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Abstract – In this paper, the discrete generalized multigroup (DGM) method was used to 

recondense the coarse group cross-sections using the core level solution, thus providing a 

correction for neighboring effect found at the core level.  This approach was tested using 

a discrete ordinates implementation in both 1D and 2D.  Results indicate that 2 or 3 

iterations can substantially improve the flux and fission density errors associated with 

strong interfacial spectral changes as found in the presence of strong absorbers, reflector 

of mixed-oxide fuel.  The methodology is also proven to be fully consistent with the 

multigroup methodology as long as a flat-flux approximation is used spatially. 

 

I. Introduction 

 

Deterministic neutron transport methods have relied quite heavily on the multigroup 

treatment of the energy variable.  Continuous energy data is condensed in a more 

manageable multigroup format through multiple levels of approximation to eventually 

produce a corrected dataset (i.e. self-shielding) with which the core calculation can be 

performed efficiently.  This multilevel approach generally assumes that strong spectral 

effects are local and can be approximated coarsely has the spatial size increases to reduce 

computational costs.  As the level of heterogeneity increases in nuclear reactor core 

designs, this assumption is not always valid and requires some adjustments to the 

approach. 

 

Recently, an iterative transport-diffusion methodology (IGDM) was developed by 

Roberts et al [1] for Light Water Reactor core analysis to improve the accuracy of the 

noted spectral effect They performed iterations between the lattice level and core level 

calculations to improve the condensation of the nuclear data by accounting for the effect 

of neighboring nodes. The method was tested on a set of two dimensional LWR mini-

core benchmark problems and showed good improvement.  Similarly, a combination of 

COMBINE unit cell calculations, one dimensional discrete ordinates transport 

calculations of SCAMP, and nodal diffusion calculations of PEBBED were implemented 

in the Idaho National Laboratory’s deterministic code to account for the neighboring 

effects in core with long mean free paths [2]. COMBINE generates homogenized unit cell 

cross sections for each 1-D node which are used by SCAMP to solve for the flux 

distribution along the dimension. The obtained flux distribution is used to generate nodal 

diffusion parameters for core calculations.  

 

In this paper, an alternate approach is proposed that can essentially eliminate the need for 

the lattice-to-core level iteration or even the need for lattice calculations altogether.  This 
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new methodology builds on a previous study in which a Discrete Generalized Multigroup 

(DGM) energy expansion theory was developed [3][4]. The energy dependence of the 

angular flux was expanded into a set of flux moments using the discrete Legendre 

orthogonal polynomials (DLOP’s) [5]. This approach provided an unfolded fine group 

flux for the cost of a coarse group calculation over whole core calculations. The purpose 

of this study is to develop a recondensation scheme to improve the nuclear data based on 

full core effects without the need to iterate with lattice level calculations.  The unfolded 

fine flux of the DGM calculation is used to recondense the nuclear data and an iterative 

process can follow to further improve accuracy at the core level.  

 

Unlike current approaches that iterate between transport at the lattice level and spatially 

homogenized diffusion at the core level, the methodology was tested using an SN angular 

discretization without spatial homogenization at both the lattice and core level.  This was 

done to facilitate the comparison between solutions and to eliminate the spatial 

complexities that would ensue from homogenization when removing the lattice 

calculations.  This approach will thus facilitate coarse group core level transport 

calculations with accuracy comparable to fine group solutions, which can be seen as 

extending the lattice techniques to the whole core. 

 

The paper is organized as follows. Section II reviews the DGM method and states the 

idea of the recondensation method.  Section III provides computational results on both 1-

D and 2-D light water reactor problems. Section IV discusses the dependence of the 

method on the spatial discretizations. Section V presents a conclusion and direction of 

future work.  

 

II. Method Description  

 

In this section, the DGM method is reviewed briefly for completeness, followed by the 

basic principles of the recondensation method, and a discussion of the multi-level 

approach.  

