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Abstract

We live in a world where digital trails of different forms of human activities compose big

urban data, allowing us to detect many aspects of how people experience the city in which

they live or come to visit. In this study we propose to enhance urban planning by taking into

a consideration individual preferences using information from an unconventional big data

source: dataset of geo-tagged photographs that people take in cities which we then use as a

measure of urban attractiveness. We discover and compare a temporal behavior of resi-

dents and visitors in ten most photographed cities in the world. Looking at the periodicity in

urban attractiveness, the results show that the strongest periodic patterns for visitors are

usually weekly or monthly. Moreover, by dividing cities into two groups based on which con-

tinent they belong to (i.e., North America or Europe), it can be concluded that unlike Euro-

pean cities, behavior of visitors in the US cities in general is similar to the behavior of their

residents. Finally, we apply two indices, called “dilatation attractiveness index” and “dilata-

tion index”, to our dataset which tell us the spatial and temporal attractiveness pulsations in

the city. The proposed methodology is not only important for urban planning, but also does

support various business and public stakeholder decision processes, concentrated for

example around the question how to attract more visitors to the city or estimate the impact

of special events organized there.

Introduction

Outputs of analyses on digital footprints can provide novel insights into how people live and

experience the city, revealing important aspects of human mobility including tourism. The

most widespread way of extracting information from digital traces is to use mobile phone rec-

ords [1, 2] which helped scholars to develop accurate methods for understanding human

mobility patterns [3–5], land use classification [6–8] or regional delineation [9–11]. Neverthe-

less, other sources of big data are also becoming increasingly useful, such as digital maps [12],

credit card payments [13, 14], online social networks like Twitter [15] or Flickr [16],
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circulation of bank notes [17], vehicle GPS traces [18], migration networks [19]. In particular,

besides Twitter there is a plethora of online social networks, used by a huge number of people

every day to share for example their interests, opinions, perceptions, photographs, resulting in

the emergence of very large datasets reflecting human behavior.

The focus of this paper is on geo-tagged photographs shared by users through online social

media platforms (e.g., Flickr), as publicly shared photographs present a feedback on urban

design and planning in a qualitative way and almost in a real time which can be a significant

addition to more traditional methods, e.g., surveys [20]. Namely, it has been already shown

that the number of geo-tagged photographs taken in a particular city serves as a good proxy

for studying city attractiveness [21–24]. Although perhaps they do not always share the same

reasons, both residents and visitors take photographs at the places they consider important

and that is useful for understanding what people like in cities, what they are interested in or

where they like to go. As those insights provide important directions for urban innovations,

our goal is not only to measure urban attractiveness at a certain moment or aggregate it over a

longer period of time, but also to detect how its patterns change over time.

Dataset

In our study we use publicly available data from the website sfgeo.org, which collects records

about photographs shared on the most popular photograph sharing websites (e.g., Flickr and

Picasa) [25]. From this dataset, which contains in total more than 100 million publicly shared

geo-tagged photographs taken during a period of 10 years, we omitted duplicates (9.33% of the

dataset in total) and photographs with incorrect timestamps (0.01% of the dataset in total).

Then, similarly to our previous paper [21], we limited our analysis to only those photographs

that were taken between 2007 and 2010 as these compose almost 75% of the entire dataset or

about 70 million of photographs in total. Finally, we ordered cities by the number of photo-

graphs taken in them (see Table 1) and chose to consider in further analysis ten most photo-

graphed ones: New York City, London, Paris, San Francisco, Washington DC, Barcelona,

Rome, Chicago, Los Angeles, Berlin.

We found that among ten most photographed places in the world there are five US and five

European cities. Since the raw dataset does not contain information about user home loca-

tions, which is important to distinguish between a resident and a tourist, we assigned home

Table 1. Heterogeneity of Flickr usage: total number of photographs taken worldwide by residents of

different areas versus their official population in 2008.

