
LOW-VARIANCE MONTE CARLO SIMULATION OF THERMAL TRANSPORT IN
GRAPHENE

Colin Landon
Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139
Email: clandon@mit.edu

Nicolas G. Hadjiconstantinou
Department of Mechanical Engineering
Massachusetts Institute of Technology

Cambridge, MA 02139
Email: ngh@mit.edu

ABSTRACT
Due to its unique thermal properties, graphene has gener-

ated considerable interest in the context of thermal management
applications. In order to correctly treat heat transfer in this ma-
terial, while still reaching device-level length and time scales,
a kinetic description, such as the Boltzmann transport equation,
is typically required. We present a Monte Carlo method for ob-
taining numerical solutions of this description that dramatically
outperforms traditional Monte Carlo approaches by simulating
only the deviation from equilibrium. We validate the simulation
method using an analytical solution of the Boltzmann equation
for long graphene nanoribbons; we also use this result to char-
acterize the error associated with previous approximate solutions
of this problem.

INTRODUCTION
Graphene consists of a single layer of sp2 bonded carbon

atoms. The strong bonds impart favorable mechanical, thermal
and electrical properties [1, 2], which have resulted in consider-
able interest in graphene-based devices. In this work, we con-
sider thermal transport in graphene devices, where due to long
phonon mean free paths, Fourier-based descriptions are insuffi-
cient.

To capture this behavior, we use a semi-classical model
based on the phonon Boltzmann equation [3] which treats
phonons as classical point particles whose velocity is determined
from a quantum-mechanically determined dispersion relation. At
boundaries, transmission and reflection phenomena are captured

by quantum-based transmission and reflection coefficients. Some
other wave-like properties (i.e. interference and coherence) are
not captured using this approach. Fortunately, the length scale for
which the latter are expected to be important is small compared
to the size of typical graphene devices. At room temperature and
using the Debye approximation for phonon energy E = hvD/λ ,
where h is Planck’s constant and vD ≈ 2×104m/s [4] is the De-
bye velocity, wave-like phenomena are of the same order as ther-
mal (classical) effects at a length scale of O(1nm). Thus, for
ribbons of widths W ∼O(10nm) and larger, we expect our semi-
classical approach to be applicable.

The high-dimensionality and singularities in the distribu-
tion function associated with solutions of the Boltzmann equa-
tion [5], as well as complex geometries typically found in en-
gineering problems, make Monte Carlo (MC) methods for solv-
ing this equation appealing. Unfortunately, the convergence of
Monte Carlo methods with the number of samples is slow, re-
sulting in high statistical uncertainty (noise), that in some cases
obscures the phenomenon of interest, particularly for near equi-
librium problems [6].

It was recently shown that this limitation can be overcome
by “deviational” methods, such at the Low-variance Deviational
Simulation Monte Carlo (LVDSMC) [5, 7–9]. By simulating
only the deviation from equilibrium, these methods drastically
reduce the statistical uncertainty associated with the Monte Carlo
sampling process, thereby significantly outperforming traditional
Monte Carlo approaches (e.g. [10, 11]).

Nanoribbons are a fundamental component of many
graphene-based devices and thus understanding their heat trans-
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port properties is of considerable importance. So far, their ef-
fective thermal conductivity has been modeled using one of two
approximate approaches: the first approach assumes that their
finite size imposes a wavelength cut-off above which phonons
do not contribute to the heat flux [2, 12–14]; the second ap-
proach assumes that the effect of boundaries can be accounted
for by augmenting the homogeneous scattering rate [15–17] of
the material. In this paper, we use a combination of analytical
results and low-variance simulation methods to obtain accurate
solutions of the Boltzmann equation for the effective thermal
conductivity of graphene nanoribbons with diffusely scattering
boundaries. Specifically, we use an analytical solution of the
Boltzmann equation for infinitely long graphene nanoribbons to
validate our LVDSMC approach and characterize the error asso-
ciated with the previous approximate approaches.

SIMULATION METHOD
The phonon Boltzmann equation, first formulated by

Peierls [3], is an evolution equation for the single-particle dis-
tribution function f = f (t,x,k, p) where t is the time, x is the
position, k is the wavevector, and p is the polarization. In what
follows, when no ambiguity exists, the functional dependence of
the distribution function on all variables will not be explicitly
indicated.