 

II.1 Review of the DGM Method 

 

The detailed derivation of the DGM can be found in [3]. The eigenvalue problem of the 

transport equation can be written as: 
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where the angular flux is represented by   with phase space variables: r  for all three 

spatial components,   for the solid and E for the energy.  The total and fission 

macroscopic cross-sections, fission energy spectrum, and scattering kernel are 

represented respectively by t , f ,   and s , respectively. In the DGM method, the 
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angular flux is expanded in energy using a discrete orthogonal basis set, namely the 

discrete Legendre orthogonal polynomials (DLOP’s).  After some algebra, the DGM 

equation of the transport equation is: 
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where ig  is the ith angular flux moment within coarse group g, and is defined as: 
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in which the angular flux is expanded using DLOP’s within each coarse group g: 
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where ,K gE E   0,..., 1g gK N   is the index of the fine energy group point within 

the coarse group g, Ng is the total number of fine group points within the coarse group g, 

( , 1)i g gP K N  is the discrete Legendre polynomials and ia is a normalization coefficient. 

The cross section moments in (2) are defined as: 
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where the perturbation of the collision term is defined from: 

 

 ,0( , ) ( ) ( , ).t g t g g gr K r r K     (10) 

 

The total cross-section perturbation term is introduced to provide numerical stability to 

the higher order equations.  

 

In the above coefficients, ' '0,..., 1g gL M   is the index of the fine energy group point 

within the coarse group g’, Mg’ is the total number of fine group points within the coarse 

group g’. The coarse group fluxes are defined as: 
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In Eq. (2), the leading order equation is decoupled from the higher order equations due to 

the properties of DLOP’s, and thus is equivalent to the standard coarse group solution 

which is piecewise constant within each coarse energy group. Higher order equations are 

decoupled from each other and coupled only to the leading order solution. These fixed 

source equations can be solved with a much less computational effort compared to the 

leading order calculation.  

 

II.2 Energy Recondensation 

 

While the DGM method greatly improves the energy resolution and at the same time 

keeps a computational efficiency comparable to the coarse group calculation, the flux 

spectrum needed to generate cross section moments defined by Eqs. (5)-(10) is not 

known a priori. This flux can be approximated from lattice level calculations, which is 
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equivalent to the traditional multilevel approach. This inaccurate flux spectrum used to 

generate cross section moments is the main source of error in the DGM calculation.  

 

Despite these inaccuracies, the unfolded flux spectrum provided by the DGM calculation 

was shown to be a very accurate estimate of the reference fine group solution.  This 

indicates that the DGM solution can be used as a weighing function to regenerate 

improved cross-section moments. This process can be repeated iteratively at the core 

level with each iteration taking essentially the computational time of a coarse group 

calculation. 

 

II.3 Initial spectrum guess 

 

In the traditional approach of full core calculation, the fine group flux spectrum needed to 

generate coarse group cross sections is provided from a separate lattice calculation. The 

DGM method in [3] (without recondensation) adopted a similar approach. The 

disadvantage of this approach is that extra lattice calculations need be performed even 

thought the fine group lattice solution may not be an accurate estimate of the whole core 

flux spectrum.  

 

The recondensation procedure provides a way to eliminate the assembly calculation. 

Instead of using the flux from assembly calculation as weighting function, we can simply 

use an appropriate initial guess to generate cross section moments. For example, the 

initial guess can be a combination of a Maxwellian spectrum in the thermal range, 1/E in 

the resonance range and the fission spectrum in the fast range.  Alternatively even a flat 

flux estimate would still converge, but the more accurate the initial guess of the flux, the 

less iteration will be required to get a suitable result.  

 

The flow chart of Fig.1 clearly presents the new approach, while Fig. 2 illustrates the 

traditional approach. The starting point, just with like any other calculation, is with a fine 

group cross-section set with appropriate self-shielding. The initial flux guess can be 

estimated by any means and will be used to generate the coarse group moments. A DGM 

calculation thus ensues for both the 0th order and higher order equations. The unfolded 

flux is then used to recondense the cross-sections to initiate the iterative process. The 

recondensation procedure stops when a convergence criterion is met, which was set as the 

root mean square (rms) error of the scalar flux from two consecutive iterations.  

 

III. Computational Results 

 

Section III.1 and III.2 presents 1-D and 2-D results for a SN implementation. It should 

however be noted that the methodology is general and thus not limited to the presented 

solution scheme. 

