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Abstract— A significant problem when building complex
biomolecular circuits is due to context-dependence: the dy-
namics of a system are altered upon changes to its context,
potentially degrading the system’s performance. Here, we study
retroactivity, a specific type of context-dependence, by analyzing
the effects of loads on a transcription factor applied by the
transcription factor target sites. In particular, we study this
loading effect on the model of an activator-repressor oscillator,
an important motif in synthetic biology. Our analysis indicates
that strong activation and weak repression are key for a
stable limit cycle. Repression can be effectively weakened by
adding load to the repressor, while activation can be effectively
weakened by adding load to the activator. Therefore, loading the
repressor can be employed as a design parameter to establish a
stable limit cycle. In contrast, loading the activator is deleterious
to the clock.

I. INTRODUCTION

Modularity is the property that allows components to be
designed independently such that their input/output behavior
remains unchanged upon interconnection with other modules.
Modularity is, however, not universal and the dynamics of
engineering systems typically change when loaded. Recently,
it has been experimentally shown that biomolecular systems,
such as genetic circuits, experience these loading effects [1]-
[2], also called retroactivity [3]. Several types of simple
biomolecular circuits and motifs, such as the toggle switch
[4]-[6], gene oscillators [7]-[9], and logic gates [10]-[11]
have been modularly designed and experimentally validated,
and a major challenge in synthetic biology is to combine
these modules to construct complex circuits [12] for appli-
cations including biofuel technology [13], biosensors [14],
and various medical technologies [15]-[16].

To address the deleterious effects of retroactivity that cause
modularity to fail, insulation devices have been designed
to be placed between upstream and downstream systems
to act as a buffer. Such devices include using high gain
negative feedback [3], [17] and time scale separation [2],
[18]. However, retroactivity can be viewed as an additional
design parameter and in fact, all natural systems have some
form of load. Signal transduction networks often regulate
many downstream gene targets and in gene transcription
networks, transcription factors often have many DNA sites
to which they bind. Many of these sites do not even have
regulatory functionalities [19], and therefore it is plausible
that they are being used to tune the level and temporal
dynamics of transcription factors [1].
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Fig. 1. Diagram of a synthetic gene oscillator with A and R representing
the activator and repressor protein, respectively. A activates (arrow) mA and
mR. R represses (bar arrow) mR and mA.

Recent theoretical work has considered the effect of
loading on synthetic biological circuits and networks. It
has been theoretically shown that loading a genetic clock
through the use of additional DNA promoter binding sites
can switch it on or off and also enable frequency tuning
[19]. Retroactivity has been shown to affect the relative
stability of toggle switches, enabling the engineering of
biased switches [20]. The loading effects due to intramodular
and intermodular connections leading to internal, scaling,
and mixing retroactivity are studied in [21]. In this paper,
we consider the activator-repressor clock built in [9]. In
particular, we identify parametric conditions for the existence
of a stable limit cycle and analyze the effect of load on the
clock’s dynamics with regard to activating and quenching
oscillations using standard tools from dynamical systems
theory.

This paper is organized as follows. In Section II, we
derive a deterministic ODE model of the activator-repressor
clock from biochemical reactions. In Section III, we consider
a reduced system model and provide conditions for the
existence of a stable limit cycle. In Sections IV and V, the
effect of load to the activation and repression branches on
the dynamics of the oscillator, respectively is studied.

II. MODEL

A representation of the core network of the genetic oscil-
lator described in [9] is given in Fig. 1. The mRNA of the
activator protein (A) and repressor protein (R) are denoted by
mA and mR, respectively. Protein A positively regulates its
own production by activating itself through the production of
mA and the production of R by activating mR. Conversely, R
negatively regulates its own production by repressing itself
through the repression of mR and the production of A by
repressing mA.