In Monte Carlo solution methods, significant computational
advantage is gained [5, 7–9] by considering deviations f d =
f − f eq from a reference equilibrium (Bose-Einstein) distribu-
tion f eq = f BE(ω,Teq) = (exp

[
(h̄ω)/(kBTeq)

]
− 1)−1 at a suit-

ably chosen equilibrium temperature Teq. Although we have
written the distribution as a function of the frequency ω , it still
depends upon the wave vector through the dispersion relation
ω = ω(k, p). Here, we choose to simulate the Boltzmann equa-
tion in terms of energy,

∂ h̄ω f d

∂ t
+v ·∇xh̄ω f d =− h̄ω f d− h̄ω f loc,d

τ(ω, p,T )
, (1)

as recommended in [9]; this improves the energy conservation
properties of the algorithm. In our notation, v = v(k, p) =
∇kω(k, p) is the phonon group velocity; by subtracting the
equilibrium distribution from the local distribution in the colli-
sion term, one obtains the local deviational distribution function
f loc,d = f loc− f eq.

The LVDSMC simulation uses computational particles to
represent and sample h̄ω f d. For convenience and in accordance
with available relaxation times, we assume isotropy and include
the density of states (denoted by D(ω, p) for polarization p) so

that the computational particles are a discrete approximation of

F (ω) = ∑
p

h̄ω f d(ω)
D(ω, p)

2π
(2)

≈ Eeff ∑
i

Siδ
2(x−xi)δ (ω−ωi)δ (θ −θi)δp,pi ,

where Eeff is the effective energy carried by each computational
particle and Si is the sign of the particle (+1 or -1 for positive
and negative deviations from equilibrium, respectively). Here
we have written the distribution function in terms of the fre-
quency ω , which is convenient for readability, but only admissi-
ble for one-to-one dispersion relations like the acoustic branches
in graphene. In this notational scheme, the group velocity is a
function of frequency, angle, and polarization v = v(ω,θ , p);
from which we can write the density of states for an isotropic
atomically thin sheet (with thickness δ ) as

D(ω, p)dω =
ω

2π|v(ω,θ , p)|δ
dω. (3)

The dynamic behavior of the computational particles is gov-
erned by equation (1). As is typical in Monte Carlo particle
methods, integration of this equation utilizes four main algorith-
mic ingredients: initialization, sampling, advection and scatter-
ing. These are discussed below. The details of the implemen-
tation are discussed by Péraud and Hadjiconstantinou for three-
dimensional phonon simulations [9]. Here we briefly describe
the algorithm with particular emphasis on the changes required
for simulating a two-dimensional material.

Initialization
Given some isotropic initial condition f (ω, t = 0), the sim-

ulation is started by generating particles from the distribution

F (ω)dω =∑
p

h̄ω
[

f (ω, t = 0)− f BE(ω,Teq)
]

D(ω, p)dω. (4)

Frequently, f (ω, t = 0) is another equilibrium distribution, either
due to the problem definition, or, as is the case here, because the
interest lies in the steady state solution of the Boltzmann equation
and thus f (ω, t = 0) can be chosen with convenience in mind. In
both cases, if the reference equilibrium temperature is chosen to
be the same as the initial equilibrium temperature, the simulation
starts with no (deviational) particles in the simulation domain.
This approach is adopted here.

Sampling
All properties of interest over some region of space V are

calculated by taking moments of the distribution function. In
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particular, the energy is given by

E = ∑
p

∫
x∈V

∫
ωp,max

0
h̄ω f (ω)D(ω, p)dωd3x (5)

where ωp,max is the upper limit of the dispersion for branch p. In
light of Eqn. (2), we decompose this into a deviational part and
an equilibrium part

E =
∫

x∈V

∫
ωp,max

0
F (ω)dωd3x+Eeq(Teq)

≈Eeff ∑
i

Si +Eeq(Teq). (6)

The last term in Eqn. (6) can be calculated deterministically
(with no stochastic noise) from

Eeq(T ) =V ∑
p

∫
ωp,max

0

h̄ω

exp
(

h̄ω

kBT

)
−1

D(ω, p)dω. (7)

Thereby the computational effort is focused only on the first
term, which leads to the dramatic variance-reduction exhibited
by LVDSMC simulations. Similarly, the heat flux can be calcu-
lated from

q′′ =
1
V ∑

p

∫
x∈V

∫ 2π

0

∫
ωp,max

0
vh̄ω f (ω)

D(ω, p)
2π

dωdθd3x (8)

≈ Eeff

V ∑
i

Siv(ωi,θi, pi).

