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INTRODUCTION

Monte Carlo methods are most often considered as a
reference for neutron transport simulations since very lim-
ited approximations are made abount nuclear data and system
geometry. To report uncertainty of any tally evaluated as gen-
eration averages, the sample variance is divided by the number
of active generations, which is based on the assumption that
the neutron generations are independent. Correlation effects
between neutrons in multiplying systems, particularly when
performing power iteration to evaluate eigenvalues have been
observed in previous work [1] [2] [3] [4]. Neglecting the
correlation effect results in an underestimate of uncertainty
reported by Monte Carlo calculations. Previous work has also
proposed methods to predict the underestimation ratio. Ya-
mamoto et al [5] expanded the fission source distribution with
diffusion equation modes, performed numerical simulation of
the AR(autoregressive) process of the expansion coefficients
and used the correlation of the AR process to predict that of
the Monte Carlo eigenvalue simulation. Sutton [6] applied
the discretized phase space (DPS) approach to predict the un-
derestimation ratio but the method cannot predict the ratio
when one neutron generates offspring in different phase space
regions or generates a random number of offspring.

This paper presents a method to predict the correla-
tion effect with the model of multitype branching processes
(MBP) [7]. The method requires simulations for one genera-
tion of neutrons without knowing the source distribution and
can predict the underestimation ratio for the cases where the
traditional DPS approach does not work.

The generation-to-generation correlation determines the
convergence rate of active generations, the bias of variance
estimator for each generation and the underestimation ratio
of variance estimator for tallies averaged over active genera-
tions [4]. The generation-to-generation correlation is charac-
terized by the Auto-Correlation Coefficients (ACC) between
tallies from different generations.

THEORY

Suppose generation n yields tally Xl(n) for tally region l,
the simulation will report the average X̄l =

∑N
i=1 Xl(i)/N and

σXl/N as an approximation of σX̄l
. Due to the correlation,

σXl/N underestimates σX̄l
. The Cov[Xl(i), Xl( j)], where i, j

are the active generation indexes, is required to correct the
underestimated uncertainty.

The generation-to-generation correlation results from the
fission source update procedure where the source of generation
n + 1 is sampled from the fission sites of generation n. And
the correlation of other tallies can be calculated from the
correlation of fission source distribution [8].

Theory of Multitype Branching Processes

The model of multitype branching process discretizes the
neutron phase space in space, angle and energy into m discrete
regions and denotes the system state at generation n with a
vector Z(n). The lth component of the vector corresponds to
the number of neutrons belonging to region l at generation n.
A neutron in discretized phase space region l is defined to be
of type l.

Z(n) = (Z1(n), · · · ,Zl(n), · · · ,Zm(n)) (1)

The state vector at generation n are related with that of
generation n − 1 through

Z(n) =

m∑
i=1

Zi(n−1)∑
j=1

Yi j (2)

where Yi j is the state vector generated by the jth neutron of
type i at generation n − 1.

The moment generating function of Z(n) is defined as

Fn(r0, s) =
∑

r
P (Z(n) = r|Z(0) = r0)

m∏
i=1

sri
i (3)

where r0 denotes the initial configuration of neutrons in the
discretized phase space. Thus, if r0 is point source of type i,
we can denote Fn(r0, s) as Fn(i, s). It can also be shown that

Fn(r0, s) =

m∏
i=1

Fn(i, s)ri
0 (4)

Fn(i, s) can be evaluated from F1(i, s) recursively by defin-
ing the vector of function f (n, s) as in Eq 5:

f (1, s) = (F1(1, s), · · · , F1(m, s))
f (n, s) = f (n − 1, f (1, s))

(5)

Fn(i, s) = ( f (n, s))i (6)

where Fn(i, s) is the ith component of the vector f (n, s).
The spatial moments of Zl(n) such as E[Zl(n)],

E[Zl(n)Z j(n)] and E[Zl(n)Z j(n)Zk(n)], denoted by µl(n), Cl, j(n)
and Tl, j,k(n) respectively, can be evaluated by taking deriva-
tives of Fn(r0, s). The recursive relation (Eq 5) yields the
evolution of the spatial moments:

µi(n + 1) = µl(n)Ml
i

Ci, j(n + 1) = Ml
iCl,h(n)Mh

j + V l
i, jµl(n)

Tk, j,i(n + 1) = Tg,h,l(n)Mg
k Mh

j Ml
i + V l

j,iM
α
k Cl,α(n)

+ V l
k,iM

α
j Cl,α(n) + V l

j,k Mα
i Cl,α(n) + W l

i, j,kµl(n)
(7)



where the Einstein tensor notation is used (the sum is taken
over all values of the index whenever the same symbol appears
as a subscript and superscript in the same term). Ml

i , V l
i, j and

W l
i, j,k are defined as the first, second and third spatial moment

responses to a point source integrated over phase space cell l:

Ml
i = E[Zi(1)|(r0)h = δl,h]

V l
i, j = E[(Zi(1) − µi(1))(Z j(1) − µ j(1))|(r0)h = δl,h]