A deterministic ODE model can be derived from con-
sidering the biochemical reactions of activation, repression,
multimerization, transcription, and translation of a generic
protein (P) which, due to the symmetry of the model (both
proteins are activated by A and repressed by R) can be used
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to describe the evolution of the concentration of both A and
R. These reactions are given by:

A+A+ ...+A
βA−−⇀↽−−−
βA′

An, (1)

R+R+ ...+R
βR−−⇀↽−−−
βR′

Rm, (2)

Rm +DNAP a∗−−⇀↽−−
d∗

Rm : DNAP, (3)

An +DNAP a′−−⇀↽−−
d′

An : DNAP, (4)

An : DNAP α1−−→ mP +Am : DNAP, (5)

DNAP α2−−→ mP +DNAP, (6)

mP
κ−−→ mP + P, (7)

mP
δ−−→ ∅, (8)

P
γ−−→ ∅. (9)

Let A and R multimerize with cooperativity n and m,
with forward rates of βA, βR and reverse rates of β′A, β

′
R,

respectively, leading to reactions (1)-(2). Since activation and
repression are assumed to take place at the transcriptional
level, the complex formed by the reversible reaction (with
forward rate a∗ and reverse rate d∗) between Rm and DNA
promoter (DNAP), denoted Rm:DNAP, does not contribute
to transcription and effectively sequesters free DNAP, as
given in (3). Conversely, An:DNAP is the complex formed
by the reversible reaction (with forward rate a′ and reverse
rate d′) between An and DNAP, as shown in (4). This
complex undergoes translation at rate α1 to produce an
mRNA molecule, leading to (5). The model also assumes
that some transcription can occur without A bound to DNAP

(i.e., transcriptional leakiness), described by (6). Translation
occurs at a rate κ, given in (7), and mRNA and protein decay
at a rate δ and γ, respectively, given in (8)-(9). The ODE
model for the mRNA and protein dynamics is given by:

ṁP = α1[An : DNAP ] + α2[DNA
P ]− δmP ,

Ṗ = κmP − γP. (10)

Assuming the total concentration of DNA is constant, the
following conservation law holds:

DNAtot = DNAP + [Rm : DNAP ] + [An : DNAP ].

Assuming complex formation occurs significantly faster
than mRNA and protein dynamics [22], setting their
respective rate equations at quasi-steady state (i.e.,
Ȧn, Ṙm, [ ˙An : DNAP], [ ˙Rm : DNAP]= 0) and solving for
[An:DNAP] and [DNAP] in terms of A,R yields:

[An : DNAP] =

a′βA

d′βA′
DNAtotA

n

1 + a′βA

d′βA′
An + a∗βR

d∗βR′
Rm

, (11)

[DNAP] =
DNAtot

1 + a′βA

d′βA′
An + a∗βR

d∗βR′
Rm

. (12)

Equation (10) represents the dynamics of a general mRNA
and protein system with transcriptional activation and re-
pression by A and R, respectively. Substituting (11)-(12) in

(10) and then using the subscripts “R” or “A” to denote
parameters corresponding to R or A production and decay,
respectively yields the final model equations:

ṁA =
α(A/kA)

n + α0

1 + (A/kA)n + (R/kR)m
− δAmA,

ṁR =
α(A/kA)

n + α0

1 + (A/kA)n + (R/kR)m
− δRmR,

Ȧ = κAmA − γAA,
Ṙ = κRmR − γRR. (13)

The parameter α = α1DNAtot is a measure of the
maximum transcriptional activation by An:DNAP to mRNA
and α0 = α2DNAtot represents transcriptional leakiness
(or basal transcriptional expression) of mRNA. Since the
promoters controlling the expression of A and R are the
same, given the symmetry of the system, we can assume
that α and α0 are equal for both the mA and mR dynamics.
The contribution of basal transcription to the production
of mRNA is assumed to be small in magnitude compared
to that of the promoter (i.e., α0

α << 1). The parameters
kA = (d

′βA′
a′βA

)
1
n and kR = (d

∗βR′
a∗βR

)
1
m indicate the relative

affinity for complex formation. The protein translation and
decay rate are given by κ and γ, respectively and the mRNA
decay rate is denoted by δ.

