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Design of driver-assist systems under probabilistic
safety specifications near stop signs

Mojtaba Forghani, John M. McNew, Daniel Hoehener, and Domitilla Del Vecchio

Abstract—In this paper, we consider the problem of designing
in-vehicle driver-assist systems that warn or override the driver to
prevent collisions with a guaranteed probability. The probabilistic
nature of the problem naturally arises from many sources
of uncertainty, among which the behavior of the surrounding
vehicles and the response of the driver to on-board warnings.
We formulate this problem as a control problem for uncertain
systems under probabilistic safety specifications and leverage the
structure of the application domain to reach computationally
efficient implementations. Simulations using a naturalistic data
set show that the empirical probability of safety is always within
5% of the theoretical value in the case of direct driver override,
validating our models and algorithm. In the case of on-board
warnings, the empirical value is more conservative due primarily
to driver’s decelerating more strongly than requested. But in
all cases, the empirical value is greater than or equal to the
theoretical value, demonstrating a clear safety benefit.

Note to Practitioners: Abstract—Statistics show that a large
percentage of vehicle crash fatalities and injuries happen in
the proximity of intersections and stop signs. Many automotive
companies have already released automated braking systems
that warn drivers and reduce speed when approaching an
obstacle. A major problem with the design of such driver-assist
systems is to guarantee the absence of collisions even in the
presence of uncertainty. In this work we present an approach
using a probabilistic model for human driving behavior. The
advantage of a probabilistic model is that it allows to distinguish
between possible and probable scenarios. In particular, for any
desired safety level P , our method guarantees safety as long
as surrounding vehicles do not use behaviors from the 1 − P
probability tail of their behavior distribution. Leveraging the
monotone structure of the system we obtain an efficient algorithm
that can compute warnings and overrides online. Moreover,
simulations on a naturalistic data set show that the resulting
override is considerably less conservative than one obtained when
driver behavior is modeled through bounded uncertainty. There
are a number of simplifying assumption made in this work, which
limit the application mainly to prevention of rear-end collisions.
We plan to generalize the method in order to be able to cover
more general collision scenarios.

Primary and Secondary Keywords Index Terms—Primary
Topics: Probabilistic Safety, Collision avoidance, Human-
Centered Automation

I. INTRODUCTION

VEHICLE collisions in the proximity of intersections and
stop signs continue to contribute substantially to the

number of light vehicle crash fatalities and injuries worldwide.
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In the past several years, an average of 21% of the fatalities
and about 50% of the most serious injuries in the United States
have been attributed to intersections [30]. In response to these
startling statistics, the problem of preventing or mitigating
collisions near intersections (signaled or not) has become a
priority for the Department of Transportation (DOT) [29]. A
number of automotive companies have already released auto-
mated braking systems that, based on on-board sensors, warn
the driver and reduce the vehicle’s speed when the vehicle
approaches an obstacle [3], [4], [31]. Using the ego-vehicle
dynamics and relative distance and speed to the obstacle,
currently available automated braking systems can compute
the least conservative braking timing for collision avoidance
in scenarios where the obstacle’s speed remains constant.
However, in a recent study [33] of the NASS-GES database,
NHTSA showed that 56% of all rear-end crashes occur with
a preceding vehicle that is decelerating. In particular, the
highest percentage of these rear-end crashes (32%) occur with
a preceding vehicle that is decelerating at a stop.

In this paper, we focus on scenarios where the preceding
vehicle is highly likely to brake, such as in the proximity of
an intersection. Consequently, an automated braking system
should take into account the preceding vehicle’s deceleration
when deciding whether a safety intervention is necessary, a
capability that no automated braking system currently has. In
particular, when the ego-vehicle’s maximum possible deceler-
ation (e.g. a heavy vehicle) is less than that of the preceding
vehicle, it is possible for the driver of the ego-vehicle to choose
a following distance that is so close that the ego-vehicle cannot
avoid collision unless it begins braking before the preceding
vehicle begins braking. In such a case it may be preferable
to begin automatic braking based on a prediction of the
lead vehicle’s deceleration rather than on the current relative
acceleration of the two vehicles. However, this strategy has an
increased possibility of being viewed by the driver as a false
activation and so it is desirable to be able to establish formal
guarantees on the necessity of automatic braking activation.

The need for extending the functionality of active safety
systems to cases where the intentions of surrounding vehicles
are not known a priori motivates the use of formal model-
based approaches for verification and design [14]. These ap-
proaches include uncertainty in the model due to the behavior
of other traffic participants and design least conservative inter-
ventions that guarantee safety (absence of collisions) despite
this uncertainty. A possible approach models uncertainty as
disturbances that take values in a bounded set. Then the
maximum invariant safe set can be computed, which allows
to synthesize a least restrictive control input, that is, the
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least conservative intervention to prevent a collision (see for
instance [23]–[25] and the references therein). While often
only approximations of the maximum invariant safe set can
be computed efficiently (see, for instance, [1], [19]), a number
of ground transportation systems can be modeled by a special
class of systems, called order preserving systems, which allow
computationally efficient exact solutions, [5], [6], [8], [12],
[26], [27]. Although this approach guarantees both safety and
least restrictive control actions, assuring safety means that
preventive interventions are designed to avoid collisions with
surrounding vehicles that behave in the worst possible manner.

To overcome the resulting conservatism while still guar-
anteeing an acceptable safety level, a possible approach is to
account for the fact that worst case behaviors occur with a very
low probability, so that one can focus on preventing collisions
for behaviors around the statistical mean. Guaranteeing safety
in this framework means to design preventive interventions
that result in avoiding collisions 100P% of the time with P
pre-fixed.

Stochastic (hybrid) dynamical systems provide a quite nat-
ural model for human driving behavior, as was shown for
instance in [10], [11], [18], [28]. Methods to approximate
the probability that executions of a stochastic hybrid system
enter some set of undesirable states (bad set) were proposed
in [2], [19], [20]. While such approaches can be used for
danger assessment, they do not provide a safe control strat-
egy. In [9], using a stochastic differential equation model, a
stochastic optimal control approach was proposed to compute
the maximal set of initial conditions from which the bad
set can be avoided with a given probability P . Solving this
optimal control problem, however, requires to solve a partial
differential equation which may not be appropriate for real
time implementation.

The methods discussed above guarantee the absence of
collisions in 100P% of all cases. This is in contrast with other
approaches that use stochastic models but do not guarantee
that the probability of a collision is less than or equal to a
desired level P [17], [22]. In these approaches the probability
that the driver’s input leads to a collision is computed and
safety interventions are then taken if this probability is above
a certain threshold.