Advection
During the advective step, particles move ballistically ac-

cording to xi(t +∆t) = xi(t) + vi∆t. When particles encounter
boundaries, boundary conditions are imposed by considering the
physical interpretation of the associated boundary condition in
terms of the deviation from equilibrium. Examples can be found
in [9].

Here we discuss the case of a boundary at a fixed tempera-
ture Tw. In what follows, we will use the notation

f d(ω;T, T̂ ) = f BE(ω,T )− f BE(ω, T̂ ) (9)

to denote the deviational distribution arising from the difference
between two equilibrium distributions.

To determine the energy flux at such a boundary, we use the
heat flux relation Eqn. (8), which yields

q′′w =∑
p

∫
π/2

−π/2

∫
ωp,max

0
h̄ω|v|cos(θ) f d(ω;Tw,Teq)

D(ω, p)
2π

dωdθ ,

(10)

where θ is measured with respect to the boundary normal. Equa-
tion (10) allows us to conclude that the distribution from which
particle frequencies need to be generated is

F (ω)dω = ∑
p

h̄ω|v| f d(ω;Tw,Teq)D(ω, p)dω, (11)

while the angular distribution follows P(θ)dθ = cos(θ)
2 dθ .

The boundary condition just described could be used to
apply a temperature gradient along the graphene nanoribbon,
but this approach would require explicitly simulating its entire
length. For the very long ribbons of interest here, a more con-
venient approach consists of simulating only a small segment of
the ribbon (length L) and subjecting it to a uniform temperature
gradient (T2−T1)/L, where T1 and T2 are the temperatures at the
ribbon boundaries in the axial direction (corresponding to the rib-
bon length). This boundary condition has been developed [11] as
a means of calculating the effective thermal conductivity of peri-
odic nanostructures subject to an external temperature gradient.
Deviational simulations lend themselves naturally to this type of
boundary condition: they can be implemented [9] by applying
toroidal boundary conditions to existing particles, while generat-
ing new particles at the periodic boundaries. At the boundary at
temperature T1, the particles are drawn from the distribution

F (ω)dω = ∑
p

h̄ω|v| f d(ω;T1,T2)D(ω, p)dω, (12)

while due to the symmetry inherent in this problem and in order
to enforce energy conservation, the same frequencies can be used
for the particles generated at the boundary at T2, provided their
signs are reversed [ f d(ω;T1,T2) =− f d(ω;T2,T1)]. The angular
distribution of particles follows P(θ)dθ = cos(θ)

2 dθ .
Nanoribbon free boundaries are commonly modeled as dif-

fuse adiabatic boundaries: particles incident on the boundary are
reflected back into the simulation domain, with an angular distri-
bution given by P(θ)dθ = cos(θ)

2 dθ .

Scattering
In the scattering step, particles are selected propor-

tionally to their scattering probability P(ωi, pi,Tloc) = 1 −
exp [−∆t/τ(ωi, pi,Tloc)] for deletion. The local temperature Tloc
is determined by computing the local energy Eloc with Eqn. (6)
and then by numerically inverting Eqn. (7).

After particle deletion, new particles are generated to drive
the simulation towards the local equilibrium, f loc, a Bose-
Einstein distribution at the scattering pseudo-temperature, Ts.
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FIGURE 1. SCHEMATIC OF NANORIBBON OF GRAPHENE
WITH DIFFUSE BOUNDARIES

The latter is defined such that

∑
p

∫
ωp,max

0

h̄ω f BE(ω,Ts)

τ(ω, p,Tloc)
D(ω, p)dω (13)

= ∑
p

∫
ωp,max

0

h̄ω f (ω)

τ(ω, p,Tloc)
D(ω, p)dω,

which enforces energy conservation during scattering. The
pseudo-temperature is calculated by numerically inverting Eqn.
(13) whose right-hand-side can be evaluated from simulation
data. The total number of new particles to draw and their as-
sociated sign is determined by the sum of the signs of deleted
particles; the new particles are drawn from

F (ω)dω = ∑
p

h̄ω
f d(ω;Ts,Teq)

τ(ω, p,Tloc)
D(ω, p)dω. (14)

According to our notation, f d(ω;Ts,Teq) = f loc,d from Eqn. (1).

