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INTRODUCTION

To correctly predict reactor behavior during cycle oper-
ations, the evolution of nuclide number densities throughout
the core must be accurately modeled. The time-varying spatial
distribution of nuclide number densities is typically resolved
by discretizing the Monte Carlo geometry into smaller cells
over which number densities are assumed to be spatially in-
variant. The nuclide number densities in these smaller cells
are integrated through time using reaction rate tallies on the
same discretized geometry. However, detailed distributions of
nuclide number densities in a full three dimensional simula-
tion can require a prohibitive amount of tallies, and the spatial
discretization of the base geometry makes coupling to external
multiphysics tools difficult.

In this paper a method for solving for spatially continu-
ous number density distributions during depletion calculations
will be described. The spatially continuous number densities
can be used in the transport method proposed by Brown and
Martin [1] which allows for transporting neutrons through a
material with continuously varying properties such as temper-
ature and nuclide number densities. Coupled with the ability
of Functional Expansion Tallies (FETs) [2] to represent tal-
lied quantities as continuous functions, it is possible to both
solve for and make use of spatially continuous nuclide num-
ber densities. The need for this capability was alluded to by
Brown et. al. [3], but no solution has yet been proposed. With
a continuous depletion method, recent work which utilized
FETs and continuous material tracking to incorporate multi-
physics feedback in Monte Carlo simulations can be extended
to simulations that include depletion analysis [4, 5].

THEORY

The rate of change of a nuclide’s number density is de-
scribed by the balance equation below [6]:

dNi(t, r)
dt

=
∑

j

[∫ ∞

0
γ ji(E, t)σ f j (E, t, r)φ(E, t, r)dE

]
N j(t, r)

+

[∫ ∞

0
σci−1 (E, t, r)φ(E, t, r)dE

]
Ni−1(t, r) + λi′Ni′ (t, r)

−

[∫ ∞

0

(
σ fi (E, t, r) + σci (E, t, r)

)
φ(E, t, r)dE

]
Ni(t, r)

− λiNi(t, r) (1)

where,

N(t, r) ≡ number density of a nuclide

γ ji(E, t) ≡ fission production yield of nuclide i from nuclide j

φ(E, t, r) ≡ neutron flux

λ ≡ decay constant of a nuclide
σ f (E, t, r) ≡ microscopic fission cross section of a nuclide
σc(E, t, r) ≡ microscopic capture cross section of a nuclide

Note that in the above equations the fission product yield and
decay constants are assumed to be spatially invariant. Now,
the number densities can be expanded as a weighted sum of a
polynomial basis set:

Ni(t, r) =
∑
α

Ni,α(t)Pα(r) (2)

where α denotes the indices for the moments in a three di-
mensional space. The coefficients, Nα, of the number density
polynomial expansion are calculated using the following inte-
gral expressions:∫

V
drPγ(r)Ni(t, r) =

∑
α

Ni,α(t)
∫

V
drPα(r)Pγ(r) (3)∫

V
drPγ(r)Ni(t, r) =

∑
α

Ni,α(t)Cα,γ (4)

If an orthogonal basis set is chosen, the expression in Eq. (4)
simplifies to: ∫

V
drPγ(r)Ni(t, r) = Ni,γ(t)Cγ (5)

The microrates in Eq. (1) can be similarly expanded. Eq. (6)
shows the expansion for an arbitrary microrate reaction, x. The
coefficients for the microrate expansions, Rx

β, are determined
in the Monte Carlo simulation using FETs [2], and the FET
polynomials, Pβ(r), are assumed to belong to an orthogonal
basis set.∫ ∞

0
dEφ(E, t, r)σx(E, t, r) =

∑
β

Rx
β(t)Pβ(r) (6)

The number density and microrate expansions can be substi-
tuted back into Eq. (2). To make this substitution useful, the
entire expression is multiplied by one of the number density
polynomials, Pγ(r), and integrated over the volume. From
this point on it is assumed that the polynomial basis set used
for the number densities is orthogonal. With some algebraic
simplification, the following expression is obtained:

Cγ

dNi,γ(t)
dt

= Cγλi′Ni′,γ −CγλiNi,γ (7)∑
j,α,β

R f , j→i
β (t)N j,α(t)