The main contribution of this paper is an on-line algorithm
that computes a least restrictive control input that guaran-
tees safety (absence of collisions) with probability P , i.e. it
guarantees safety as long as surrounding vehicles do not use
actions from the 1 − P probability tail of their behavior dis-
tribution. The specific application scenario considered in this
paper involves only vehicle’s longitudinal dynamics, which are
known to be input/output order preserving systems, that is,
stronger braking leads to lower speed and higher acceleration
leads to higher speed [13]. This feature allows us to transform
the computationally difficult stochastic problem into a simple
deterministic algebraic check that can be performed on-line
using extremal inputs.

We apply the method for designing a driver-assist system
that prevents rear-end collisions with a preceding vehicle at
stop signs, intersections, or speed bumps. We consider two
possible implementations. In the first one, the driver-assist

system overrides the driver while in the second one the driver
is only warned when deemed necessary to guarantee a proba-
bility of safety P . In either case, the model of the preceding
vehicle is identified from data gathered from vehicles driving
in the city of Ann Arbor (MI). A different data set is employed
in simulations to emulate the preceding vehicle and validate
our model and algorithm. For the second implementation, we
issue a warning through a visual interface that displays the
required braking next to the braking the driver is currently
applying. Based on our observed data, we model the response
of the driver to this warning as a simple time delay, whose
probability distribution is constructed from data.

The paper is organized as follows. In Section II, we describe
the application scenario and in Section III we introduce the
corresponding mathematical model. The theoretical solution
is presented in Section IV, followed by the solution algorithm
and simulation results for the case with direct driver override
in Sections V and VI, respectively. Finally, the case when
warnings are issued is described in Section VII. We conclude
with a discussion of some of the assumptions made and
possible relaxations in future work.

II. APPLICATION SCENARIO

Fig. 1. The driver-assist system should prevent rear-end collisions with a
preceding vehicle (PV) (collision of type 1). In addition, the ego-vehicle
should not enter the study area (intersection or speed bump) at a high velocity
(collision of type 2).

We consider the scenario of two consecutive vehicles ap-
proaching a study area, which can either be a stop sign, speed
bump, or a non-signaled intersection. We assume that the
following vehicle (FV) is equipped with a driver-assist system,
while the preceding vehicle (PV) is fully human driven. The
objective of the driver-assist system, which we seek to design,
is to warn the driver and eventually apply automatic brake
to mitigate two possible types of “collisions”. In a type 1
collision, there is a rear-end collision between the two vehicles
while in a type 2 collision, the FV crosses the study area with
a velocity higher than a prefixed value. This value will be zero
if the study area is a stop sign, while it will be strictly positive
if the study area is only a speed bump or an intersection with
the right of way. The scenario is depicted in Figure 1, in which,
for simplicity, we have indicated the study area by a stop sign.

We denote longitudinal position and velocity of PV by xp
and vp, respectively. Similarly, xf and vf are position and
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velocity of FV, respectively. The longitudinal position of the
study area according to a fixed reference frame is represented
by St (Stop) and the maximum allowable velocity of FV at the
study area is denoted by vT . To keep the system away from
type 1 collisions, we establish a minimum allowed distance
between the two vehicles, which is denoted by δ > 0. We
consider a second order model to represent the longitudinal
dynamics of both vehicles along their path. In particular, for
FV we consider the model:

ẍf = u−Dv2
f − ar − as, (1)

in which D captures the air drag, ar > 0 models the
deceleration due rolling resistance, as models the slope of
the road, and u is the input that results from the brake or
drive forces [21]. This input will be applied by the driver
or by the driver-assist system in the case of an override. In
particular, we will consider two possible implementations. In
the first implementation, the driver-assist system will override
the driver as soon as an imminent collision is detected. In
the second implementation, the driver-assist system will only
issue a warning and the control u will be the resulting input
applied by the driver in response to that warning.

In order to understand the future motion of the human-
driven PV based on the current state, we seek a model that
captures typical driving behavior in the proximity of study
areas such as speed bumps, non-signaled intersections and stop
signs. Therefore, we assume a second order linear model in
the form:

ẍp = axp + bvp + d, (2)

in which parameters a and b will be identified from data
and d is a random variable whose probability distribution
will also be identified from data (see Section VI). In this
model, the probability distribution of d aims at capturing the
variability among ways in which different drivers approach
the study areas and also the variability among ways the same
driver approaches these study areas. The full deceleration
profile depends also on the distance to the study area and the
current vehicle velocity. This is motivated by human factors
studies that show that deceleration profiles depend on these
variables, [15], [16]. In these studies, it was shown that the
probability distribution of the average vehicle’s deceleration
when approaching the study area well captures the variability
among drivers. This motivates the choice of d as random
variable to capture the essentials of the variability among
drivers.

Previous works have considered similar applications in
which, in contrast to the present paper, d was modeled as
a bounded disturbance whose bounds were set to capture all
possible observed driver braking behaviors [26].

III. MATHEMATICAL MODEL AND PROBLEM
FORMULATION

In this section, we introduce the mathematical model that
we use as abstraction of the application scenario described in
the previous section and then provide the formal problem for-
mulation. We conclude the section by illustrating the important
concepts with the application example.

A. Preliminaries and mathematical model

For any set A ⊂ Rn, cl(A) denotes the closure of A,
Ac its complement and ∂A the boundary of A. Furthermore,
S(A) is the set of piecewise continuous signals with images
in A. We represent a continuous system by the collection
Σ = (X,U,∆, O, f, h), where X ⊂ Rn represents the state
space, U ⊂ Rm is the set of input values, ∆ ⊂ R is
the set of disturbance inputs, O ⊂ X is the output space,
f : X ×U ×∆→ X is a vector field representing the system
dynamics and finally, h : X → O is the output map.

The corresponding flow φ : [0, τend] × X × S(U) × ∆ →
X for some τend > 0 is the map satisfying for all initial
conditions x ∈ X , u ∈ S(U) and d ∈ ∆, φ(0, x,u, d) = x
and φ̇(t, x,u, d) = f(φ(t, x,u, d),u(t), d) for all t ∈ [0, τend].
We assume that the flow exists and is continuous with respect
to all its arguments. Notice also that here we have constant
disturbance inputs.

The system that we consider is the parallel composition of
two systems, formally introduced as follows.

Definition 1: For continuous systems Σ1 =
(X1, U1,∆1, O1, f1, h1) and Σ2 = (X2, U2,∆2, O2, f2, h2)
we define the parallel composition Σ := Σ1 ‖ Σ2 :=
(X,U,∆, O, f, h), in which X := X1 ×X2, U := U1 × U2,
∆ := ∆1 × ∆2, O := O1 × O2, f := (f1, f2)T and
h := (h1, h2)T .
In this paper, we consider systems whose flow is a monotone
map, as this enables an efficient solution to the problem
described in Section II. More precisely, we have the following.

