests were
completed, is supported by 4 Intel 6-core Xeon X5680 processors. For the
Breadboard cluster, a node consists of 2 Intel Xeon 4-core 2.66GHz pro-
cessors which share 16 GB of RAM. The technical specifications of each
platform are summarized in Table 1.

4.3. Preliminary tests
Before studying scalability and relative execution times, we carried out a

preliminary set of studies aimed at baselining our performance expectations.
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The main goal was to a priori identify any scalability bottlenecks so that we
could have a basis for determining what constitutes "good" performance. In
the following section each potential scalability bottleneck is identified and
discussed in the context of these preliminary results.

1. Amdahl’s Law
A strong scaling upper bound is set by the fraction of time spent in
the threaded region. The well known Amdahl’s law points out that
an algorithm is limited to a speedup proportional to 1

1−P , where P
is the percentage of time in the execution of the parallel portion of
the algorithm. Traditional supercomputers circumvent this problem
using the memory added with each processing element to increase the
problem size in proportion to the degree of parallelization[15], but for
the multi-core shared memory nodes in this study aggregate on-node
memory does not increase with the number of threads. Thus, we must
evaluate the fraction of time spent in the coarse-grained loop described
in Section 1.

Over a range of simulation and parameter values, we find that the
particle tracking loop accounts for between 98− 99% of the total ex-
ecution time. Thus, at least for the thread counts typical on modern
multi-core architectures, coarse grained threading performance should
not be limited by Amdahl’s law. We do note however that in the near-
future many-core platforms are expected to change this scenario and
require further parallel treatment of the outer-loop region.

For fine-grained threading the situation is less ideal. We find that
for the large H-M about 80− 85% of the total execution time is spent
in the threaded region, but only about 50 − 60% for the small H-M
benchmark. Thus, we expect diminishing returns beyond a relatively
small number of threads. We nonetheless study this approach given
the extreme simplicity of implementing it, its potential for quick payoff
on small core counts, and its potential usefulness in a hybrid approach.

2. Thread overhead
In a SIMD model the overhead cost of entering and exiting parallel
regions can potentially compete with the speedup gained from paral-
lelization. We tested this in depth for the coarse-grained approach and
found that, even for much smaller benchmark problems than the cur-
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rent ones, the price of thread creation is completely negligible. This
is not a surprise given that we leave/enter the coarse region only after
50,000 particles are tracked, which at minimum takes several seconds
of computation time. Thread overheads are typically reported in tens
of nanoseconds and are thus expected to have no detrimental impact
on performance in the present case.

For the fine-grained approach, the threaded region is entered once
per particle per interaction (or change in material region). On aver-
age this amounts to approximately forty times the frequency of the
coarse-grained approach but is still found to be less than one percent
penalty for the thread counts of interest. Thus, we discount thread
overhead as a potential obstacle to achieving multi-core scalability.

3. Load balancing
Uneven work distributions among threads in the absence of load re-
balancing is another potential obstacle to achieving good on-node
scaling. Intuitively, given an initial equal distribution of thousands
of particles per thread, we might expect statistical fluctuations to
be smoothed out resulting in roughly equal total tracking time per
thread. This, in fact, is the major advantage of particle-based over
physical-space domain decomposition approaches[16], where load im-
balances can significantly erode performance on fine spatial grids.

We tested this hypothesis for both the coarse and fine-grained ap-
proaches. In the former case, we found that the maximum load im-
balance for all of the tested configurations were 5 − 10% of the total
tracking time. We were able to remove this penalty almost entirely
by using schedule(dynamic) construct in OpenMP, with an empirically
determined optimal value of 5. All of the tests reported here are based
on this form of dynamic scheduling.

For fine-grained threading, it is not surprising that load imbalance
penalties were observed in all cases to be less than two percent. This
follows from the fact that identical operations are being performed
for each sub-batch of nuclides, the only imbalance occurring when the
nuclide count is not divisible by the number of threads.
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4. Synchronized code in threaded region
Atomic operations in the coarse-grain threaded region are required to
increment tally counters for a broad range of events. These increment
operations overall represent only a very small fraction (< 1%) of the
total execution time, but their impact on overall performance still
needs to be measured directly. To do so we directly compared tim-
ing results both without synchronization and with all tally operations
removed. Doing so allowed us to verify that the total performance
impact at worse was in the range of 1− 2%. Thus we discount this as
a major source of performance loss. In the fine-grained case, all write
operations are to thread local variables and thus synchronization is
not required.

5. Scalability of memory subsystem
Though aspects of our testbed multi-core architectures vary signifi-
cantly in their details, they are all characterized by bottlenecks in their
memory subsystems that are not present on typical distributed mem-
ory platforms. Details are discussed in the following section, but our
main areas of concern are threefold: all systems have distributed L1
caches, thus both real and false sharing of cache lines can potentially
cause significant bottlenecks to scalability; since a significant amount
of time is spent in random data lookup of large cross-section tables,
contention in higher-level caches, which are shared at some level on all
of our test architectures, becomes a potential scalability bottleneck;
finally, the main memory bus is also shared (in different ways), and
thus we must explore the possibility of exhausting bandwidth as we
increase the number of threads. None of these issues is simple to di-
agnose robustly, but we cannot rule them out as possible sources of
performance degradation compared to, e.g. distributed memory appli-
cations, whose extreme scalability has been demonstrated on a range
of applications [17]. This is discussed further in the next section.