MATERIAL MODEL
In this section, we focus our discussion by specifying our

choice of phonon dispersion relation and relaxation times. The
calculations in this work will be for near room temperature iso-
topically pure graphene with no point defects, strain, or grain
boundaries. We use the phonon dispersion calculated from den-
sity functional theory (Quantum-Espresso) according to the pa-
rameters given by Mounet [18]. Due to our assumption of
isotropy, we must choose a single direction in the hexagonal Bril-
louin zone; here, we chose Γ = [0,0] to K = [ 4π

3a ,0]. For relax-
ation times, we use a Debye-Callaway-like model [15, 19] fol-
lowing the adaptation for graphene from Aksamija [17], which
agreed with experimentally measured heat fluxes. Normal scat-
tering is neglected; the umklapp scattering rate is approximately
given by [19]

τ(ω, p,T )−1 ≈
h̄γ2

p

MΘpv̄2
p

ω
2T exp(−Θp/3T ), (15)
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FIGURE 2. EFFECTIVE CONDUCTIVITY OF LONG
GRAPHENE NANORIBBONS AS A FUNCTION OF WIDTH.
COMPARISON OF VARIOUS METHODS.

where M is the average atomic mass, v̄p is the speed of sound
(the slope of the dispersion relation near the Γ point) for branch
p, γp is the Grüneisen parameter for branch p which has the value
of 0.7 for the transverse acoustic branch and 1.8 for the longitu-
dinal acoustic branch [18], and Θp is the branch specific Debye
temperature obtained from [17]

Θ
2
p =

5h̄2

3k2
B

∫
ω(k, p)2kdk∫

kdk
. (16)

Near room temperature, the out-of-plane branches can be ne-
glected, due to their large Grüneisen parameter and small group
velocity. The optical branches are also neglected due to their
small group velocity. In other words, here we use a two branch
model (TA and LA) with DFT calculated dispersion relations
coupled to the empirical relaxation time model.

LONG GRAPHENE NANORIBBONS
In this section we discuss the effective thermal conductivity,

κeff = q′′L/(∆T ), of long graphene nanoribbons. The geometry
and associated nomenclature is shown in Fig. 1. Finite length
nanoribbons will be discussed in a future publication [20].

Even before the first isolation of graphene flakes, Klemens
recognized that two-dimensional structures would have unique
thermal transport characteristics. Specifically, the thermal con-
ductivity is only finite for finite sized graphene samples [12] and
is thus a device property and not a material property. To cap-
ture this size-effect, Klemens formulated a cut-off frequency by
assuming that “the [phonon] mean free path cannot exceed the
smallest linear dimension of the sheet.” This approach leads to
an effective thermal conductivity that increases with increasing
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ribbon width [13], but is significantly different from the analyti-
cal solution of the Boltzmann equation discussed below. From a
kinetic theory point of view, this is expected, since phonons with
mean free paths longer than the size of the graphene ribbon still
contribute to heat transfer, albeit ballistically. To quantify the er-
ror associated with Klemens’ approach and compare with other
methods, we calculate the frequency-dependent mean free path
Λ(ω, p) = τ(ω, p,T )|v(ω, p)| and cut off all contributions to the
heat flux with Λ >W . The results at T = 300K are shown in Fig.
2 and are labeled “Cut-off.”

Our results show that adding a (homogeneous) scattering
rate to the intrinsic (phonon-phonon) scattering rate in Eqn. (15)
as a means of capturing the effect of boundaries is a more rea-
sonable approximation. Based on physical reasoning [16], the
additional scattering time is given by

τb(ω) =
W

2|v|sin(θ)
, (17)

which represents the time required by the phonon to traverse a
ribbon of width W . Provided this scattering mechanism is inde-
pendent of the homogeneous scattering rate, the two can be com-
bined using Matthiessen’s rule. However, boundary scattering
does not occur homogeneously throughout the ribbon as this ap-
proach assumes. Despite the above, this approach, labeled “Scat.
rate” in Fig. 2, has been widely used in the literature and is sig-
nificantly closer to the exact solution, which we now discuss.