 

III.1 One-dimensional BWR core tests 

 

A detailed description of the set of 1-D BWR cores can be found in [3], and an 

illustration of the cores and assemblies is plotted in Fig. 3. For the results presented here, 
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the first iteration (DGM method) parameters are computed from assembly calculations 

with reflective boundary conditions. The goal of the recondensation calculations is to 

reduce the errors associated with the coarse group representation with minimal iterations, 

thus improving the coarse group solution considerably.  If one desires the fidelity of the 

fine group solution, solving the usual multigroup equations would be more efficient. A 

comparison is made between 47 group reference solutions for the three 1-D cores with a 

2 group DGM calculation with a thermal cutoff at 0.625 eV and respective expansion 

orders of 34 and 11 in each group, thus preserving exactly the 47 group dataset. A S16 

angular approximation is applied and the step difference (SD) method is used for the 

spatial sweep. In the power iterations and fixed source iterations, the flux is converged to 

within 10-5. The eigenvalue is converged to within 10-6. Vacuum boundary conditions are 

set on both sides of the core. 

 

The recondensation calculations for all three cores with different number of iterations are 

performed. The root-mean-squared (rms) relative error and mean relative (mre) error of 

the scalar flux are defined as: 
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The pointwise relative error and the average flux in the core are defined as: 
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where 1( , )i h  and 2 ( , )i h  are scalar fluxes compared with spatial index i and fine energy 

group index h. Similarly for the eigenvalue, we define the relative error between two 

calculations as: 
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Computational results are given in Tables 1-4 for cores 1 and 3, respectively, for the first 

three iterations. The computational time of the fine group reference calculations is 

roughly 10 seconds for each core while it takes approximately 0.4 seconds for each DGM 

iteration on a Intel 2.4Ghz PC with no acceleration. Tables 1 and 2 clearly indicate the 
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benefit of doing a few iterations when performing coarse group calculations. Within a 

few iterations both the eigenvalue error and scalar flux error improve considerably. , i.e., 

the scalar flux rms error in core 1 is reduced from 3.2% to 0.54% and in core 3 from 15% 

to 2.6% by performing 3 iterations.  

 

Full convergence of the recondensation process was also studied by stopping the 

iterations when the rms relative error of scalar flux between two consecutive iterations 

reached 10-5, as shown in the flow chart in Fig. 1. It takes 26 iterations for core 1 to 

satisfy this criterion while it takes 87 iterations for core 3. Converging fully using the 

recondensation process is equivalent to solving the fine group calculation, but less 

efficiently.  This study was performed to show the consistency of the discretization in 

reproducing the fine group results.  The recondensation procedure is envisioned as a way 

to improve coarse group results with minimal cost, not as a way to fully converge the fine 

group solution.  

 

Scalar flux rms relative errors and eigenvalue relative errors are plotted in Figs. 4-7 for 

cores 1 and 3. It can be observed that the rms errors of scalar flux show a smoother 

convergence trend than the relative errors of the eigenvalue, which is the reason the rms 

error of scalar flux was selected as the convergence criteria of the recondensation. The 

oscillation of the eigenvalue at the beginning is caused by an inaccurate weighting 

spectrum for the cross sections in the first few iterations.  After a certain number of 

iterations when the flux spectrum becomes more accurate, the oscillation of the 

eigenvalue diminishes considerably.   

 

It can also be observed that after many iterations, errors between two consecutive 

iterations decrease which indicates convergence of the algorithm itself, while errors 

between the DGM solution and the reference solution eventually plateaus to a level 

within the accuracy of the convergence criteria. In the power iteration of both the 

reference calculation and the 0th order DGM calculation, as well as the fixed source 

iteration in the higher order calculations, the flux is converged to within 10-5. The final 

converged recondensation flux has an rms error on the order of 10-4 which is around one 

order larger than 10-5 due to round-off errors in cross section moments generation where 

fluxes (with an error on the order of 10-5) appear in both the numerator and denominator.  