4.4. observed timings
4.4.1. coarse-grained threading

Using the above preliminary analysis as a basis of interpretation, we
measure the performance of the two benchmark problems on our target ar-
chitectures. We first present a basic birds-eye overview of results on the
target platforms before focusing on the Xeon platform in more depth in the
following section. The results presented are pared down from a very broad
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range numerical experiments covering a wide range of parameters, includ-
ing different compilers and compiler versions, different compiler optimiza-
tion options, different cross section lookup techniques (creating a unionized
energy grid vs. binary searches for each interaction), and using a range of
techniques to ensure minimal chance of real and false sharing of L1 cache
lines. The presented results are not necessarily chosen to portray best-case
scalability numbers but rather are typical across our wide range of tests.
Indeed, while performance does fluctuate across machines, compilers, and
other test parameters, roughly similar results are surprisingly persistent
(and consistent with qualitative comparisons in the community). Depar-
tures from these "typical" results and a deeper discussion of underlying
causes are discussed in the following section.

Figures 1 and 2 each show the tracking rates per thread respectively
for the large and small H-M benchmark. The tracking rate measures num-
ber of particles tracked per unit processor time and is the most natural
application-level measure of performance for MC codes. When the tracking
rates are presented per thread count as shown, a horizontal line indicates
ideal scaling, and deviations from ideal scaling are thus more readily visible
compared to other approaches.

For the small H-M benchmark in Figure 1, single core tracking rates
ranged from approximately 250 on a Blue Gene core to almost 4500 par-
ticles/sec on the a single Intel Xeon X5680 core. This discrepancy is due
in part to the factor of four disparity in clock speeds, but we emphasize
that our main focus in this analysis is multi-core scalability, and thus we
did not analyze the additional source of absolute single-core performance
degradation (though we did verify this tracking rate on a wide range of pa-
rameter optimization levels and code optimizations). While the PowerPC
performance was poor in an absolute sense, performance on all four cores
on a BG/P node achieved 97% of ideal scaling, indicating negligible im-
pact of the shared aspects of the memory subsystem on the performance of
each core. A general trend that was observed across all of our studies is an
inverse relationship between single core performance and scalability. For ex-
ample, turning off optimization for the Intel compiler yielded much poorer
wall clock times but scalability of 85-90% across all available cores,while
the optimized results presented show significant deviations from ideal scal-
ing even for several cores. We currently have no definitive explanation for
this behavior, though some of the key issues are addressed in the following
section.
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Figure 1 has several other noteworthy characteristics. The 8-core Xeon
X5550 node achieves approximately 80% of ideal scaling when all 8 cores
are used, but the performance of the 24-core Xeon X5680 node erodes more
rapidly with core count, with approximately 61% efficiency on 8 cores and
only 33% on all 24 cores. The Opteron 48-core node shows more com-
plex behavior but surprisingly good performance of 65% scalability using
the 48 cores. Large H-M (Figure 2) shows qualitatively identical behavior
with perhaps one exception – the 24-core Intel scales non-trivially better –
achieving close to 50% efficiency on the full machine.

4.5. hybrid threading
We present our sample timings for the fine-grained/hybrid threading

cases on the 8-core Xeon node. Hybrid tests were run on the full range of
platforms, but little extra insight is gained beyond what is evident from the
Xeon results, thus we limit our discussion to only that platform. Also, the
large H-M benchmark is the most natural candidate for speedup with hybrid
threading. Thus, we limit our analysis only to this benchmark problem.

The raw timing results are shown in Table 2, which gives results for
all possible combinations of coarse/fine threads (i.e. those whose product
is less than eight) . Thus, the upper right hand entry is identically the
fine-grained case, and the bottom left entry is the coarse-grained timing.
Our main interest is to ascertain whether fine grained threading, or any
combination of coarse-fine threading, can produce better results than the
same number of threads dedicated entirely to the coarse-grained approach.
Our results indicate that this is not the case – though the hybrid results
are competitive and generally lie within 20% of the corresponding coarse
grained values, in all cases the greatest efficiency is achieved by dedicating
all threads to the coarse-grained loop. The fine-grained limit was the worse
performing, with the coarse-grained threads exhibiting a tracking speed
twice that of the fine-grained threads for the full eight threads.

The hybrid threading results demonstrate the subtleties that Monte
Carlo developers must contend with when programming shared memory
models. The level of granularity at which threads operate can have a signif-
icant impact on performance returns. While this study shows that thread
resources are best devoted to the coarsest level of parallelism to avoid these
performance limitations in this instance, the hybrid threading model gives
us two insights. First, it clearly shows the evolution of the performance
of the code as threads move higher in the looping constructs. Second, it
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proves that nested threads can still provide speedup, if other application
considerations force a division of thread allocation.
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Figure 1: Coarse grained threading performance of OpenMC on small H-M bench-
mark.