Definition 2: The pair (P,�) consisting of a set P and
a binary relation “�” is a partially ordered set if for all
p1, p2, p3 ∈ P the following relations hold:

i) p1 � p1;
ii) p1 � p2 and p2 � p1 implies p1 = p2;

iii) p1 � p2 and p2 � p3 implies p1 � p3.
Example 1: Defining for all w, z ∈ Rn, w ≤ z if and only

if wi ≤ zi for all i ∈ {1, 2, ..., n}, where vi denotes the ith
component of a vector v, we have that (Rn,≤) is a partially
ordered set. Similarly, for any set A ⊂ Rn, we have that S(A)
together with the binary relation, w ≤ z if w(t) ≤ z(t) for
all t ∈ [0, τend], forms a partially ordered set.

Definition 3: Let (P,�P ) and (Q,�Q) be partially ordered
sets. The map f : P → Q is order preserving (strict order
preserving) provided that for x, y ∈ P such that x �P y
(x ≺P y), we have f(x) �Q f(y) (f(x) ≺Q f(y)), where
p ≺ q is an abbreviation for p � q and p 6= q.

Definition 4: A continuous system Σ = (X,U,∆, O, f, h) is
called input/output order preserving (strict input/output order
preserving) with respect to the control (disturbance), if the map
S(U) 3 u 7→ h(φ(t, x,u, d)) (∆ 3 d 7→ h(φ(t, x,u, d))), is
order preserving (strict order preserving) for any fixed t, x and
d (u).
This completes the preliminary definitions and we can intro-
duce the class of systems which we will use in the rest of the
paper.

Definition 5: Let Σ1 = (X1, U, ∅, O1, f1, h1) and Σ2 =
(X2, ∅,∆, O2, f2, h2) be continuous systems. The parallel
composition Σ∗ := Σ1 ‖ Σ2 is an order preserving system with
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stochastic disturbance (OPSD) if the following conditions are
satisfied:

i) Σ1 is input/output order preserving with respect to the
control;

ii) Σ2 is input/output order preserving with respect to the
disturbance;

iii) There exists um ∈ U such that um ≤ u for all u ∈ U ;
iv) The disturbance input d of the system is a ∆-valued

random variable with unimodal, invertible, cumulative
distribution function Φ: R→ [0, 1].

B. Problem formulation

Assume we are given an OPSD Σ∗ as defined in the previous
section and a subset B ⊂ X , called bad set, of its state space.
The objective is to keep the system outside of the bad set with
a given probability P , that is, to keep a safety level P . The
set of initial conditions such that there exists an open loop
control for which this is possible is called the maximal open
loop safe set.

Definition 6: Let Σ∗ be an OPSD, B ⊂ X be the bad set
and P ∈ (0, 1) be given. The maximal open loop safe set is
the set

W(P ) := {x ∈ X | ∃u ∈ S(U) s.t.
Pr(φ(t, x,u,d) /∈ B, ∀t ∈ [0, τend]) ≥ P} ,

where φ denotes the flow of Σ∗.
Before giving a formal problem statement, let us introduce

the assumption that we make on the shape of the bad set B.
Assumption 1: The bad set satisfies B = B1 ∪B2, with

B1 :=

r⋃
i=1

{
x ∈ X

∣∣ Z1
i h

1(x1)− Z2
i h

2(x2) > Hi

}
,

B2 :=

s⋃
j=1

{
x ∈ X

∣∣ Gj(x1) > gj
}
,

where Z1 and Z2 are r × dim(O1) and r × dim(O2) ma-
trices with non negative coefficients, respectively, H is a r-
dimensional vector, Gj : X1 → Rq and gj ∈ Rq . Moreover,
for fixed t ∈ [0, τend], x1 ∈ X1, and j ∈ {1, ..., s},
Gj(φ1(t, x1, ·)) : S(U)→ Rq is order preserving. The ith row
of a matrix A is denoted by Ai and X , Xi, hi are as in the
definition of an OPSD for i = {1, 2}. Finally, φ1 is the flow
corresponding to the continuous system Σ1.

The goal is to construct a safety supervisor, that is, a
controller that can enforce control inputs when necessary in
order to achieve a desired safety level P . Moreover, this
supervisor should act as late as possible, i.e. it should be a
least restrictive controller. Formally:

Problem 1: Let Σ∗ be an OPSD, B ⊂ X satisfy Assump-
tion 1 and P ∈ (0, 1) be given. Find a least restrictive feedback
control map π : X → U such that

Pr(φπ(t, x,d) /∈ B, ∀t ∈ [0, τend]) ≥ P, ∀x ∈ W(P ),

where φπ denotes the flow of the closed-loop system corre-
sponding to Σ∗ and π.
In summary, we study systems of two agents, a controlled and
an uncontrolled stochastic one. The controlled agent will have

to prevent entering a bad set of states B2 while also keeping
a sufficient separation from the uncontrolled agent (set B1).

C. Illustration on the application example

Consider the scenario of Section II, the system model is
given by Σapp := Σ1||Σ2, where Σ1 and Σ2 are modeling FV
and PV, respectively. Hence, X1 = X2 = R × R+ where
x1 = (xf , vf )T , x2 = (xp, vp)

T . Notice that we assume
that the speed is always non-negative, meaning that vehicles
cannot move backwards. The output maps are h1(x1) = xf
and h2(x2) = xp, i.e. the vehicle positions. The control input
values are U = [um, uM ] ⊂ R for some constants um < uM
and the set of disturbance inputs ∆ = R. The vector fields
f1 : X1 × U → X1 and f2 : X2 × ∆ → X2 are defined in
accordance to (1) and (2):

f1(x1, u) =

{
(vf , u−Dv2

f − ar − as)T if vf > 0,

0 if vf ≤ 0,
(3a)

f2(x2, d) =

{
(vp, axp + bvp + d)

T if vp > 0,

0 if vp ≤ 0.
(3b)

Finally, τend represents the time when FV leaves the study
area. It can be shown that each of Σ1 and Σ2 is input/output
order preserving [13]. This is qualitatively illustrated in Fig-
ure 2. Finally, the bad set models type 1 and type 2 colli-
sions (Figure 1) through sets B1 and B2 respectively, where
Z1 = Z2 = 1, H = −δ, G1(x1) = x1, g1 = (St, vT )T and
s = 1, with δ, St and vT as in Section II. Furthermore, since
the flows of xf and vf are order preserving with respect to u,
u 7→ G1(φ1(t, x1,u)) is order preserving.