 

Figs. 6 and 7 indicate that for core 3, after about 40 iterations, errors between the DGM 

solution and the reference solution stops decreasing, which means that more DGM 

iterations will not improve the overall accuracy even though the rms* error of the DGM 

has yet to converge to the prescribed criterion. An alternative would be to use the mre* as 

a stopping criterion, which converges to 10-5 after 54 iterations. Core 3 is heavily loaded 

with Gadolinium thus presenting near zero flux regions which are very difficult to 

capture accurately with a coarse group expansion methodology.   

 

Figs. 8-10 show the scalar flux in core 3 as a function of energy groups for a 

representative water region, fuel region, and fuel with Gd region, respectively. It can be 

observed from the first three iterations that the fluxes converge to the reference spectrum 

with an increasing number of iterations.   
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The flux update procedure proposed in [3] is performed in each iteration in order to 

eliminate all possible negative values in the unfolded fluxes, which is very important 

when regenerating cross section moments for the next iteration. Eigenvalue updates were 

not performed in the iteration process to simplify the algorithm.  

 

III.2 Two-dimensional PWR core tests 

 

For a better assessment of the performance of this algorithm, a more realistic 2D PWR 

problem was used.  The geometry and boundary conditions are similar to the C5G7 

benchmark problem [6], and the core layout is plotted in Fig. 11. The circle fuel pin 

geometry is approximated in Cartesian geometry as indicated by the ORNL and GRS 

participants in [6], and is plotted in Fig. 12. Instead of the provided 7 group cross-section 

database, a 33 group self-shielded library was generated for both UO2 and MOX fuels 

using DRAGON [7]. A comparison is made between 33 group reference solutions for the 

2-D cores with a 2 group (with thermal cutoff of 4eV) DGM calculation with respective 

expansion orders of 28 and 3. A S4 angular approximation is applied and the step 

difference method is again used for the spatial sweep. Both the reference and DGM 

calculations are performed using the same spatial mesh.  Flux is converged to within 10-5, 

and the eigenvalue is converged to within 10-6 in the power iterations. The initial flux 

spectrum guess is obtained from infinite assembly fine group calculations. Flux updates 

are performed at each iteration to eliminate all possible negative values in the unfolded 

fluxes, as was done in the 1-D tests.  

 

In the 2-D problem, errors are defined as was done previously. Results are provided in 

Tables 5-7. Table 5 lists the rms and mre errors of the flux compared to the fine group 

solution, and the rms* error between two consecutive DGM iterations which is used as 

the convergence criteria of the recondensation procedure. The recondensation process 

converges after 20 iterations when rms* between two consecutive iterations is smaller 

than 10-5 (10-3%). It can be observed that rms and mre errors decrease from 47% and 

7.6% to 14% and 0.63%, respectively, after 3 iterations. mre errors are typically smaller 

than rms error which indicates that larger errors mainly exist in areas with near zero 

fluxes.  

 

Table 6 lists the root-mean-square error (rms), mean relative error (mre), and maximum 

relative error (errmax) of the pin fission densities compared to the fine group solution, 

where the pin fission densities are defined as: 
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where Ipin, Jpin and H are number of spatial meshes in x and y directions in a pin, and 

number of fine groups. The definition of the rms error, mre error and relative error are the 

same as for the flux errors except that the spatial mesh index is replaced by the fuel pin 

index. The errmax is the maximum of the relative error in absolute value of all the pins.  

 



 9 

Errors of rms, mre and errmax in the first iteration solution are 7.3%, 6.0% and 24.1%, 

respectively, while they decrease to 0.72%, 0.3% and 3.8% after 3 iterations. Once again, 

the mre error is smaller than rms error in each iteration, indicating that larger errors are 

located in pins with low fission densities.  

 

Table 7 lists the computational time and eigenvalues errors where REk* is the relative 

error between two consecutive DGM iterations and REk is the relative error between 

DGM and fine group solutions. The computational time of the fine group reference 

calculation is about 100 minutes, while each DGM iteration takes about 5 minutes. 

Comparing to the reference solution, relative error of eigenvalue is 1.3% after the 1st 

iteration and it decreases to 0.028% after 3 iterations.  