W l
i, j,k =

E[(Zi(1) − µi(1))(Z j(1) − µ j(1))(Zk(1) − µk(1))|(r0)h = δl,h]
(8)

To calculate the generation-to-generation correlation, the
joint moment generating function of Z(n) and Z(n + k) is also
required (where k is the fission source lag):

Fn,n+k (r0, s, t) =∑
r,q
P (Z(n) = r, Z(n + k) = q|Z(0) = r0)

m∏
i=1

sri
i tqi

i
(9)

The joint moment generating function Fn,n+k(r0, s, t) sat-
isfies the functional equation

Fn,n+k (r0, s, t) = Fn(r0,u(k))
ui(k) = siFk(i, t)

(10)

Approximating the ACCs

Since the Multitype Branching Processes does not include
neutron population normalization, the forthcoming simulation
will average fission source distribution Xl(n) (defined in Eq 11)
rather than the count of fission source Zl(n).

Xl(n) ≡
Zl(n)

m∑
i=1

Zi(n)
(11)

The ACC of Xl between generation n and n + k is defined
as

ρn,k =
Cov[Xl(n), Xl(n + k)]

√
Var[Xl(n)]Var[Xl(n + k)]

(12)

Taking derivatives of moment generating fuctions in Eq 3
and Eq 9 gives expectation of products of Zl(n) such as
E[Zl(n)], E[Zl(n)Z j(n)] and E[Zl(n)Zl(n + k)]. However, to
evaluate the variance and covariance terms in Eq 12, expec-
tations in the form of E[Xl(n)] and E[Xl(n)Xl(n + k)] are re-
quired, which must be transformed to expectations of products
of Zl(n).

To perform the transformation, the definition of Xl(n)
(Eq 11) is viewed as a function of Z(n) and expanded around
E[Z(n)] (≡ µ(n)):

Xl(n) ≡ gl(Z(n)) = gl(µ(n))

+

m∑
i=1

∂gl(Z(n))
∂Zi(n)

∣∣∣∣∣
Z(n)=µ(n)

(Zi(n) − µi(n))

+

m∑
i, j=1

∂2gl(Z(n))
∂Zi(n)∂Z j(n)

∣∣∣∣∣∣
Z(n)=µ(n)

(Zi(n) − µi(n))(Z j(n) − µ j(n))

+ · · ·

(13)

where the derivatives of gl(Z(n)) can be calculated from Eq 11
as

∂gl(Z(n))
∂Zi(n)

∣∣∣∣∣
Z(n)=µ(n)

=
δi,l

µ(n)
−
µl(n)
µ(n)2 (14)

∂2gl(Z(n))
∂Zi(n)∂Z j(n)

∣∣∣∣∣∣
Z(n)=µ(n)

= −
δi,l

µ(n)2 −
δ j,l

µ(n)2 + 2
µl(n)
µ(n)3 (15)

where

µ(n) ≡
m∑

i=1

µi(n) (16)

With the expansion of Xl(n) in Eq 13, the variances
required to evaluate ρn,k(Xl) (Eq 12) can be approximated
with the expectation of products of Zl(n) in the form
of E[Zi(n)Z j(n)],E[Zi(n)Z j(n + k)], E[Zi(n)Z j(n)Zl(n)] and
E[Zi(n)Z j(n)Zl(n + k)].

It can be shown that in the expansion of the (co)variances
in Eq 12, each term are on the order of E(Zl(n)−µl(n))α

µ(n)α , α ≥ 2. The
expansion is valid when the system has a large number (µ(n))
of expected neutrons. For example, the 3rd order expansion of
Cov[Xl(n), Xl(n + k)] is given in Eq 17:

Cov[Xl(n), Xl(n + k)] =∑
i, j

(
δi,l

µ(n)
−
µl(n)
µ(n)2

) (
δi,l

µ(n + k)
−
µl(n + k)
µ(n + k)2

)
(
E[Zi(n)Z j(n + k)] − µi(n)µ j(n + k)

)
+

1
2

∑
h,i, j

(
δh,l

µ(n)
−
µl(n)
µ(n)2

) (
−

δi,l

µ(n + k)2 −
δ j,l

µ(n + k)2 + 2
µl(n + k)
µ(n + k)3

)
(
E[Zi(n + k)Z j(n + k)Zl(n)]

− µi(n + k)E[Z j(n + k)Zl(n)] − µl(n)E[Zi(n + k)Z j(n + k)]

+ 2µi(n + k)µ j(n + k)µl(n)
)

+
1
2

∑
h,i, j

(
δh,l

µ(n + k)
−
µl(n + k)
µ(n + k)2

) (
−

δi,l

µ(n)2 −
δ j,l

µ(n)2 + 2
µl(n)
µ(n)3

)
(
E[Zi(n)Z j(n)Zl(n + k)]

− µi(n)E[Z j(n)Zl(n + k)] − µl(n + k)E[Zi(n)Z j(n)]

+ 2µi(n)µ j(n)µl(n + k)
)