Fig. 2. The figure shows the resulting FV (light colored) positions when
two different control inputs are applied over the same amount of time. By
the order preserving property the position corresponding to the larger input
is closer to the study area. For the PV (dark colored) an analogous property
holds.

IV. PROBLEM SOLUTION

Throughout this section P ∈ (0, 1) and Σ∗ = Σ1 ‖ Σ2, with
Σ1 = (X1, U, ∅, f1, h1) and Σ2 = (X2, ∅,∆, f2, h2), denotes
an OPSD with corresponding flow φ = (φ1, φ2).

We solve Problem 1 in three main steps. First, we will
show (Theorem 1 below) that, thanks to the system being
input/output order preserving with respect to the control, the
maximal open loop safe set can be represented by

W(P ) =

{x ∈ X | Pr(φ(t, x,um,d) /∈ B, ∀t ∈ [0, τend]) ≥ P} ,
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where um(t) = um for all t ∈ [0, τend]. The interpretation of
this result is that if the control um cannot prevent 100P% of
the collisions, then no other control can. This fact dramatically
simplifies the problem of computing W(P ) since it is not
required to search for the best control input as this is always
given by um. Furthermore, since the system is input/output or-
der preserving with respect to the disturbance, we can provide
a simple deterministic check that allows to determine whether
the system state is in W(P ). Then we prove (Theorem 2
below) that we can guarantee a safety level P if we apply
any arbitrary control u as long as the current system state is
in the interior ofW(P ) and the control um ∈ S(U) otherwise.

Before presenting the solution to Problem 1, we define the
(control dependent) P -safety capture set, representing the set
of all states for which the probability of avoiding the bad set
B is less than P for a fixed control input signal.

Definition 7: Let P ∈ (0, 1). The P -safety capture set for
a given control input signal u ∈ S(U), OPSD Σ∗ with flow φ
and bad set B is defined as

Cu(P ) := {x ∈ X |
Pr (φ(t, x,u,d) /∈ B, ∀t ∈ [0, τend]) < P} .

As above, let us define

um : [0, τend]→ U, um(t) = um ∀t ∈ [0, τend]. (4)

By the properties of the OPSD Σ∗, it is clear that um ≤ u for
all u ∈ S(U), where “≤” denotes the partial order on signals,
see Example 1.

In the following we state the theoretical results that allow
to solve Problem 1, the proofs of these results are provided in
the Appendix.

Theorem 1: For an OPSD Σ∗, P ∈ (0, 1) and a bad set B
satisfying Assumptions 1,

x ∈ W(P ) ⇐⇒ x /∈ Cum(P ).

By Theorem 1 it is clear that from some initial condition
x ∈ X we can avoid the set B with probability larger than or
equal to P if the flow corresponding to the input um avoids B
with probability at least P . The remaining question is when to
apply this control in order to construct a least restrictive safety
supervisor. It seems natural to wait until the state reaches
the boundary of the safe set W(P ). The following Theorem
confirms this intuition.

Theorem 2 (Solution to Problem 1): Let Σ∗ be an OPSD,
P ∈ (0, 1) and B ⊂ X a set satisfying Assumption 1. Define
the feedback map π : X → U by

π(x) =

{
um if x ∈ cl(Cum(P )),

U otherwise,
(5)

where um is as in Definition 5 and um as in (4). Then for
all x ∈ W(P ) we have that Pr(φπ(t, x,d) /∈ B, ∀t ∈
[0, τend]) ≥ P , where φπ denotes the flow of the closed-loop
system corresponding to Σ∗ and π.

The basic idea of the feedback π is illustrated in Figure 3.
Implementing this feedback controller requires an efficient
way to check whether the state is in Cum

(P ). That is, the
next step is to remove the need to integrate the dynamics of all

Fig. 3. The figure illustrates a slice of the four dimensional capture set of
the application example in the case when type 2 collisions are ignored for
simplicity. The axes show the relative position and speed of PV and FV, x
denotes the state and ud is the driver’s input. The feedback π of Theorem 2
overrides the driver input at the boundary of the capture set. The resulting
reduction in FV’s speed allows to maintain the desired safety level.

possible disturbances to check whether a given initial condition
x ∈ X is in cl(Cum(P )). This problem is addressed by the
following Proposition. For notational simplicity, let us define
for all t ∈ [0, τend], x ∈ X , u ∈ S(U) and d ∈ ∆:

F t,x,u(d) := Z1h1(φ1(t, x1,u))− Z2h2(φ2(t, x2, d)), (6)

with F t,x,ui denoting the ith component of F t,x,u.
Proposition 1: Let P ∈ (0, 1), B satisfy Assumption 1 and

u ∈ S(U) be a control input signal. Define d̄ := Φ−1(1−P ),
where Φ is the cumulative distribution function of the random
variable d, see Definition 5. Then we have that Cu(P ) =
Su

1 ∪ Su
2 where

Su
1 :=

{
x ∈ X

∣∣ ∃ t ∈ [0, τend],∃ i ∈ {1, ..., r},
such that Hi < F t,x,ui (d̄)

}
,

Su
2 := {x ∈ X | ∃ t ∈ [0, τend],∃ j ∈ {1, ..., s},

such that Gj(φ1(t, x1,u)) > gj
}
.

To summarize, by Theorem 2 we can guarantee a prescribed
safety level P by only overriding the driver input when the
system state is on the boundary of the safe set W(P ). In
general, computation of the set W(P ) is very demanding.
However, exploiting that the system is input/output order
preserving with respect to both control and disturbance we
can derive via Theorem 1 and Proposition 1 a simple way to
check whether the system state x ∈ X is in W(P ). Indeed,
these results imply that it is sufficient to check whether the
flow starting at x with control input um and deterministic
disturbance input d̄, where d̄ is as in Proposition 1, enters
the bad set B. We discuss this approach in detail in the next
section.

V. COMPUTATION OF CAPTURE SET AND CONTROL MAP

Based on Theorem 2, if we can calculate the capture set
Cum

(P ), then the feedback map π defined by (5) guarantees
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a safety level P . Using Proposition 1, we have that

Cum(P ) = Sum
1 ∪ Sum

2 ,

and more precisely that the state x ∈ X is in the capture set
if at least one of the following two conditions is satisfied:

1) min
t∈[0,τend]
i∈{1,...,r}

(Hi − F t,x,um

i (d̄)) < 0;

2) min
t∈[0,τend]
j∈{1,...,s}

gj −Gj(φ1(t, x1,um) < 0.
(7)

These can be easily checked by integrating the system dynam-
ics with the specified control and disturbance input, um and
d̄ respectively, over the time horizon [0, τend].