∫
V

drPγ(r)Pβ(r)Pα(r)

+
∑
α,β

Rc,i−1,i
β (t)Ni−1,α(t)

∫
V

drPγ(r)Pβ(r)Pα(r)

−
∑
α,β

(
R f ,i
β (t) + Rc,i

β (t)
)

Ni,α(t)
∫

V
drPγ(r)Pβ(r)Pα(r)
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In Eq. (7) the volume integral of the triple product of the
polynomials does not easily simplify. However, these triple
product integrals can be computed for the chosen basis sets
up to a predetermined order. These precomputed coefficients
will be denoted by Bα,β,γ. This simplification yields the final
expression:

Cγ

dNi,γ(t)
dt

= Cγλi′Ni′,γ −CγλiNi,γ (8)

+
∑
j,α,β

R f , j→i
β (t)N j,α(t)Bα,β,γ

+
∑
α,β

Rc,i−1,i
β (t)Ni−1,α(t)Bα,β,γ

−
∑
α,β

(
R f ,i
β (t) + Rc,i

β (t)
)

Ni,α(t)Bα,β,γ

When solving for the spatial distribution of number densities
as a function of time, Eq. (8) will yield a system of ordinary
differential equations with the number of unknowns equal to
the total sum of the number of expansion coefficients for all
nuclides. Note that this derivation allows for each nuclide
to have a different expansion order for number density. The
system of ODEs is of the form:

dNγ(t)
dt

= A(t)Nγ(t) (9)

For constant coefficients, the solution of the system of ODEs
is the following matrix exponential expression:

Nγ(t) = eAt Nγ(t0) (10)

Eq. 9 and Eq. 10 are of the same form as traditional deple-
tion systems. However, in the case of spatially continuous
depletion, the unknowns in the vector are coefficients for each
moment in the expansion instead of cell average number den-
sities.

RESULTS AND ANALYSIS

The spatially continuous depletion method was tested
using the open source Monte Carlo code OpenMC [7]. FETs
were implemented in OpenMC using the Zernike polynomials
[8] as a basis set and the 48-term CRAM solver proposed
by Pusa [9] was used to evaluate the matrix exponential for
one time step. In this paper, when the order of expansion
for the nuclide number densities is specified, it is assumed
that the microrate tallies are of the same order. The depletion
calculations were performed using external Python scripts that
utilize the OpenMC Python API.

The continuous depletion methodology was tested on a
simple problem shown in Figure 1. The test problem consists
of nine fuel pellets with accompanying gas gap and cladding,
and the domain is surround by reflective boundary conditions.
The center fuel pin contains 2% (weight) Gd-157 and will be
the pin that is depleted for comparison purposes.

The center pin contains U-235, U-238, Gd-157, and O-16
at the beginning of life, and I-135, Xe-135, Xe-136, Cs-135,
Gd-156, Gd-157, U-234, U-235, and U-238 were included in

the depletion matrix. The depletion step that will be shown
in the following results spans from t = 0 to t = 2 months.
The simulation ran 1 million particles per batch with 60 active
batches and 40 inactive batches. The reference case which will
be used to assess the continuous depletion results is an equal
volume discretization of the central pellet into 50 equal volume
rings with 32 azimuthal cuts. It is worth noting that for the
number of particles simulated the depletion matrix satisfied
the negative eigenvalue criterion for CRAM. However, for
an extremely low number of neutrons per batch (i.e. 100),
positive eigenvalues were observed.

H2O	

Cladding	

Air	

Fuel	(2%	Gd-157)	

Fuel	

Fig. 1. OpenMC geometry model colored by unique material
composition

Depletion Results

Figure 2 shows the calculated number density for Xe-135
for Zernike expansions of order 2, 6, and 10. The continuous
depletion results were integrated into the same volumes that
characterize the discrete case so that a direct comparison of
errors between the two solution methods is possible. Note that
the abscissa is a cell index instead of a coordinate position.
Cell indices are ordered from the origin with sweeps through
azimuthal cuts followed by radial rings.
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Fig. 2. Xe-135 number density for Zernike expansion of order
2, 6 and 10, compared to a pin discretized with 50 equal
volume rings with 32 azimuthal cuts