III. TWO-STATE APPROXIMATION

Due to the time scale separation between transcription of
DNA to mRNA and translation, the original four-state system
(13) can be reduced to a two-state system by considering mA

and mR at their quasi-steady state [23]:

mA =
1

δA

α(A/kA)
n + α0

1 + (A/kA)n + (R/kR)m
, (14)

mR =
1

δR

α(A/kA)
n + α0

1 + (A/kA)n + (R/kR)m
. (15)

Substituting (14)-(15) in the Ȧ, Ṙ equations of (13) yields
the two-state approximation:

Ȧ =
κA
δA

α(A/kA)
n + α0

1 + (A/kA)n + (R/kR)m
− γAA = f(A,R),

(16)

Ṙ =
κR
δR

α(A/kA)
n + α0

1 + (A/kA)n + (R/kR)m
− γRR = g(A,R).

(17)

To determine sufficient conditions for oscillatory behavior,
the Poincaré-Bendixson theorem [24] is used to infer the ex-
istence of a stable limit cycle. This requires (i) the existence
of a unique equilibrium point and (ii) that this equilibrium
point is unstable and not a saddle.

Since the system is two-dimensional, analyzing the ex-
pression for the nullclines provides a convenient way of
determining conditions for a unique equilibrium point. The
nullclines are defined by setting Ȧ = 0 and Ṙ = 0 and are



given by:

R = kR

[
κA

δAγAA

[
α
( A
kA

)n
+ α0

]
−

(
1 +

( A
kA

)n)] 1
m

,

(18)

A = kA

[−κRα0 + γRδRR(1 + ( RkR )
m)

κRα− γRδRR

] 1
n

. (19)

Claim: If α0 is sufficiently large, system (16)-(17) has a
unique equilibrium point.
Proof: Solving for α(A/kA)n+α0

1+(A/kA)n+(R/kR)m in (16)-(17) and
equating the resulting expressions yields:

κA
δAγAA

=
κR

δRγRR
. (20)

This results in the equilibrium point lying on the line defined
by:

A = cR, c =
κAδRγR
κRδAγA

. (21)

Substituting (21) in (19) yields:

P (R) = (
knAγRδR
kmR

)Rm+1 + (γRδRc
n)Rn+1 − (κRαc

n)Rn

+ (knAγRδR)R− knAκRα0 = 0. (22)

For n,m > 1, the coefficients of P (R) change signs three
times when arranged in descending powers of R (regardless
of the value of n or m). By Descartes’ rule of signs,
P (R) = 0 has either one or three positive root(s). Since
the coefficient of the terms with the largest exponent (either
m+1 or n+1) are always positive, as R→∞, P (R)→∞.
To ensure a single positive root, it is enough to translate
P (R) sufficiently vertically downwards.

To this end, let RM be any value of R sufficiently large
such that there are no more inflection points for P (R > RM )
and let M = sup

R∈[0,RM ]

P (R). By the Extreme Value Theorem,

M must be finite since P (R) is a continuous function of R.
The parameter, α0, which corresponds to the basal expres-

sion rate of mRNA does not appear in any of the coefficients
of P (R) except for the constant term. Therefore, increasing
α0 translates P (R) downwards and so for any M , P (0) can
be set sufficiently negative so that P (R) only crosses the
R-axis once. This crossing corresponds to the terms with
exponents of n+1 or m+1 dominating the value of P (R),
resulting in a unique equilibrium point.

Fig. 2 plots the nullclines for a small and large value of
α0, leading to a change in number of equilibrium points from
3 to 1, respectively. In the sequel, a sufficiently large α0 was
used to ensure a unique equilibrium point.