Analytical Solution For Long Nanoribbons
Both of the above approximate approaches are unnecessary

because the Boltzmann equation can be solved exactly for an in-
finitely long nanoribbon with diffuse boundaries. The solution
given below is similar to the well-known classical size-effect of
a thin film [9, 16, 21], but to our knowledge, has yet to appear in
the literature for two-dimensional materials.

Using the fact that for this problem the distribution at the
diffuse boundaries is at the local equilibrium, the solution for the
distribution function for 0 < θ < π is [20]

f d(y)+=−τ|v|cos(θ)
∂ f BE

∂T
dT
dx

(
1− exp

(
− y

τ|v|sin(θ)

))
(18a)

and for π < θ < 2π

f d(y)−=−τ|v|cos(θ)
∂ f BE

∂T
dT
dx

(
1− exp

(
− (y−W )

τ|v|sin(θ)

))
(18b)

With the distribution function known, the effective ribbon
conductivity can be calculated from Eqn. (8) and the error asso-
ciated with the two above-described approximate approaches can
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FIGURE 3. HEAT FLUX DISTRIBUTION ACROSS RIBBON.
COMPARISON OF STANDARD MC AND LVDSMC.

be quantified. Fig. 2 shows that, as expected, the additional ho-
mogeneous scattering rate provides a better approximation than
the frequency cut-off approach, but it still differs from the ana-
lytical solution by an error on the order of 5−10%.

Although the exact solution (18a) and (18b) is the “most ef-
ficient” solution to this specific problem, there are many more
geometries for which no analytical solution is available. Thus
the nanoribbon case serves to validate the LVDSMC method,
which can then be used for problems less tractable by analytic ap-
proaches. As reflected in Fig. 2, the LVDSMC method is within
0.5% of the exact solution for all ribbon widths.

An important feature of both the exact solution and the
LVDSMC method is that they can provide information about the
spatial distribution of heat flux within a nanoribbon, while the
approximate solutions are constrained to only the average heat
flux. Figure 3 shows that the heat flux across the ribbon width is
non-uniform.

Figure 3 also demonstrates the variance-reduction provided
by the LVDSMC method compared to the standard direct Monte
Carlo (MC) method. Both were run with essentially the same
number of samples and computational cost. For a simulation do-
main of L = 6µm, a temperature difference of 2K and W = 6µm,
the standard deviation in the heat flux obtained by LVDSMC is
nearly two orders of magnitude smaller than the standard de-
viation of the MC solution (heat fluxes in the MC simulation
were shifted to compensate for numerical issues with the MC ap-
proach); this corresponds to a speedup of almost four orders of
magnitude (the standard deviation scales with the square root of
the number of samples). As has been shown elsewhere [8,9], the
comparative advantage of the LVDSMC simulation continues to
grow for smaller deviations from equilibrium. Determination of
the effective conductivity of a structure at a specific temperature
is inherently a small deviation from equilibrium problem, so this
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feature is very valuable in this context.

CONCLUSION
The low-variance deviational Monte Carlo method allows

efficient solution of thermal transport problems in graphene
nanostructures and is significantly more efficient than the stan-
dard MC method for solving the Boltzmann equation. As a
Monte Carlo based simulation method, it is easy to extend to
more complicated geometries, which should be useful for in-
vestigating various features of thermal transport in graphene, as
well as for designing and optimizing future graphene devices.
A drawback of the present approach is the use of the relaxation
time approximation for which only isotropic relaxation times are
available. This imposed assumption of isotropy restricts us from
conducting a consistent investigation of the effect of edge chiral-
ity in graphene nanoribbons.

An analytical solution for thermal transport in infinitely long
graphene nanoribbons shows that the prominent approximate
method for estimating the effective thermal conductivity is rea-
sonable, and exhibits errors for the effective thermal conductivity
on the order of 10%. The other frequently used approximation,
based on a length scale cutoff, results in significantly larger er-
rors. Finite-length nanoribbons do not lend themselves to ana-
lytical solutions and will be investigated in the future using low-
variance deviational simulations.
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