As mentioned in Section III, the feedback map π acts as
a safety supervisor. That is, it overrides the driver when the
system’s state risks entering the capture set. The block diagram
corresponding to this safety supervisor is depicted in Figure 4.
The current system state x ∈ X and the desired input ud are
given as an input to the supervisor. Using the conditions of (7),
the supervisor verifies if the current state is in the closure of
the capture set. If yes, then the desired control ud is overridden
by um. Otherwise ud is applied.

Fig. 4. Block diagram of the safety supervisor. In the figure x denotes the
system state and ud the desired input of the driver.

For the simulations, this safety supervisor was implemented
in discrete time. Pseudo-code is outlined in Algorithm 1.
The state of the discretized system at step k is denoted by
x[k] = (x1[k], x2[k])T . Future states are computed using Euler
forward approximation with a fixed step size ∆t. We also
define the function Fi[k] as follows

Fi[k] := Z1
i h

1(x1[k])− Z2
i h

2(x2[k]). (8)

All other notations are similar to the continuous-time model.
Note that x1[k] and x2[k] in (8) depend on the initial condition
and the inputs.

VI. VALIDATION ON NATURALISTIC DATA SETS

In this section, we describe how the data of the preceding
vehicle was collected and used to identify its parameters. We
then provide results from simulations on two different data
sets.

Algorithm 1 Safety supervisor
Require: x[0] = (x1[0], x2[0])T : current state
Require: u[0]: desired input
k ← 1;
d̄← Φ−1(1− P );
x[1] ← x[0] + ∆t(f(x[0], u[0], d̄)); {One step lookahead}
{Check whether x[1] is safe, override if not}
while k∆t ≤ τend do

for i = 1 to i = r do
if Hi − Fi[k] ≤ 0 then
u[0]← um; BREAK;

end if
end for
for j = 1 to j = s do

if gj −Gj(x1[k]) ≤ 0 then
u[0]← um; BREAK;

end if
end for
x[k + 1]← x[k] + ∆t(f(x[k], um, d̄));
k ← k + 1;

end while
return u[0];

Fig. 5. The path that is used for PV data acquisition. The dots indicate study
areas such as stop signs, speed bumps, roundabouts, etc.

A. Data collection and model identification

Figure 5 shows the path that was used to collect the data for
both identifying the parameters of PV model and validating
the safety guarantees of Algorithm 1. This path is located
in Ann Arbor, Michigan, it is 11 km long, and consists
of 30 study areas. The study area is a part of the road at
which the driver frequently reduces his/her speed such as
intersections, roundabouts, speed bumps or stop signs. For
identifying the parameters of the PV model, we collected a
total of 125 approaches to study areas, all from the same
middle-aged, male driver. The data collected contains both
speed and acceleration measurements from on-board sensors
and position measurements obtained from GPS (Figure 6). We
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call this data set the test-vehicle data set.

Fig. 6. Trajectories of position and speed of 125 profiles of the test vehicle
at study areas [units and numbers are removed as they are proprietary
information].

Based on this data we assumed a normal distribution for the
disturbance input, i.e. d ∼ N (µ, σ2). We have used the least
squares method to calculate the parameters a, b, µ and σ. In
particular, using (3) and (3b) for vp[k] ≥ 0 we have[

xp[k + 1]
vp[k + 1]

]
=

[
xp[k] + ∆tvp[k]

vp[k] + ∆t(axp[k] + bvp[k] + µ)

]
. (9)

By replacing xp[k] in the second equation of (9) with xp[k−
1] + ∆tvp[k − 1], we obtain vp[k + 1] = a(∆txp[k − 1] +
∆t2vp[k − 1]) + (1 + b∆t)vp[k] + µ∆t. We define the new
parameters a′ = a, b′ = 1 + b∆t and µ′ = µ. Minimizing the
squared error for speed leads to the following optimization
problem:

min
X
‖CX −D‖2, with X = (a′, b′, µ′)T , (10)

where C = [Ci,j ]i=1,...,Nd
j=1,...,3

, with Nd denoting the number of

data points and C1,1 = ∆txp[1], C1,2 = vp[1], C1,3 = ∆t, and
for k ≥ 2, Ck,1 = ∆txp[k− 1] + ∆t2vp[k− 1], Ck,2 = vp[k],
Ck,3 = ∆t. Similarly, D ∈ RNd with components Dk =
vp[k + 1]. Also, the variance can be calculated using

σ2 =

∑Nd

i=1 |axp[i] + bvp[i] + µ− ap[i]|2

Nd
,

where Nd is the number of all data points, and xp[i], vp[i] and
ap[i] are the measured position, velocity and acceleration of
the ith data point.

B. Simulation results on a naturalistic data set

Algorithm 1 provides a safety supervisor that, given the
model for the preceding vehicle, guarantees that independent
from what the driver of the following vehicle does, at most
100(1 − P )% of all scenarios result in a crash. In order to
verify this property we tested the algorithm on two different
data sets. For the first test, we used the test-vehicle data set
described in the previous section. In order to perform model
identification and simulations on the same data set we used
the cross validation method. For the second test, we collected
through radar measurements the position and speed of vehicles
that we encountered during a test drive in Ann Arbor on the
same path of Figure 5. While this data was recorded, drivers
were not aware of the ongoing experiment. This led to a data

set consisting of 41 approaches to study areas of 41 different
vehicles and drivers. This data set is called the radar data set.

In order to validate Algorithm 1, we determined the empir-
ical safety level as follows. For each trial, we randomly and
uniformly selected the initial speed of FV, in a range of 5
to 20 meters per second. Similarly we selected uniformly an
initial relative position to PV in a range from δ to 50 meters.
The FV would then move with a constant acceleration, chosen
also according to a uniform distribution in [0,3] meters per
square second. For the preceding vehicle, we chose for each
trial randomly, according to a uniform distribution, either a
trajectory from the test-vehicle data set (first test) or from the
radar data set (second test). After performing a large number
of trials T = 5000 we computed the empirical safety level
(1−N/T ), where N is the number of collisions encountered
during T trials. Then we compared the obtained value with
P . The logic diagram of our tests is shown in Figure 7.

Fig. 7. Test to evaluate the empirical safety of the system.