City Population (mln) Photographs taken Photographs per 1000 residents

New York City 8.36 1,026,199 122.75

London 7.81 1,151,799 147.48

Paris 2.23 534,092 239.50

San Francisco 0.81 851,425 1,051.14

Washington DC 0.59 525,313 890.36

Barcelona 1.62 255,038 157.43

Chicago 2.85 412,246 144.65

Los Angeles 3.83 289,810 75.67

Rome 2.71 126,011 46.50

Berlin 3.43 182,325 53.16

Rest of EU 4,82.61 8,637,148 17.90

Rest of the US 2,87.61 7,347,003 25.55

Rest of the world 5,905.14 6,877,894 1.16

doi:10.1371/journal.pone.0165753.t001

Uncovering Urban Temporal Patterns from Geo-Tagged Photography

PLOS ONE | DOI:10.1371/journal.pone.0165753 December 9, 2016 2 / 14

Telecommunications Company, The

ENELfoundation, Ericsson, Expo 2015, Ferrovial,

Liberty Mutual, The Regional Municipality of Wood

Buffalo, Volkswagen Electronics Research Lab,

UBER, and all the members of the MIT Senseable

City Lab Consortium for supporting the research.

The research was also supported by the National

Research Foundation, Prime Minister’s Office,

Singapore, under its CREATE programme,

Singapore-MIT Alliance for Research and

Technology (SMART) Future Urban Mobility (FM)

IRG and by research project “Managing Trust and

Coordinating Interactions in Smart Networks of

People, Machines and Organizations,” funded by

the Croatian Science Foundation under the project

UIP-11-2013-8813. M.C.G. and S.P. were partially

funded by the Department of Transportation’s

grant of the New England UTC Y25, the MIT

Portugal Program, and the Center for Complex

Engineering Systems at KACST-MIT. This research

has been partially funded through the SENSEable

city lab consortium. The consortium provided

support in the form of salaries for some of the

authors (IB, DK, CR) employed by the SENSEable

city lab, but did not have any additional role in the

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing Interests: The authors have declared

that no competing interests exist.



locations to users following the procedure described in our previous paper [21]: residents of a

certain city are considered to be those users who have the highest activity (expressed as the

number of photographs taken) in that city for the longest timespan (calculated as the number

of days between the first and the last photograph taken there) [21, 26, 27]. In the resulting data-

set, we identified home location for over 40,000 users, who took over 4.4 million photographs

in ten cities considered (over 83% of the photograph numbers shown in Table 1); we then con-

sider them as residents in their home city and as tourist in every other city they appear. More-

over, we distinguish between foreign and domestic tourists where the latter are tourists visiting

some city in their home country, while the former are traveling abroad. As the relationship

between the number of users identified as residents and the number of photographs is linear

to a high degree (R2ffi 0.85) [21], the number of photographs taken can be used as a proxy for

city attractiveness. We make the processed dataset and some of the scripts used in the further

analysis available for download (see the data availability statement) [28].

Temporal distribution

Rather than focusing only on aggregated urban attractiveness as done in [21], in this paper we

focus on temporal aspects where temporal distribution is studied at three different scales:

daily, weekly and annual ones, distinguishing among residents, domestic and foreign visitors.

Fig 1 shows average daily and weekly patterns for these categories along with monthly aggre-

gate numbers of photographs in New York, while S1 Fig shows the same for all cities. Looking

at the apparent patterns qualitatively first, we observe that US cities residents’ behavior is simi-

lar to the domestic visitors’ behavior, while in EU cities their behavior is more similar to for-

eign visitors no matter the temporal scale. Looking at the differences among different time

scales, daily scale shows the general behavior of the three categories (i.e., residents, domestic

visitors and foreign visitors) on an average day. Apart from the similarity between categories

mentioned above that we find on all three scales, what is also interesting at this scale is the gen-

eral trend that in all cities we have a peak between 12.00 and 18.00. Moreover, it is interesting

that there is a peak at 1.00 in the night. It is not only for visitors, but also for residents, particu-

larly elevated in Barcelona, Rome, Chicago and Los Angeles. Moreover, for the weekly scale we

can conclude that in all cities and for all categories of users the most active day is Saturday, fol-

lowed by Sunday, except for foreign tourists visiting New York City, San Francisco and Paris

and for domestic visitors in Barcelona, where the most active day is Sunday. Overall, the trend

for foreigners is much more flat compared to residents and domestic visitors, meaning that

their behavior does not change substantially during weekends and weekdays. This could be

Fig 1. Temporal distribution of activity in New York city, showing the typical daily (a) and weekly (b) patterns and month by month activity (c)

during our data collection period.

doi:10.1371/journal.pone.0165753.g001
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explained as they traveled longer distances to come to the city and want to experience as much

as they can during their visit. It could also mean that Flickr dataset captures more of the activ-

ity of foreign visitors who came for their leisure time than of those who came for business.