Figure 2 shows that there is very little azimuthal variation
in the number densities for this simulation, and that for a 10th
order expansion the continuous depletion results agree very
closely with the discrete case for Xe-135. This is verified
quantitatively in Figure 3 where the L2 error between the
continuous depletion and discrete depletion methods is shown
for the Xe-135 solution.
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Fig. 3. L2 error of the Xe-135 continuous number density
solution as compared to the discrete reference solution

Figure 4 and Figure 5 show the calculated number density
for Gd-157 for 2, 6, and 10th order Zernike expansions with
linear and logarithmic scales, respectively. Unlike the Xe-135
number density profile, the Gd-157 spatial distribution is much
harder to capture with the Zernike polynomial basis set. This
limitation is evident by the negative number densities obtained
at the periphery of the pin.
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Fig. 4. Gd-157 number density (linear scale) for Zernike
expansion of order 2, 6 and 10, compared to a pin discretized
with 50 equal volume rings with 32 azimuthal cuts

The Gd-157 radial number density distribution is one of
the most challenging distributions to represent with a polyno-
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Fig. 5. Gd-157 number density (logarithmic scale) for Zernike
expansion of order 2, 6 and 10, compared to a pin discretized
with 50 equal volume rings with 32 azimuthal cuts

mial expansion because of the nearly five order of magnitude
variation from the center of the pin to a position offset from the
pellet surface that shifts inward as the pin is depleted. Figure 4
and Figure 5 show that as the number density expansion order
is increased, the prediction of negative number densities is
confined to fewer radial rings. However, even with a higher
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Fig. 6. Gd-157 number density for Zernike expansion of order
2, 6 and 10, with scaled coefficients to eliminate negative
Gd-157 number density predictions

order expansion, it is impossible to guarantee that the number
density will be positive everywhere. As a result, a post process-
ing correction has been implemented to scale all non-zeroth
order expansion coefficients of the nuclide number density by
a single factor to guarantee that all number densities in the
domain remain positive. It is important to note that by only
scaling the non-zeroth order expansion coefficient, the total
mean nuclide densities are not altered. The Gd-157 number
density results after scaling the coefficients is shown in Figure
6. Note that the scaling has minor effects in the interior of



the pin where the number density is much larger than on the
periphery of the pin. The L2 error for the scaled and unscaled
Gd-157 number density solutions are shown in Figure 7.
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Fig. 7. L2 error of the Gd-157 continuous number density
solution with scaled and unscaled coefficients as compared to
the discrete reference solution

CONCLUSIONS

A methodology for calculating spatially continuous dis-
tributions of number densities in a burnup calculation was
successfully demonstrated in this paper. It was shown that for
a single depletion step of two months the continuous depletion
methodology using Zernike basis functions was capable of
accurately predicting the spatial distribution of Xe-135 in an
LWR fuel pin. However, for nuclides such as Gd-157 with dis-
tributions not easily represented by the Zernike functions, the
prediction of nuclide number densities showed inaccuracies.
More specifically, the predictions included negative number
densities for the Gd-157 spatial distribution. It was shown
that a post processing step to scale all expansion coefficients
except for the zeroth moment could remove the negative num-
ber densities without having a large effect on the overall error
of the solution. However, this post processing methodology
requires additional analysis before being put forth as the ideal
solution.

FUTURE WORK

The test problem used to demonstrate the continuous de-
pletion methodology was limited to five nuclides at the begin-
ning of life, and only nine nuclides were followed through
the single depletion step. While the depletion behavior of
Gd-157 provides a good test for the methodology, a larger set
of isotopes should be examined to determine the appropriate-
ness of this method for full reactor analyses. Additionally,
the microrates that were tallied using FETs need to examined
to determine the appropriateness of the Zernike basis set and
the effect of microrate uncertainty and truncation error on
the continuous depletion solution in LWR applications. The
most important next step is the use of the continuous depletion

solution in the Monte Carlo calculation in order to perform
multistep depletion calculations. This will not only test the
continuous tracking methodology with multiple varying nu-
clides, but also extend the multiphysics coupling capabilities
that initially inspired this paper.
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