As stated above, for the first test we use the k-fold cross
validation method, see for instance [7], with k = 5. Thus, we
partition the test-vehicle data set into 5 groups (each group
with 25 trajectories), identify the parameters by solving the
minimization problem (10) using the data of 4 groups and
run the tests outlined in Figure 7 on the 5th group, called test
group. This way, we compute for each test group the empirical
safety level. The results are shown in Table I and indicate that
the algorithm leads to an empirical safety level 1−N/T close
to P .

TABLE I
EMPIRICAL SAFETY LEVEL ON THE TEST-VEHICLE DATA USING 5-FOLD

CROSS VALIDATION.

Empirical safety level for
Test group P = 0.7 P = 0.8 P = 0.9

Group 1 0.720 0.853 0.944
Group 2 0.677 0.821 0.934
Group 3 0.702 0.834 0.932
Group 4 0.695 0.812 0.912
Group 5 0.669 0.791 0.916
Average 0.693 0.822 0.928
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For the second test, we trained the PV model using all 125
trajectories of the test-vehicle data set and for the simulations
we randomly and uniformly selected trajectories from the
naturalistic radar data set to perform the test outlined in
Figure 7. Table II shows that the empirical safety level is still
very close to the desired one, which also indicates that the
identified model of the PV has good generalization ability.

TABLE II
EMPIRICAL SAFETY LEVEL ON THE NATURALISTIC RADAR DATA SET

Safety level (P ) Empirical safety level

0.7 0.681
0.8 0.832
0.9 0.929

Finally we compared our safety supervisor based on a
stochastic disturbance model with the same supervisor based
on a deterministic model as was proposed in [12] and [26].
In the deterministic model, the set of disturbance inputs is
∆̃ = [dm, dM ], where the lower and upper bounds dm and dM
correspond to the smallest and largest value of the disturbance
within the 125 trajectories of the test-vehicle data set. Figure 8
shows a comparison of the timing when the supervisor based
on the deterministic model first applies control input and when
the supervisors based on the stochastic disturbance model with
P = 0.8 and P = 0.98 do. The simulation was performed for
a PV trajectory randomly chosen from the test-vehicle data
set and the same FV model as for the other simulations was
used. It is clear that using the deterministic model the safety
supervisor overrides the driver sooner than with the stochastic
one, and that for P = 0.98 overrides occur sooner than for
P = 0.8.

Notice that in Figure 8(b), (d) and (f), we have used a
counter that keeps the control input um on for at least 1s
whenever the system exits Cum

(P ). As we can see from the
plots, the number of switches between driver and supervisor
input has been reduced significantly in Figure 8(f) compared to
Figure 8(e). One can show that theoretically this modification
of the control by introducing hysteresis does not affect the
safety guarantees.

VII. EXTENSION TO THE CASE WITH HUMAN IN THE LOOP

In the previous sections, we considered the case where
the driver-assist system overrides the driver with emergency
brake when deemed necessary to ensure the desired probability
of safety. In this section, we design a driver-assist system
that only warns the driver with the emergency brake level
required to keep the desired probability of safety. This allows
the driver to apply brake himself/herself, which consequently
leads to minimizing automatic brake interferences. We model
the human driver as an actuator with time delay, called
TRT , which is the time the driver takes to respond to the
warning. We extend Algorithm 1 to the case in which we have
“actuator delay” TRT , distributed according to a probability
distribution that will be identified from experimental data (see
Section VII-B for the details). The architecture of this driver-
assist system is depicted in Figure 9.

(a) (b)

(c) (d)

(e) (f)

Fig. 8. Simulation results for safety P ∈ {0.8, 0.98, 1} with the same PV
profile and FV initial state. (a),(c) and (e) show from top to bottom the relative
position between PV and FV, the speed of FV and the control input. (b),(d)
and (f) show the same graphs for a modified controller with the hysteresis of
1s [units and numbers are removed as they are proprietary information].

Fig. 9. Based on position and velocity of both vehicles, Algorithm 1
determines the safe input u(t) which is applied by the driver with a random
delay of TRT .

A. Extension of Algorithm 1 to stochastic actuator delay

In the following, for simplicity, we consider only rear-end
collisions, that is, we assume B2 = ∅. The safety supervisor
is still in the form of (5), however um is not applied directly,
but displayed to the driver (Section VII-B). The capture set
is computed taking into account that when a control input is
issued, it takes TRT time before it can be applied, see Figure 9.
That is, we have a system in the form of equation (3a) but with
a control delay: ∀vf > 0

f1(x1, u(t−TRT )) =
(
vf , u(t− TRT )−Dv2

f − ar − as
)T
,
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where TRT ∼ FTRT
(tRT ) and FTRT

: R+ → [0, 1] denotes
the cumulative distribution function of the reaction time. As a
consequence, the capture set is given by

CuTRT
(P ) = {x ∈ X | Pr(∀t ∈ [0, τend],

φ2
1(t, x2,d)− φ1

1(t, x1,uTRT
) ≥ δ) < P

}
,

where φ2
1(t, x2,d) and φ1

1(t, x1,uTRT
) are xp(t) and xf (t) of

Σapp, respectively, with uTRT
defined as

uTRT
(t) =

{
u0 if t ∈ (0, TRT ),
um if t ∈ [TRT , τend],

(11)

where u0 ∈ U is the value of the driver input when the
warning is issued. Here, we assume that the value of u0 is
constant during the reaction time. In the following proposition
we compute an approximation for CuTRT

(P ).
Proposition 2: Let P ∈ (0, 1) and p∗ ∈ (0, 1) be given and

t∗RT be such that

FTRT
(t∗RT ) = Pr(TRT ≤ t∗RT ) = p∗. (12)

Moreover, let TRT and d be independent random variables.
Then

CuTRT
(P ) ⊂ Cut∗

RT

(
P

p∗

)
.

The proof of this proposition is provided in the Appendix.
For a given safety level P and choice of p∗, we can calculate

t∗RT based on the distribution function FTRT
(tRT ) and use the

result of Theorem 2 with Cum
(P ) replaced with Cut∗

RT

(
P
p∗

)
to obtain a safety supervisor for the case with actuator delay.
Notice that p∗ is a parameter of this method and different
choices will lead to different approximations of the capture set,
see Tables III and IV below. Further investigations are needed
to develop a procedure that allows to choose the parameter p∗

optimally. The tradeoff between p∗ and P/p∗ is illustrated in
Figure 10.

Fig. 10. The figure shows the position trajectories of both vehicles. The
dashed lines correspond to position trajectories of FV for increasing values
of tRT . If Pr(d ≤ d̄) = 1 − P ∗ and F (t∗RT ) = p∗then it is clear that
increasing p∗ requires increasing t∗RT which means that the driver has to be
warned earlier.