Finally, the yearly scale shows how behavior of different types of users changes on a month-to-

month basis, with peaks of varying amplitude during the summer months in most cities espe-

cially in the case of tourists, corresponding to the yearly variation of touristic activity and pho-

tographs opportunities as well.

A quantitative way to detect periodicity in a regular series of data is to inspect its power

spectrum. The power spectrum is the discrete Fourier transform of the auto covariance func-

tion of the data series. The periodogram plots the power versus frequency, so the seasonal pat-

terns show up as large spikes located at their frequencies [29]. In our case, the periodogram

shows the most active periods in which visitors and residents take photographs denoting the

periodicity of the attractiveness in the city. Applying the aforementioned process to residents’,

domestic and foreign visitors’ activities in all ten cities, we found the main periodicities as

shown in Fig 2, while we display plots of the power spectra in S2 Fig and the list of most impor-

tant periods in S1 Table.

As expected, the most important cycles are weekly and yearly with the former being the

most important for all cases except for tourists in Berlin, augmented with harmonics forming

the shape of the weekly and yearly patterns. Also for most cities it is apparent that tourists have

a much stronger yearly component than residents corresponding to the more seasonal nature

of tourism; more generally, we see that for residents the weekly period and periods shorter

than a week are relatively more important, while for visitors, longer periods are more pro-

nounced. This is in accordance with the observations made previously on the aggregated time

series and the general assumption that for residents, the weekly cycle plays a more prominent

role where several harmonics with periods shorter than a week contribute, while the number

of visitors is expected to have an important yearly pattern with more variation, the shape of

which can be made up of the significant harmonics with periods larger than a week.

Apart from looking at sources of periodicity (i.e., regular components) in the time series,

we look at the variation of photograph numbers in general and also after decomposing the

time series into deterministic and random components. Looking at the distribution of raw

daily photograph numbers at first, we get that the distributions can be well approximated by a

log-normal distribution (note: for residents and all cities: p>0.05, i.e., we cannot rule out the

null hypothesis of a log-normal distribution with 95% confidence; for tourists, p values are

smaller but the distribution still fits well visually). An example for New York City is shown in

Fig 3.

Next, we look at how time series of daily photograph numbers can be decomposed into the

combination of deterministic and stochastic components and estimate the relative importance

and again approximate the distribution of these. We use the following two options to decom-

pose the attractiveness time series:

At ¼ f tð Þ þ ut

At ¼ utf tð Þ

where At denotes temporal attractiveness, f(t) is a deterministic sequence and ut is the noise

component, with the two options being models with additive and multiplicative noise, respec-

tively. Further, the deterministic sequence consists of two parts: trend (dt) and seasonality (st):

f(t) = st × dt, while the stochastic sequence is representative of the random variations. To carry

out the decomposition, we need to specify the periodicity in the seasonal component; based on
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the power spectrum, we chose this to be one week. Illustration of this procedure for New York

City is shown in Figs 4 and 5 for the additive and multiplicative cases respectively.

We consider the noise as the most interesting component because it may represent the spe-

cial events in a city as deviations from the regular rhythm of activities. To quantify the impor-

tance of the noise, we report average normalized residuals in S1 Table, computed as

< ε > ¼ <
jut j

ðAtþf ðtÞÞ
2

> in the case of additive noise and as<ε> =< |ut − 1|> for multiplica-

tive noise, giving the relative importance or weight of noise when compared to the real activity

and the deterministic component. Looking at values in Table 2, we see that they are relatively

large, the noise is comparable to about 30%–60% of activity on average, while the trend shows

that noise decreases as total activity increases (in accordance with what we expect based on the

central limit theorem).