By the Poincaré-Bendixson theorem, if the equilibrium
point is unstable and not a saddle point, there exists a limit
cycle. Since this system approximation is two dimensional,
the eigenvalues of the Jacobian matrix and the condition for
the existence of a limit cycle is given as (where J is the
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Fig. 2. System nullclines for (16)-(17) demonstrating the change in number
of equilibria from 3 (a with closeup c) to 1 (b with closeup d) as P (0)
is made more negative (i.e., for sufficiently large α0, the system has 1
equilibrium point). System parameter values include: α = 20hr-1, kA =
kR = 1nM, α0 = 0.05(ac), 2(bd) nMhr-1, δA = δR = 1hr-1, κA =
2hr-1, κR = 1hr-1, γA = 4hr-1, γR = 0.5hr-1, n = 2, m = 4.

Jacobian matrix, Tr is trace, and det is determinant):

λ1,2 =
Tr(J)±

√
Tr(J)2 − 4det(J)

2
, (23)

Re[λ1,2] > 0 ⇐⇒ Tr(J) > 0, det(J) > 0. (24)

The Jacobian J is given by:

J =

[
∂f
∂A

∂f
∂R

∂g
∂A

∂g
∂R

] ∣∣∣∣∣
(Ae,Re)

.

The determinant of J is given by (evaluated at the equilib-
rium point):

det(J) =
∂f

∂A

∂g

∂R
− ∂f

∂R

∂g

∂A
.

Since ∂f
∂A ,

∂g
∂A > 0 and ∂g

∂R ,
∂f
∂R < 0, we have that ∂f

∂A
∂g
∂R is

always negative and − ∂f
∂R

∂g
∂A is always positive. To see how

det(J) > 0 can be graphically verified, we consider how
these conditions translate in terms of the nullcline slopes at
the equilibrium point. From (16)-(17), the nullclines satisfy:

f(A,R) = 0,

g(A,R) = 0.

Let XA(A), XR(A) be the locally unique solution to
f(A,R) = 0 and g(A,R) = 0 about the equilibrium point:

R = XA(A) =⇒ f(A,XA(A)) = 0,

R = XR(A) =⇒ g(A,XR(A)) = 0.

The nullclines are therefore defined by R = XA(A) and
R = XR(A). By the Implicit Function Theorem:

dXA

dA

∣∣∣∣∣
(Ae,Re)

= −
(∂f/∂A)

∣∣
(Ae,Re)

(∂f/∂R)
∣∣
(Ae,Re)

,

dXR

dA

∣∣∣∣∣
(Ae,Re)

= −
(∂g/∂A)

∣∣
(Ae,Re)

(∂g/∂R)
∣∣
(Ae,Re)

.
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Fig. 3. Four possible nullcline intersection regions of (16) and (17) given
by blue solid (f = 0) and green dotted lines (g = 0), respectively. System
parameters include α = 20nMhr-1, kA = kR = 1nM, α0 =40(a), 2(b),
0.1(c), 2(d) nMhr-1, δA = δR = 1hr-1, κA = κR = 1hr-1, γA = 2hr-1,
γR =1(abd), 10(c) hr-1, n =2(abc) 1(d), m =2(abc) 1(d).

Since ∂f
∂R < 0 and ∂g

∂R < 0:

dXA

dA

∣∣∣∣∣
(Ae,Re)

=
(∂f/∂A)

∣∣
(Ae,Re)∣∣∣(∂f/∂R)∣∣
(Ae,Re)

∣∣∣ , (25)

dXR

dA

∣∣∣∣∣
(Ae,Re)

=
(∂g/∂A)

∣∣
(Ae,Re)∣∣∣(∂g/∂R)∣∣
(Ae,Re)

∣∣∣ . (26)

det(J) > 0 requires (at the equilibrium point):

∂g

∂A

∣∣∣ ∂f
∂R

∣∣∣ > ∂f

∂A

∣∣∣ ∂g
∂R

∣∣∣,
that is:

∂g
∂A∣∣∣ ∂g∂R ∣∣∣ >

∂f
∂A∣∣∣ ∂f∂R ∣∣∣ ,

which, from (25)-(26), is equivalent to:

dXR

dA
>
dXA

dA
.