 

Figs. 13-14 plot the errors on flux and eigenvalue as a function of the number of 

iterations. Once again, both the flux and eigenvalue converge to the fine group solution 

after 20 iterations. The rms errors of scalar flux show a smoother convergence trend than 

the relative errors of the eigenvalue.  

 

Figs. 15-17 plots the relative error of pin power compared with the reference solution, for 

the 1st, 2nd and 20th iterations of the DGM calculations, respectively. Fig. 15 shows that 

large errors of pin power exist near the interface of fuel assemblies and moderator 

regions, as well as near the interface of UO2 and MOX assemblies. This is due to the fact 

that the cross section moments are generated using infinite assembly fine group solutions 

as the weighting flux, thus neglecting the neighboring effect between different assemblies 

and near the reflector. Since the flux used to generate cross section moments for the 2nd 

iteration comes from the first iteration solution which is a core level solution, errors near 

assembly interfaces are reduced substantially, which is shown in Fig. 16. After 20 

iterations, the errors become quite small throughout the core as is shown in Fig. 17.  

 

IV. Limitations from the spatial discretization methods 

 

All the previous calculations are based on the step difference spatial discretization which 

assumes a piecewise constant flux over each spatial cell. These results show that the flux 

can converge to the fine group solution after a certain number of iterations, but 

unfortunately this is not the case for all spatial discretization. This section analyzes the 

spatial consistency of the DGM method and discusses some of its limitations.  

 

IV.1 Spatial dependence of the DGM method 

 

The cross sections and moments used in the (k+1)th recondensation iteration calculation 

are generated using fluxes from the kth iteration.  For a fully consistent derivation,  the 

reaction rates from the fine group calculation and the 0th order coarse group solution 

should be equivalent after the recondensation calculation converges. In [3], the DGM 

method is derived without dependence of a particular spatial discretization. The purpose 

of the following analysis is to study the effect of spatial discretization on the consistency 

of the DGM model. An analysis of the fission term is given as follows and similar 
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conclusion can be derived for other terms in the transport equation. The coarse group 

fission cross section given in Eq. (5) can be written as: 
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which is the fission cross section energy condensation weighted by the scalar flux. 

Without loss of generality, spatial dependence is represented in a 1-D Cartesian 

formalism.  

 

The continuous energy transport equation in Eq. (1) is separated into equations within 

each coarse energy groups. Within a coarse energy group g’, if a fine group calculation is 

performed, the fission rate can be expressed as: 
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If a coarse group (or 0th order of DGM) calculation is performed, the fission rate 

expressed in the coarse group equation is: 
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where 1

' ( )k

g x   is the unknown to be solved in the (k+1)th iteration in the coarse group (0th 

order) equation.  The key point is to verify that the reaction rates in Eqs. (20) and (21) are 

equivalent after convergence of the recondensation process, which can be expressed by: 

 

 1

' '( , ) ( , ),k k

g gx L x L    (22) 

where '( , )k

gx L  is the unfolded scalar flux from the kth iteration of the DGM 

calculation.  

 

a) Flat-flux approximation 

 

If the spatial dependence is expressed explicitly, it can be observed that the equivalence 

exists only when the SD spatial discretization is used. In general, cross sections and 

moments are collapsed using the cell-averaged flux, e.g.,  Eq. (19) can be written as: 
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where I is the spatial cell index, and I  is the cell-averaged flux. In the SD method, 

fluxes are piecewise constant within each spatial cell, e.g., ' '( , ) ( )g I gx L L   in cell I. 

Thus, Eq. (20) can be written as: 
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Eq. (21) can be written as: 
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where the coarse group flux can be expressed using fine group fluxes as: 
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Eqs. (24) and (25) should be equivalent which indicates that the reaction rate is 

conserved, if Eq. (22) is satisfied, i.e.,  
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b) Linear-flux approximation 

 

For higher order spatial discretization schemes, e.g., the first order method, we can write 

the spatial dependence of Eq. (20) within a spatial mesh as:  
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while the spatial dependence of Eq. (21) within a spatial mesh is: 
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where the cross section is generated using cell average flux. In this case, the coarse group 

flux with spatial details within a spatial mesh '( )g x  cannot be expressed using fine 

group fluxes within that coarse group, i.e., an equivalent form of Eq. (26) does not exist. 