Looking at the distribution of individual components, we get that in the case of a multipli-

cative noise, the random component can also be described with a log-normal distribution for

residents and gives a good approximation in the case of tourists for most cities. The trend

Fig 2. Relative importance of periodicities from the power spectrum. The nine most common frequencies are shown for each city

separately for residents and tourists. From top to bottom: residents in US cities, tourists in US cities, residents in European cities, tourists in

European cities. Note that the y-axis scale is logarithmic.

doi:10.1371/journal.pone.0165753.g002
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distribution can also be approximated by a log-normal distribution; here, it gives a good fit in

the case of tourists in London, Barcelona, Chicago and Los Angeles and residents in New

York, while for the other cases the null hypothesis can be formally rejected, but the distribution

is still rather close to a log-normal (see Fig 6). To quantify to quality of fits, we give the associ-

ated p-values for all cases in S2 Table.

Fig 3. Distribution of total daily number of photographs made by New York City residents (a) and tourists (b). The blue lines correspond

to the empirical data and the red lines are the fitted distributions. The fit was estimated by calculating the mean and standard deviation of the

logarithm of daily photograph numbers and using a log-normal distribution with those as parameters. The associated p-values for fits are 0.244

and 0.049, respectively.

doi:10.1371/journal.pone.0165753.g003

Fig 4. The decomposition of the time series of attractiveness in New York City considering additive noise for residents (a) and visitors (b). The

first row is the observed data, the second is the deterministic part (i.e., trend and seasonal), the third the random component, while the 4th and 5th rows are

the seasonal (cyclic) part and the trend respectively.

doi:10.1371/journal.pone.0165753.g004
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We also extracted a list of what we called “outliers”, for each city. Particularly interesting in

this sense are the outliers relative to the random variations, because it is supposed to be able to

retrace special events. It is generally more interesting in this case detecting the activity of resi-

dents. Regarding the American cities, we noted that, in fact, from the outliers of the residents

it is possible to retrace the main important events for the population. In particular, in each city

(except Los Angeles) there is a trace of the 4th July. This seems to be the most photographed

event for the American people. Furthermore, in New York City, we found outliers related to

the Thanksgiving Day for each year. For example, we found an interesting outlier for residents

in Barcelona on 27 May 2009, when the soccer team won the Champions League.

Fig 5. The decomposition of the time series of attractiveness in New York City considering multiplicative noise for residents (a) and visitors

(b). The first row is the observed data, the second the general trend, the third the seasonality (cyclic events) and the last one is random (special events).

Note that the random component here is a scaling factor which multiplies the deterministic part.

doi:10.1371/journal.pone.0165753.g005

Table 2. Average normalized noise for different types of decomposition and different models.

Residents Visitors

City Additive noise Multiplicative noise Additive noise Multiplicative noise

New York City 0.3026359 0.3062597 0.3894293 0.3597991

London 0.3178385 0.3146551 0.4035543 0.3880250

Paris 0.3626344 0.3537219 0.4374607 0.3916178

San Francisco 0.3270483 0.3283090 0.4709700 0.4354612

Berlin 0.4953906 0.4751745 0.5729734 0.5173991

Washington 0.4761626 0.4550284 0.5677503 0.5191039

Barcelona 0.4322980 0.4200787 0.6452356 0.6013710

Rome 0.5695353 0.5461870 0.6448882 0.5690575

Chicago 0.4131704 0.4029115 0.6433112 0.5797068

Los Angeles 0.5194782 0.5004668 0.5874662 0.5491432

doi:10.1371/journal.pone.0165753.t002
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Spatio-temporal attractiveness

Having examined temporal patterns in the data, we now proceed with examining if there is an

interrelation between spatial and temporal patterns of photographic activity. Similarly to [30],

we use the dilatation index and dilatation coefficient to characterize if urban attractiveness is

distributed equally across the city or rather concentrated in only a few of its major areas. This

gives us an idea of collective behavior on the attractiveness and allows us to understand and

measure the pulse of the dynamic urban system. We start with considering the “Venables

index”, defined as:

VðtÞ ¼
X

i<j

siðtÞsjðtÞdi;j

where, in our case: si(t) denotes the number of shared photographs in cell i at time t and di,j is

the distance between cells i and j. When all the activities are concentrated only around one sin-

gle point, the value of V is equal to its minimum, zero. By normalizing V with the densities of

activity in each cell, we obtain the weighted average distance Dv (the “Venables distance”):

Dv tð Þ ¼
P

i<j siðtÞsjðtÞdi;j
P

i<j siðtÞsjðtÞ

Fig 6. Distribution of the random component (a,b) and trend (c,d) for residents (a,c) and tourists (b,d) in New York City. Blue lines are

the empirical data and red lines are the fitted distributions. With the exception of the random component for tourists, all can be considered a log-

normal distribution according to the formal Kolmogorov-Smirnov test.

doi:10.1371/journal.pone.0165753.g006
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In a monocentric city, i.e., where attractive places are spatially “segregated”, we expect a

large variation of the average distance Dv during the day as people converge around these dur-

ing the day. For more polycentric cities, where places are spatially less separated, we expect a

smaller variation of Dv than the one observed for monocentric cities as places are more

“mixed”, i.e., people and activity need not concentrate in just one area or few areas during the

day. In order to make sure that values of Dv are comparable among different cities, they should

be normalized by the city dimension,
ffiffiffiffi
A
p

[30], giving the dilatation attractiveness:

Dil ¼
Dvffiffiffiffi

A
p

where A denotes city official area. We compute Dil for typical weekdays and weekend days in

each city, as shown in Fig 7. When the value for dilatation attractiveness Dil is lower that

Fig 7. Dilatation of attractiveness. These figures show the dilatation attractiveness, evaluated with the explained method, for the 10 most photographed

cities, considering the American cities and the Europeans ones in an average weekday (a,b) and in an average weekend day (c,d).

doi:10.1371/journal.pone.0165753.g007
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means the attractiveness of the city is not equally distributed in all city areas, but it “collapses”

in few places that are close together.

We can conclude that generally European cities are characterized by lower values of dilata-

tion (i.e., lower than 0.2), with the exception of Barcelona and Paris, which, unlike more

“dilated” US cities also show several peaks on weekends. The US cities are in general character-

ized by higher values of dilatation (i.e., 0.2–0.6), but their curves are flatter than the European

ones with San Francisco being the most “dilated” US city. The most interesting difference

between a weekday and a weekend pattern can be observed in a case of Barcelona in the early

morning. There are several possible explanations for that—one of them being people who go

out late at night are distributed more evenly in the city and not only in the center. Moreover,

one can also notice an interesting invert peak of dilatation in Washington DC around 7 AM

when on a weekday everyone is getting up in the morning, while on weekends everyone is still

sleeping. From these curves, we can extract another feature: the dilatation index, as the ratio

between the maximum and the minimum Dv during the day that gives a measure of the maxi-

mum spatial spread of high density locations [30]:

m ¼
max tðDv tð ÞÞ
min tðDv tð ÞÞ

In Table 3 we display the computed dilatation index values (μ) of the cities. When compar-

ing values of dilatation indices for the US and European cities, we can notice a tendency for

former ones to mostly have a smaller dilatation index that the latter ones. Lower values of

parameter μ denote that the average distance Dv stays approximately the same throughout the

day, meaning that no matter which hour of the day it is, the spatial spread of the high density

locations does not change significantly. When places of activity are more entangled, then we

talk about more “mixed” cities. In the opposite case of large values of μ, the spatial organization

of the different high-density locations changes significantly along the day.

Summary and Conclusions

The common reason why people travel and visit new cities, as either domestic or foreign visi-

tors, is to experience new places they feel attracted to. A very direct measure of this attractive-

ness is the number of publicly shared photographs that people take in cities all around the

world. However, a measure of urban attractiveness is not static as it evolves over time, some-

times resulting in considerable variations over the course of a year or even over a single week

or a day. In this study we thus conducted an analysis of these temporal variations, providing

Table 3. Cities ranked by the dilatation index, distinguishing average weekday and average weekend day.