Therefore, the condition det(J) > 0 is guaranteed if the
slope of the nullcline defined by g = 0 is larger than the slope
of the nullcline defined by f = 0 at the equilibrium point.
The four qualitatively different types of unique equilibrium
points are given in Fig. 3. In Fig. 3a, 3c, 3d, the slope of
XA(A) at the equilibrium point is negative. Given equality
(25), this implies that ∂f

∂A < 0. Since Tr(J) = ∂f
∂A + ∂g

∂R and
∂g
∂R < 0, it follows that in these cases, the equilibrium point
is stable. An unstable equilibrium point can occur only when
the nullclines intersect as in Fig. 3b. We therefore focus on
this case in the sequel.

To determine which parameter values can make the trace
positive, we observe its analytical expression which is given
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Fig. 4. Change in response of A from decaying to stable oscillations
as κA increases for system given by (16)-(17). System parameters include
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by:

Tr(J) =
ακA
δA

(n(Ae/kA)n−1[1− α0

α + (Re/kR)
m]

kA[1 + (Ae/kA)n + (Re/kR)m]2

)
− γA −

ακR
δR

(m(Re/kR)
m−1((Ae/kA)

n + α0

α )

kR[1 + (Ae/kA)n + (Re/kR)m]2

)
− γR.

(27)

The last three terms are always negative. The expression for
the trace suggests that it can be made positive by increasing
κAα
δA

. This ratio is the maximum production rate of A, which
corresponds to having a fully active promoter (i.e., A→∞)
leading to a steady-state mA value of α

δA
. Increasing κAα

δA
,

however, does not guarantee that the two-state system ap-
proximation exhibits sustained oscillations, since α, κA, δA
affect the value of the equilibrium point, making it difficult
to identify their effect on the trace. Furthermore, increasing
α would also increase the third term. Nevertheless, Fig. 4
demonstrates that increasing κA does lead to oscillations.
For a stable limit cycle, α was set an order of magnitude
larger than α0 (corresponding to Fig. 3b) and κA was set
sufficiently high to ensure a positive trace. Relatively large
values of α0 were found to make the equilibrium point stable
(i.e., for α0 ≈ α as in Fig. 3a).

To summarize our findings, the system given by (16)-
(17) has a unique equilibrium point for sufficiently large α0.
The conditions for an unstable equilibrium point include (i)
the nullclines need to intersect with positive slope at the
equilibrium point (α0 should not be too large), (ii) the slope
of the nullcline defined by g = 0 should be greater than the
slope of the nullcline of f = 0 at the equilibrium point, and
(iii) sufficiently large maximum production rate of A (κA)
compared to that of R.

IV. DOWNSTREAM LOAD TO A

Consider A transcriptionally regulating downstream pro-
moter sites represented schematically in Fig. 5.



Fig. 5. Load of A by downstream promoter sites.

This transcriptional regulation occurs by A binding to the
DNA promoter sites. Let the free promoter sites be denoted
as C10 and the sites bound to A be denoted as C11. Since
DNA does not decay, the total concentration of promoter sites
is conserved, that is C10+C11 = Ct1, where Ct1 represents
the total concentration of the free and bound promoter sites.
The complex formation reaction is given by:

C10 +A
a
�
d
C11.