B. Identification of driver’s reaction time distribution

In order to determine the distribution function FTRT
from

data, a set of experiments on the test path depicted in Figure 5
was performed, in which we showed a visual warning to the
driver, and measured the time the driver took to press the
brake after the warning was issued. These experiments will be
referred to as reaction time experiments. In these experiments,
we have used Algorithm 1, with P/p∗ = 0.9 and control input
in the form of (11) with t∗RT = 1.5s preset reaction time
[32]. All data was collected from the same middle-aged, male
driver. Figure 11 shows the response of this driver (the u term
of acceleration in (3a)) from onset of the warning, and the
frequency of his response time to the warning. We collected
a total of 104 of these braking trajectories of the test vehicle
starting at the time the warning was issued. Figure 12 shows
the schematic of the HMI (Human Machine Interface) that
has been used to show the warning to the driver. This HMI
allows the driver to compare his/her acceleration input with
the required acceleration um in order to help him/her adjust
the acceleration of the vehicle.

(a) (b)

Fig. 11. (a) shows the braking profiles collected during the reaction time
experiments. (b) shows the empirical distribution of the response time to the
warning as observed during the reaction time experiments.

Fig. 12. The HMI used for warning.

C. Validation on naturalistic data set

Similar to Section VI-B, where we performed simulations
using two different data sets to validate the safety of the su-
pervisor based on direct overrides, we computed the empirical
safety level (see Figure 7), with um replaced by ut∗RT

and t∗RT
corresponding to different choices of p∗.

We used half of the data collected during the reaction time
experiments for model identification, that is, to determine
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the empirical distribution of TRT . The remaining half of the
braking profiles, not used for model identification, was used
during the simulations instead of the fixed override input um.
Thus at each trial we randomly selected a braking profile
among the profiles not used for model identification1. As
for the direct override case, we performed two different tests
corresponding to different data sets for the preceding vehicle.
In the first test, we used 62 trajectories of the test-vehicle data
set for model identification and the rest of the data for the
simulations. The empirical safety levels for different values of
P and p∗ are shown in Table III.

TABLE III
EMPIRICAL SAFETY LEVEL ON THE TEST-VEHICLE DATA SET.

Empirical safety level for
Delay p∗ P = 0.7 P = 0.8 P = 0.9

1.0 0.923 0.948 0.974
0.94 0.831 0.862 0.945
0.91 0.796 0.872 0.940
0.87 0.770 0.851 -
0.83 0.737 0.848 -

For the second test, we used the entire test-vehicle data set
for model identification and during simulations the trajectories
from the radar data set were used for PV. The results of this
second experiment are shown in Table IV.

TABLE IV
EMPIRICAL SAFETY LEVEL ON THE RADAR DATA SET.

Empirical safety level for
Delay p∗ P = 0.7 P = 0.8 P = 0.9

1.0 0.948 0.956 0.977
0.94 0.812 0.891 0.927
0.91 0.793 0.860 0.941
0.87 0.752 0.852 -
0.83 0.731 0.823 -

We conclude this section with a discussion of the driver’s in-
put model, equation (11). Since the rear-end collision situation
corresponds to xp − xf < δ, we compare the FV’s positions
corresponding to real driver’s inputs measured during the
reaction time experiments (Figure 11(a)), denoted by xdriver,
with the FV’s positions corresponding to a model input of
the form (11), with TRT replaced by t∗RT = 1.5s, denoted
by xmodel. This comparison shows that for 98.1% of the
trajectories, xdriver(t) < xmodel(t) for all t ∈ [t∗RT , tl], where
tl corresponds to the length of the observed trajectory. Thus for
the reaction time t∗RT , which satisfies Pr(TRT ≤ t∗RT ) = 0.87,
the human driver managed in 98.1% of the cases to provide at
least as much deceleration as the model xmodel predicted. This
is primarily due to the fact that the driver of the FV would
in most cases reduce the acceleration in the vicinity of the
intersection already before actively pushing the brakes. This
explains the conservatism that we see as the model assumes a
constant driver input during the reaction time.

1Since during the simulations we may require a profile of FV which is
longer than trajectories of Figure 11(a), for the rest of such simulations we
have used u = um.

VIII. CONCLUSION

In this paper, we have proposed a model-based approach to
design driver-assist systems with a guaranteed probability of
safety P . In particular, we have focused on a case study where
a vehicle approaching a stop sign, speed bump or intersection,
has to prevent a collision with a preceding vehicle. We mod-
eled driver behavior (both for the preceding and following ve-
hicles) through probabilistic models, in which the probability
distributions of unknown parameters were identified from data.
Our solution approach leveraged the monotone structure of the
dynamics to provide an efficient algorithm for the real-time
implementation of the driver-assist system. Simulations on a
naturalistic data set demonstrate that the algorithm can indeed
guarantee the desired safety level while being substantially
less conservative than the deterministic counterpart.

There are many assumptions and simplifications made in
this work that should be relaxed in future work. On the
algorithmic side, we seek to extend the efficient computation
of the probabilistic capture set to more general forms of the
bad set B and system’s dynamics. In these algorithms, we
would also like to extend the control input model to actuators
with stochastic delays and actuation uncertainty, to capture the
possible difficulty a driver has to track the required control
input and more accurately model physical limitations. More
generally, it will be interesting to extend these approaches to
cases where the driver model (both for the vehicle under study
and for the surrounding vehicles) is identified and adjusted on-
line to provide better adaptation to different drivers, different
paths, and different vehicle parameters. Finally, human drivers
are often modeled as multimodal systems [18] to take into
account fundamentally different dynamical behaviors such as
for instance braking and accelerating. An extension of the
approach to such a hybrid setting should also be investigated.

APPENDIX

In the following we provide the proofs of the main results.
Proof of Theorem 1: (⇐) If x /∈ Cum(P ), then

Pr(φ(t, x,um,d) /∈ B, ∀t ∈ [0, τend]) ≥ P , which implies
x ∈ W(P ).

(⇒) We prove the contrapositive, i.e. if x ∈ Cum
(P ) then

x /∈ W(P ). From Proposition 1 we can distinguish two cases:
Case (1): If x ∈ Sum

2 then there exist a time t ∈ [0, τend],
and j ∈ {1, ..., s} such that Gj(φ1(t, x1,um)) > gj , which
from the order preserving property of Assumption 1 implies
that for all u ∈ S(U), Gj(φ1(t, x1,u)) > gj . Hence,
φ1(t, x1,u, d) ∈ B2 and we conclude x /∈ W(P ).