(17)

Procedure to Calculate ρn,k

Knowing the spatial moments, serial moments, evolution
equations and expansions of Xl(n), generation-to-generation
correlation coefficients, ρn,k(Xl), can be calculated following
the steps below:

1. Calculate the spatial moment responses Ml
i , V l

i, j and W l
i, j,k

2. Evolve the spatial moments µi(n), Ci, j(n) and Ti, j,k(n)

3. Combine the spatial moments of different generations to
evaluate the serial-spatial moments

4. Substitute the moments into expansion of Var[Xl(n)] and
Cov[Xl(n), Xl(n + k)] to evaluate ρn,k(Xl)



When evaluating the ACC of tally regions that are coarser
than the discretized phase space, a condensation step should
be inserted between step 3 and 4 which corresponds simply to
the sum of the fine mesh contributions in the coarser mesh.

RESULTS AND ANALYSIS

Demonstration Problem

The simple benchmark was chosen as a 400 cm slab with
vacuum boundaries and cross sections selected to mimic the
migration area of a PWR as done in Ref [4]. Since the the-
oretical development assumes a free neutron population (i.e.
no population control between generations), ν = 2.46425 was
selected to keep the system near critical. Future work will
evaluate the impact of relaxing this assumption.

Spatial Moment Responses Ml
i , V l

i, j, W l
i, j,k

The spatial moment responses are calculated from the
transfer matrix P, where the matrix element Pi, j is the proba-
bility that a neutron born at phase space cell i is absorbed at
phase space cell j. In this case, the phase space is discretized
into 400 cells (fine enough to assume a flat source in each cell)
and the matrix P is tallied from a uniformly distributed source
using 200 million neutrons. Knowing the matrix P, the spatial
moment responses can be calculated as

Ml
i = Pl,iEξ (18)

V l
i, j = Pl,iδi, jEξ

2 − Pl,iPl, j(Eξ)2 (19)

where ξ is the random variable corresponding to the number
of new neutrons created after absorption takes place, with ξ
taking the following distribution:

P(ξ = 0) =
Σc

Σc + Σ f

P(ξ = 1) = 0

P(ξ = 2) = (3 − ν)
Σ f

Σc + Σ f

P(ξ = 2) = (ν − 2)
Σ f

Σc + Σ f

(20)

In the slab problem, the (co)variances expansion shown in
Eq 17 is truncated to second order and provides sufficient
accuracy. Therefore only the first and second spatial moment
reponses (Ml

i , V l
i, j) are needed.

Auto-Correlation Coefficients

With the spatial moment responses evaluated, ACC for
any tally region l can be estimated following the steps in the
last section. Verification is performed by performing 200
independent eigenvalue simulations and manually computing
the (co)variances.

The results are given in Fig 1 and Fig 2 at two different
tally locations, where the solid lines correspond to the ACC
predicted by the theory of multitype branching processes and
the dotted lines correspond to the ACC estimated from the 200
independent simulations.
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Fig. 1. ACC for different mesh sizes at slab boundary
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Fig. 2. ACC for different mesh sizes at slab center

Variance Underestimation Ratio

With the predicted ACC’s, the variance underestimation
ratio for each tally region can be calculated [4]. The corrected
variances for the boundary tally region and center tally region
are plotted in Fig 3 and Fig 4. The dotted lines correspond to
the variance of X̄l calculated over the 200 simulations, while
the green lines indicate the ideal convergence rate if neutrons
were truly independent. The red lines Var[X̄l] correspond to
the variance predicted using the theory of multitype branching
processes.

Bias of Sample Variance Estimator

Fig 3 and Fig 4 show that the theory can predict the
underestimation ratio (≡ r) of Var[X̄l] (if approximated by
Var[Xl]/N). However, the sample variance (Var[Xl]) itself is
biased due to the generation-to-generation correlation [4] but
can be corrected using the predicted r.

Var[Xl] =
N − 1

N − r(N)
Var′[Xl] (21)
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Fig. 3. Var[X̄l] for 20cm mesh at slab boundary
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Fig. 4. Var[X̄l] for 20cm mesh at slab center

where Var′[Xl] is the sample variance of tallies of region l
from N active generations. The dotted line in Fig 5 plots the
ratio of sample variance (Var′[Xl]) estimated from various
sample sizes (number of active generations) and that estimated
from the largest sample size. It is consistent with the bias
factor (Eq 21) predicted from ACC’s.

CONCLUSIONS

Applying the theory of MBP into the discretized phase
space of neutron configurations can predict the ACC’s and can
therefore correct the bias of sample var iance Var[Xl] and the
underestimation ratio of Var[X̄l]. Future work will include
verifying the MBP method in continuous energy simulations,
developing the theory for coarse DPS cells and calculating
variance underestimation ratio for the uncertainty of ke f f . Ad-
ditional work will focus on the integration of this methodology
into typical Monte Carlo eigenvalue solvers using population
control.
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Fig. 5. Bias factor of Var[Xl] for 20cm mesh at slab center
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