The dynamics of A change in the new three-state system
equations, which are now given by:

Ȧ =
κA
δA

α(A/kA)
n + α0

1 + (A/kA)n + (R/kR)m
− γAA− Ċ11,

Ṙ =
κR
δR

α(A/kA)
n + α0

1 + (A/kA)n + (R/kR)m
− γRR,

Ċ11 = a(Ct1 − C11)A− dC11. (28)

Increased loading to A (increased Ct1) decreases the ampli-
tude of oscillations to the point of quenching oscillations as
shown in Fig. 6. The response of R is qualitatively similar to
that of A: higher Ct1 values cause smaller amplitude oscil-
lations and increased frequency until the clock is quenched.
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Fig. 6. Simulation of (28) with system parameters: α = 20nMhr-1, kA =
kR = 1nM, α0 = 2nMhr-1, δA = δR = 1hr-1, κA = 20hr-1, κR = 1hr-1,
γA = 4hr-1, γR = 0.5hr-1, a = d = 1hr-1, n = 2, m = 4.

To understand the reason for this, we analyze how the
eigenvalues of the linearized system change due to the
addition of Ct1. To simplify the system, using the assumption
that complex formation (C11) occurs relatively faster than
protein dynamics (A,R) [22], the three-state system can be

reduced to two states. To this end, we employ singular
perturbation and introduce the new (slow) variable Z, defined
as Z = A + C11. Rewrite the system by defining ε = γA

d ,
Kd1 = d

a , and a = γA
εKd1

. Substituting these expressions into
(28) yields the system in standard singular perturbation form
given by:

Ż =
κA
δA

α(Z−C11

kA
)n + α0

1 + (Z−C11

kA
)n + (R/kR)m

− γA(Z − C11),

Ṙ =
κR
δR

α(Z−C11

kA
)n + α0

1 + (Z−C11

kA
)n + (R/kR)m

− γRR,

εĊ11 =
γA
Kd1

(Ct1 − C11)(Z − C11)− γAC11. (29)

Setting ε = 0 and solving for C11 in terms of A yields the
slow manifold:

C11 =
Ct1A/Kd1

1 +A/Kd1
= g1(A),

which can be shown to be locally exponentially stable [25].
Since Z = A+ C11, we have Ż = Ȧ+ Ċ11, and so:

Ż = Ȧ+
dg1(A)

dA
Ȧ.

Solving for Ȧ yields:

Ȧ =
Ż

1 + dg1(A)
dA

,

=
(κA
δA

α( AkA )n + α0

1 + ( AkA )n + ( RkR )
m
− γAA

) (1 + A
Kd1

)2

(1 + A
Kd1

)2 + Ct1

Kd1

.

The resulting reduced model of the clock with load on A is
thus given by:

Ȧ =
(1 + A

Kd1
)2

(1 + A
Kd1

)2 + Ct1

Kd1

(
κA
δA

α( AkA )n + α0

1 + ( AkA )n + ( RkR )
m
− γAA

)
,

Ṙ =
κR
δR

α(A/kA)
n + α0

1 + (A/kA)n + (R/kR)m
− γRR. (30)

Note that when there is no load (i.e., Ct1 = 0), we recover
(16)-(17). The dynamics of R have not changed from (17).
The new Ȧ equation is the product of a loading term (always
positive and less than 1) and (16) and so the dynamics of
A are effectively slower due to the load. The new system
nullclines are identical to that of (16)-(17), since the nullcline
defined by Ȧ = 0 is independent of the loading term.
Therefore, the equilibrium point (Ae, Re) for the unloaded
two-state system and for the loaded reduced model system
is the same.

To analytically investigate what the effect of the load
is on the clock’s behavior, we analyze the stability of the
equilibrium point for the two state system (30). Since the
sign of det(J) is not affected by the presence of the load, as
before we can guarantee that det(J) > 0 by requesting that
the slope of the nullcline defined by Ṙ = 0 is greater than
the slope of the nullcline defined by Ȧ = 0 at the equilibrium
point. If this is satisfied, the real part of the eigenvalues of the
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α = 20nMhr-1, kA = kR = 1nM, α0 = 2nMhr-1, δA = δR = 1hr-1,
κA = 5hr-1, κR = 1hr-1, γA = 4hr-1, γR = 0.5hr-1, n = 2, m = 4.