By comparing Eqs. (28) and (29), it can be observed that they will have a different form 

no matter whether an equivalence of Eq. (26) is satisfied, which means that the reaction 

rate will converge to a different value.  

 

With spatial details within a spatial mesh, other terms have similar inconsistency and thus 

the recondensation model will generate a solution with a systematic error compared to the 

fine group solution.  

 

IV.2 Collision term 

 

The collision term is treated differently due to the fact that a perturbation technique is 

applied in the derivation of the DGM method to increase stability, which is similar to the 

treatment of angular dependence of the collision term in the discrete ordinates equations 

proposed in [8]. The purpose of this section is to study the consistency of this 

approximation with the recondensation procedure. Continuous spatial dependence is used 

in the derivation in this section, but as stated in section IV.1, consistency is only obtained 

when using a flat-flux approximation. If the continuous energy transport equation is 

separated into coarse energy group equations, the Legendre moments of collision term 

within a coarse group g is: 
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This term can be condensed as: 
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Where the angular flux moment is defined in Eq. (3) and the total cross section moment 

is defined as: 
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With i=0, Eq. (31) is the total reaction rate condensed from fine group to coarse group 

using angular flux as the weighting function. However, a disadvantage of Eq. (31) is that 

the DLOP’s appears in the denominator of the definition, which may lead to large round-

off error and instability when generating 
,

( , )
t ig

k r   moments. One way proposed in [9] 

and [3] is to use an averaged collision term together with a perturbation term such that: 
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 (33) 

 

If after many recondensation iterations, we obtain convergence such that: 

 

 1( , , ) ( , , ),k k

g gr K r K      (34) 

 

It can be observed that Eq. (33) can be simplified to Eq. (30), which shows consistency of 

the derivation. If written explicitly the spatial dependence within a spatial mesh is 

satisfied only when a flat flux approximation is used. Thus, the perturbation term 

approximation of the collision term does not induce any extra error in the recondensation 

iterations for 0th order spatial schemes.  One major disadvantage that can be seen in 

Eq.(33) is the angular dependence of the collision rate which requires storing the angular 

flux.  One way to solve this problem is to expand the angular dependence of angular flux 

in the perturbation term using Legendre polynomials, as indicated in [8]. 

 

V. Conclusions and Future Work 

 

In this study, an energy recondensation methodology is developed based on the DGM 

energy expansion theory previously developed. Cross sections and moments are 

regenerated using the obtained DGM flux spectrum as weighting function at the 

beginning of each iteration. Computational tests are performed on one dimensional BWR 

cores with and without Gadolinium, and two dimensional PWR cores with both UO2 and 

MOX fuels.  

 

In both the 1-D and 2-D tests, fluxes in the coarse group solution improve considerably 

with only a few iterations and are shown to converge to the core fine group solutions after 

multiple iterations.  Full convergence of the recondensation process was shown to be 

fully consistent with the multigroup methodology for a spatially flat flux approximation, 

but is by no means a substitute. The purpose of the recondensation technique is to 

substantially improve the coarse group solution with a minimal number of iterations.  
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Step difference spatial discretization is used in this study since it is consistent with the 

collapsing of the cross section moments which uses cell-averaged fluxes. A brief 

discussion is provided that explains the consistency of flat-flux approximation and the 

nature of the inconsistency for higher order spatial schemes. 
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Fig. 1. Flow chart of the recondensation procedure. 
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Fig. 2. Flow chart of the traditional multilevel procedure. 

 



 17 

Core 1

Core 2

Core 3

Assembly 1 Assembly 2 Assembly 3 Assembly 4

Water Fuel I Fuel II Fuel + Gd  
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Fig. 4. Scalar flux rms relative errors of 1-D BWR core 1.  
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Fig. 5. Eigenvalue relative errors of 1-D BWR core 1.  
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Fig. 6. Scalar flux rms relative errors of 1-D BWR core 3.  
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Fig. 7. Eigenvalue relative errors of 1-D BWR core 3.  
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Fig. 8. Scalar flux comparison for core 3 water region. 
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Fig. 9. Scalar flux comparison for core 3 Fuel (high enrichment) region. 
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Fig. 10. Scalar flux comparison for core 3 Fuel+Gd region. 
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Fig. 11. 2-D PWR core configuration.  