4.6. possible sources of performance degradation
The results presented in the previous section include diverse multi-core

architectures with a broad range of maximum thread counts, core inter-
connect technologies, and cache characteristics. The approach here was to
take an abstract view of each node as providing a collection of independent
cores capable of independently carrying out the instructions required for
particle tracking. As was discussed in the previous section in some depth,
the particle tracking algorithm itself is nearly perfectly scalable algorith-
mically – any significant departures from ideal scalability must come from
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Figure 2: Coarse grained threading performance of OpenMC on large H-M bench-
mark.

the inability of the memory sub-system to deliver the data to the cores in
a scalable manner. We have viewed OpenMP as an adequate programming
model for this very high level of abstraction, where it is required merely to
describe how the algorithmic work is distributed across cores, and there is
no attempt to control the flow of data to the cores.

The results in the previous section are mixed and depend to some extent
on perspective – on the one hand, they indicate very good on-node speedup
for either modest levels of work in real-world application codes – speedups
of thirty times on 48-cores, for example, were observed on the AMD plat-
form. On the other hand, it is clear the scalability is limited compared to
what is feasible in principle (e.g. on a machine where bandwidth increases
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ntc\ntf 1 2 3 4 5 6 7 8
1 371 561 812 1060 1193 1210 1218 1262
2 672 1118 1496 1808 . . . .
3 956 1597 . . . . . .
4 1262 2122 . . . . . .
5 1568 . . . . . . .
6 1858 . . . . . . .
7 2163 . . . . . . .
8 2275 . . . . . . .

Table 2: Performance comparison of fine (nuclide-loop) and coarse (particle-loop)
threading in OpenMC. Entries are in particles/sec. As the column number in-
creases, more threads are devoted to the inner loop over nuclides. As the row
number increases, more threads are used to divide the work of the outer loop over
particles. Using exactly 1 OMP thread/core, the only possible combinations of
threads are those that satisfy [(# coarse threads)× (# fine threads) ≤ 8 ].

proportionally to processing elements), and furthermore that the trend is
to continue to erode as cores are added. This is not surprising given the
complexity of the shared resources in the underlying memory subsystem.
However, it is instructive to carry out some preliminary deeper analyses to
try to speculate on exactly where the performance is lost. Such an analysis
is not easy [18, 19] and we present here only the key issues as a basis for
further study.

Scaling bottlenecks for multi-core applications generally include: 1) real
and false sharing on L1 cache lines (as L1 caches are distributed for all of
the target architectures); 2) contention for higher levels of shared cache, 3)
contention on the shared bus to main memory, and 4) NUMA effects for
multi-socket architectures. As each of these aspects of the memory subsys-
tem is opaque to OpenMP, additional analysis tools are required to gain
information on which effects may be leading to performance degradations,
and furthermore what algorithmic or implementation modifications may be
made to mitigate their impact.

To this end, as part of this process we carefully instrumented Perfor-
mance Application Programming Interface (PAPI) [20] hardware counters
on the Intel Xeon platforms in OpenMC. The performance data enabled
us to make careful code modifications to guarantee the negligible impact
of L1 cache write conflicts as we increased core counts, resulting in no-
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ticeable performance improvements for the tests presented here. Declaring
the macroscopic cross section variable as threadprivate and ensuring their
allocation in sufficiently disjoint memory locations (to avoid false sharing
conflicts) is one such example. However, further attempts to disambiguate
between the remaining potential causes of slowdown of the algorithm have
not yet produced definitive results. The conclusions of our analysis have
varied non-trivially with choice analysis tool, compiler technology, and com-
puting architecture. It is also likely that a lower level programming model
will be required to implement more scalable algorithms once the perfor-
mance culprits have been identified. A follow-up study using a simplified
MC application kernel will explore the topic in depth.

5. Conclusion

We modified the Monte Carlo neutron transport code OpenMC to use
OpenMP-enabled shared-memory parallelization within each MPI process in
three different configurations. The scaling performance of the configurations
was compared with the application-relevant reactor calculation parameters
of the Hoogenboom-Martin benchmark.

Our results accomplish two primary objectives. First, they show the
practical benefits available to Monte Carlo methods as the field of high per-
formance computing moves to many-core architectures. Significant speedup
of the neutron tracking rate is easily achieved with OpenMP on 4 core to
48 core modern processing nodes. Second, the degradation of scaling at
higher core counts elucidates the complex limitations imposed by the mul-
titude of hardware and software considerations which are imposed by the
many-core model. This study demonstrates that a variety of performance
factors unique to shared-memory programming, including NUMA memory
hierarchies, cache bottlenecks, and thread overhead need to be considered
by Monte Carlo developers. More precise tools are needed to diagnose the
exact influence of these factors.
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