reduced system can be made positive if Tr(J) > 0, which
is given by:

Tr(J) =

(
κA

δA

(
n(Ae

kA
)n−1(α+α(Re

kR
)m−α0)

kA[1+(Ae
kA

)n+(Re
kR

)m]2

)
− γA

)
1 + Ct1/Kd1

(1+Ae/Kd1)2

+

(
κA

δA

α(Ae/kA)n+α0

1+(Ae
kA

)n+(Re
kR

)m
− γAAe

)
( 2Ct1

K2
d1

+ 2AeCt1

K3
d1

)

[(1 + Ae

Kd1
)2 + Ct1

Kd1
]2

− κR
δR

(m(Re/kR)
m−1(α(Ae/kA)

n + α0)

kR[1 + (Ae

kA
)n + (Re

kR
)m]2

)
− γR.

The last line of the expression for the trace is a negative
constant and independent of Ct1. The value of the term in
the middle line is 0 since it includes the expression for Ȧ in
its numerator, which is 0 when evaluated at the equilibrium
point. As Ct1 becomes larger, the magnitude of the first term
decreases. Therefore, even if Tr(J) is initially positive when
Ct1 = 0, for large enough Ct1 the expression in the last line
dominates and Tr(J) < 0. The change in the value of the
trace as a function of Ct1 is illustrated in Fig. 7. Therefore,
for sufficiently high load to A, the system will not exhibit a
limit cycle and will converge to the stable equilibrium point.

V. DOWNSTREAM LOAD TO R

Now consider the case when only R has downstream load
(no Ct1) represented schematically in Fig. 8.

Fig. 8. Load of R by downstream promoter sites.
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Fig. 9. Simulation of (31) demonstrating the transition from decayed
response to oscillatory behavior by addition of downstream Ct2 = 100nM
at t = 100hr. System parameters include: α = 20hr-1, kA = kR = 1nM,
α0 = 2nMhr-1, δA = δR = 1hr-1, κA = 5hr-1, κR = 1hr-1, γA = 1hr-1,
γR = 0.5hr-1, a′ = d′ = 1hr-1, n = 2, m = 4.

Let the free promoter sites be denoted as C20 and the sites
bound to R be denoted as C21. Once again, since DNA does
not decay, the total concentration of the promoter sites is
conserved and is given by C20 + C21 = Ct2. The complex
formation reaction is given by:

C20 +R
a′

�
d′
C21.

The dynamics of R have changed and the three-state system
equations are given by:

Ȧ =
κA
δA

α(A/kA)
n + α0

1 + (A/kA)n + (R/kR)m
− γAA,

Ṙ =
κR
δR

α(A/kA)
n + α0

1 + (A/kA)n + (R/kR)m
− γRR− Ċ21,

Ċ21 = a′(Ct2 − C21)R− d′C21. (31)

We find that a quenched oscillator can be brought back
to functioning by loading R with large enough promoter
concentration. To demonstrate this “activation” of the gene
oscillator, consider the case when the real part of the lin-
earized system eigenvalues are negative, but close to the
origin. Fig. 9 demonstrates the stable system transitioning
to limit cycle behavior after t = 100 hr by the addition
of a downstream system to R (with Ct2 = 100nM). The
initial two-state system, given in (16)-(17), has eigenvalues
of λ = −0.75 ± 0.89j and the three-state system with
downstream loading to R, given in (31), has eigenvalues of
λ = −47.31, 0.72, 23.77.