 

 
Fig. 12. Fuel pin approximation in Cartesian geometry.  
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Fig. 13. Scalar flux rms relative errors of 2-D PWR core.  
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Fig. 14. Eigenvalue relative errors of 2-D PWR core.  
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Fig. 15. Relative error (%) for 1st DGM iteration of pin power distribution of 2-D PWR 

core. 
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Fig. 16. Relative error (%) for 2nd DGM iteration of pin power distribution of 2-D PWR 

core. 
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Fig. 17. Relative error (%) for 20th DGM iteration of pin power distribution of 2-D PWR 

core. 
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Table 1. 1-D BWR Core 1 computational results (errors in fluxes) 

 rms* (%) mre* (%) rms (%) mre (%) 

1st iteration - - 3.2 1.6 

2nd iteration 3.0 1.6 1.0 6.2E-1 

3rd iteration 7.8E-1 3.9E-1 5.4E-1 2.9E-1 

26th iteration 8.9E-4 4.5E-4 2.6E-2 1.6E-2 
Note: Errors with * are between two consecutive iterations of DGM solution. 

Errors without * are between DGM solution and reference solution. 
 

Table 2. 1-D BWR Core 1 computational results (eigenvalue and computational time) 

 Eigenvalue 

k 

REk* 

(%) 

REk (%) Computation 

time t (sec) 

1st iteration 1.16530 - 1.2 0.4 

2nd iteration 1.15191 1.1 2.5E-3 0.8 

3rd iteration 1.15296 9.2E-2 9.4E-2 1.2 

26th iteration 1.15184 2.4E-4 3.5E-3 10.4 

Reference 

solution 

1.15188 - - 10.4 

 

Table 3. 1-D BWR Core 3 computational results (errors in fluxes) 

 rms* (%) mre* (%) rms (%) mre (%) 

1st iteration - - 1.5E+1 8.5 

2nd iteration 1.7E+1 6.4 6.4 4.3 

3rd iteration 5.0 2.6 2.6 1.7 

54th iteration 1.3E-2 9.7E-4 2.6E-2 1.6E-2 

81st iteration 9.7E-4 7.5E-5 2.5E-2 1.2E-2 

 

Table 4. 1-D BWR Core 3 computational results (eigenvalue and computational time) 

 Eigenvalue 

k 

REk* 

(%) 

REk (%) Computation 

time t (sec) 

1st iteration 0.791960 - 9.6 0.4 

2nd iteration 0.740744 6.5 2.6 0.8 

3rd iteration 0.732551 1.1 1.4 1.2 

54th iteration 0.722274 4.5E-5 2.1E-3 25.1 

81st iteration 0.722274 3.4E-6 2.1E-3 37.4 

Reference 

solution 

0.722289 - - 10.5 

 

Table5. 2-D PWR Core computational results (errors in fluxes). 

 rms* (%) rms (%) mre (%) 

1st iteration - 4.7E+1 7.6 

2nd iteration 5.7E+1 2.9E+1 1.4 

3rd iteration 1.4E+1 1.4E+1 6.3E-1 

20th iteration 7.6E-4 4.6E-2 2.0E-2 

 

Table 6. 2-D PWR Core computational results (errors in pin power). 
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 rms (%) mre (%) errmax (%) 

1st iteration 7.3 6.0 24.1 

2nd iteration 1.6 6.3E-1 6.9 

3rd iteration 7.2E-1 3.0E-1 3.8 

20th iteration 3.0E-2 2.0E-2 9.3E-2 

 

Table 7. 2-D PWR Core computational results (eigenvalue and computational time). 

 Eigenvalue 

k 

REk* (%) REk (%) Computational 

time t (min) 

1st iteration 1.21074 - 1.3 7 

2nd iteration 1.19213 1.5 3.1E-1 12 

3rd iteration 1.19613 3.4E-1 2.8E-2 17 

20th iteration 1.19577 1.6E-6 2.2E-3 101 

Reference solution 1.19579 - - 100 

 

 