Weekdays Weekends

1 Los Angeles 1.22 1 San Francisco 1.31

2 San Francisco 1.24 2 New York City 1.33

3 New York City 1.32 3 Los Angeles 1.38

4 Paris 1.33 4 Berlin 1.44

5 Berlin 1.36 5 Chicago 1.56

6 Chicago 1.41 6 Paris 1.74

7 Washington DC 1.49 7 Washington DC 1.89

8 London 1.52 8 London 1.93

9 Barcelona 1.54 9 Barcelona 2.01

10 Rome 1.71 10 Rome 2.44

doi:10.1371/journal.pone.0165753.t003
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and comparing longitudinal characteristic for urban attractiveness patterns. Moreover, spatial

variations of attractiveness cannot be separated from temporal variations. The movement itself

usually is not the goal of an individual, but an intermediate step that is accomplished in a given

period of TIME to reach SPACE where the individual can take advantages of interest (attrac-

tiveness). Following this logic, in our study we have analyzed not only the daily temporal

dynamics (necessary for moving between two places in the territory), but also the periodicity

in weeks and months. Extrapolating this information can be very useful for studying attractive-

ness in general, but especially for the estimation of large flows of users and for preparing to

manage them, for example during special events or particular situations.

The novelty of our study is in the kind of data considered: geo-tagged photographs shared

using the most popular photograph sharing platforms (e.g., Flickr). Different sources of big

data have been used in planning science for a long time now (e.g., mobile phone records for

the transportation planning), but photographs can give us something more useful for urban-

ism in general—information about what people consider important and attractive, for any rea-

sons, in the city. For top ten most photographed cities in the world (i.e., five US cities and five

EU ones), we showed the general temporal distribution comprehending the daily, weekly and

month-by-month variation to detect behavior of residents, domestic and foreign visitors.

Results of our analysis on temporal distribution showed that for US cities visitors’ behavior in

general is more similar to domestic visitors’ behavior, while for EU cities, visitors’ general

behavior is more similar to the foreign ones. We also looked at the Fourier spectrum to iden-

tify the most important periodicity of attractiveness. Periodicity is what happens to the flow

within any given period or season, and is related to shifts in arrivals according to the day of the

week and/or the week of the month. The causes of periodicity are many and varied. We did

not analyze the causes, but we checked how and when periodicity is distributed in the city over

the time. This is quite significant in urban science. When seasonal flow demand decreases, in

fact, this has both direct and indirect effects upon city economy and wellness. What a city

should do is to provide price incentives to encourage the off season traveler with discounts and

other associated benefits. Knowing the periodicity of big flows could concretely help adminis-

trations, operators and users to manage transportation, organize events and choose the period

of vacation.

Our results suggest that for residents, the weekly pattern is most pronounced, while for visi-

tors the yearly pattern is more important. We considered the time series activities for residents

and visitors, extracting trend, seasonality and random events. We found that on average, the

random component constitutes about 30%-60% of activity (where the exact number depends

on the overall volume of activity); this also means that in the case of a special event, it can be

much higher. This method could be very interesting in particular for small cities, where special

events are not so frequent as in metropolitan areas and thus it is possible to really take in

account the impacts of them compared to the normal trend. Although in all cases we showed

results only for our ten cities, the same methodology can be also applied to other cities as well.

Finally, we applied two spatio-temporal measures, as space and time cannot be considered

just separated contributors: the dilatation attractiveness and the dilatation index, which give us

measures of how the attractiveness is distributed across the city area, by combining spatial and

temporal distribution. These measures revealed even more of differences between European

and US cities. Namely, by looking at the “dilatation attractiveness” index, we found that the

US cities in general have higher values of dilatation attractiveness and less variations compared

to European cities. This means that the US cities are more polycentric and “mixed” cities, per-

haps because of the fact that on average they are bigger than European cities. In fact, for a

higher value of “dilatation attractiveness” city is more “dilated”, more active in all their space.

This is also true for the second index, which is the ratio between the maximum and minimum
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value of “dilatation attractiveness” during the day. In conclusion, we measured and analyzed

spatio-temporal configuration of attractiveness in different cities and we found important sim-

ilarities and symmetries among them. This confirms previous research on urban human

behavior displaying high predictability in general [3, 31].
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