To understand why this occurs, once again we consider
how the eigenvalues of the linearized system change due
to the addition of Ct2 by assuming that complex formation
(C21) occurs significantly quicker than protein (A, R) dynam-
ics for model reduction. By following a procedure similar
to what was performed in Section IV, we finally reach the
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Fig. 10. Semilog plot of total promoter concentration vs trace of Jacobian
for reduced system for loading to R, given by (32). System parameters
include α = 20nMhr-1, kA = kR = 1nM, α0 = 2nMhr-1, δA = δR =
1hr-1, κA = 1hr-1, κR = 0.35hr-1, γA = 4hr-1, γR = 0.5hr-1, n = 2,
m = 4.

following reduced two-state model:

Ȧ =
κA
δA

α(A/kA)
n + α0

1 + (A/kA)n + (R/kR)m
− γAA,

Ṙ =
(1 + R

Kd2
)2

(1 + R
Kd2

)2 + Ct2

Kd2

(
κR
δR

α( AkA )n + α0

1 + ( AkA )n + ( RkR )
m
− γRR

)
.

(32)

As before, det(J) > 0 can be verified graphically by
ensuring that the slope of the nullcline defined by Ṙ = 0
is greater than that of the nullcline defined by Ȧ = 0 at
the equilibrium point. Furthermore, the equilibrium point
remains the same since the loading term to Ṙ is always
positive. The expression for the trace of the linearized system
with downstream load to R is given by:

Tr(J) =
κAα

δA

(n(Ae/kA)n−1[1− α0

α + (Re/kR)
m]

kA[1 + (Ae

kA
)n + (Re

kR
)m]2

)

− γA +

(
κR

δR

α(Ae/kA)n+α0

1+(Ae
kA

)n+(Re
kR

)m
− γRRe

)(
2Ct2

K2
d2

+ 2ReCt2

K3
d2

)
[(1 + Re

Kd2
)2 + Ct2/Kd2]2

−
κR

δR

(
m(Re/kR)m−1(α(Ae/kA)n+α0)

kR[1+(Ae
kA

)n+(Re
kR

)m]2

)
− γR

1 + Ct2/Kd2

(1+ Re
Kd2

)2

.

The first term is always positive due to the assumption
that the contribution to transcription due to leakiness is
significantly less than that due to An:DNAP (i.e., α0

α <<
1). For sufficiently large κAα

δA
, the first term is larger in

magnitude than γA. The value of the third term is 0 since
it contains the expression for Ṙ, which at the equilibrium
point is 0. The last term is always negative, but as Ct2
increases, its magnitude decreases. Therefore, if the value of
the trace for the two-state reduced model system with load
to R is initially negative (system trajectories converge to an
equilibrium point), we would expect it to become positive

for sufficiently large Ct2 as shown in Fig. 10, leading to
linearized system eigenvalues with positive real part and limit
cycle behavior.

VI. CONCLUSIONS

A deterministic ODE model of an activator-repressor
clock was derived from biochemical reactions to determine
conditions for a stable limit cycle. The effects of load on
the oscillator indicate that robust, sustained oscillations are
achieved when there is strong activation and comparatively
weak repression. Loading provides a means to tune the
relative strengths of the activation and repression branches
by changing the number of downstream DNA binding sites
for either the activator or repressor protein, respectively. We
have shown it is possible to activate a quenched oscillator
by sequestering enough repressor protein, effectively slowing
repression dynamics. Similar conclusions were reached in
[19], for an activator-repressor clock with no self-repression
dynamics: in fact, the effect of retroactivity was found to
be qualitatively similar with respect to the change in the
expression of the trace of the linearized reduced model. This
suggests that the qualitative behavior of genetic networks
where there is interplay of positive and negative feedback
may be effectively tuned by appropriately adjusting loads to
the network’s transcription factors.

The ability to tune the strength of the clock for stronger
or weaker oscillations using additional DNA binding sites
is useful in the context of synthetic circuits since it is
easier to implement than changing the promoter regions or
using degradation tags. Furthermore, this mechanism may
already be used in natural systems: transcription factors have
multiple DNA binding sites, not all of which serve regulatory
functions [26]. One possible use of these binding sites could
be to tune the dynamics of transcription networks.
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