Case (2): x ∈ Sum
1 ∩ (Sum

2 )c. For a control input signal
u ∈ S(U) we define

Ωu :=
{
d ∈ ∆

∣∣ ∃ t ∈ [0, τend],∃i ∈ {1, ..., r}
such that F t,x,ui (d) > Hi

}
.

From the order preserving properties of Σ∗ and Assumption 1
it follows that u 7→ F t,x,ui (d) is an increasing function for
all t, x, d. This implies that Ωum

⊂ Ωu for all u ∈ S(U).
Finally, using that x ∈ Sum

1 we have for all u ∈ S(U),

1− P < Pr(Ωum
) ≤ Pr(Ωu),
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which shows that x /∈ W(P ).
Proof of Theorem 2: Let d̄ ∈ ∆ be as in Proposition 1.

Then it is clear that Pr(d ≥ d̄) = P . Consequently, it suffices
to show that

φπ(t, x, d) /∈ B, ∀t ∈ [0, τend], ∀d ≥ d̄.

Assume to the contrary that there exist d ≥ d̄ and t∗ ∈ [0, τend]
such that

φπ(t∗, x, d) ∈ B. (13)

As B ⊂ Cum(P ), we have also that φπ(t∗, x, d) ∈ Cum(P ).
Thus defining t̄ = sup{t ∈ [0, t∗] | φπ(t, x, d) ∈ Cum

(P )c},
it follows from the continuity of the flow with respect to time
that x̄ := φπ(t̄, x, d) ∈ ∂Cum

(P ). Moreover, by the very
definition of t̄ and the feedback map π, for all t ∈ [t̄, t∗]

φπ(t, x, d) = φ(t− t̄, x̄,um, d). (14)

Next notice that Cum(P ) is open (see Corollary 1 below),
which in turn by Proposition 1 implies that for all j ∈
{1, . . . , s} and t ∈ [0, τend], there exists i ∈ {1, . . . , q} such
that

F t,x̄,um(d̄) ≤ H and Gji (φ
1(t− t̄, x̄1,um)) ≤ gji . (15)

Finally, by the order preserving property of d → φ2(t, x, d),
this implies also that

F t,x̄,um(d) ≤ H, ∀t ∈ [0, τend]. (16)

However, (14)-(16) assure that φπ(t, x, d) /∈ B for all t ∈
[t̄, t∗] contradicting (13).

Remark 1: Notice that with similar arguments one can prove
that if system Σ2 is strictly input/output order preserving with
respect to disturbance input then the probability of avoiding
B with the feedback map π is exactly P .

Proof of Proposition 1: Step 1: We show that

Cu(P ) = S̃u
1 ∪ Su

2 ,

where

S̃u
1 :=

{
x ∈ X

∣∣ Pr(F t,x,u(d) ≤ H ∀t ∈ [0, τend]) < P
}
.

Based on Assumption 1 the bad set can be written as B =
B1 ∪B2. The P -safety capture set for input signal u for this
bad set is given by

Cu(P ) = {x ∈ X | Pr (φ(t, x,u,d) /∈ B1∧
φ(t, x,u,d) /∈ B2, ∀t ∈ [0, τend]) < P} .

As a direct consequence of the definition of Su
2, Su

2 ⊂ Cu(P ).
Therefore,

Cu(P ) ∩ Su
2 = Su

2 = (Su
2 ∪ S̃u

1 ) ∩ Su
2. (17)

From relationship (17), it suffices to prove2

Cu(P ) ∩ (Su
2)c = (Su

2 ∪ S̃u
1 ) ∩ (Su

2)c = S̃u
1 ∩ (Su

2)c. (18)

2Since for sets A,B and C, if A ∩ B = C ∩ B and A ∩ Bc = C ∩ Bc,
then A = A∩ (B ∪Bc) = (A∩B)∪ (A∩Bc) = (C ∩B)∪ (C ∩Bc) =
C ∩ (B ∪Bc) = C.

From the definition of Cu(P ), we have

Cu(P ) ∩ (Su
2)c = {x ∈ (Su

2)c | Pr(φ(t, x,u,d) /∈ B1∧
φ(t, x,u,d) /∈ B2,∀t ∈ [0, τend]) < P}. (19)

Also, from the definition of Su
2, it follows that if x ∈ (Su

2)c,
then for all t ∈ [0, τend], φ(t, x,u,d) /∈ B2. Therefore, we can
write (19) in the form of

Cu(P ) ∩ (Su
2)c = {x ∈ (Su

2)c |
Pr(φ(t, x,u,d) /∈ B1,∀t ∈ R+) < P},

which based on the definition of S̃u
1 and Assumption 1, can

be further simplified as

Cu(P ) ∩ (Su
2)c = {x ∈ (Su

2)c | x ∈ S̃u
1 } = (Su

2)c ∩ S̃u
1 ,

which proves (18).
Step 2: We have to show that S̃u

1 = Sum
1

(⊂) We show instead (Sum
1 )c ⊂ (S̃u

1 )c. Let x ∈ (Sum
1 )c,

then for all t ∈ [0, τend], H ≥ F t,x,um(d̄). Since the
function h2(φ2(t, x2, d)) is order preserving with respect to
d by the definition of an OPSD, then based on Assumption 1,
Z2h2(φ2(t, x2, d)) is also order preserving with respect to d.
Since on the other hand h1(φ1(t, x1,u)) is not a function of d,
then F t,x,u(d) is a decreasing function of d. Hence, we have

∀t ∈ [0, τend],∀d ≥ d̄ : H ≥ F t,x,um(d). (20)

From the definition of d̄ and (20), it follows that

Pr(∀t ∈ [0, τend], H ≥ F t,x,um(d)) ≥ Pr(d ≥ d̄) = P,

which implies that x ∈ (S̃u
1 )c.

(⊃) Let x ∈ Sum
1 , then there exists a t ∈ [0, τend], i ∈

{1, ..., r} and ε > 0 such that

F t,x,um

i (d̄) = Hi + ε.

Because of the continuity of F t,x,um

i (·), it follows that for
some δ > 0,

F t,x,um

i (d̄+ δ) ≥ Hi +
ε

2
> Hi. (21)

Moreover, because of the decreasing property of F t,x,um

i (·),
(21) implies that

∀d ≤ d̄+ δ : F t,x,um

i (d) > Hi,

and because the cumulative distribution function Φ is increas-
ing, we have

Pr(∃t ∈ [0, τend],∃i ∈ {1, ..., r}, F t,x,um

i (d) > Hi) ≥
Pr(d ≤ d̄+ δ) = Φ(d̄+ δ) > 1− P. (22)

Finally, noticing that (22) is equivalent to

Pr(∀t ∈ [0, τend], F
t,x,um(d) ≤ H) < P,

completes the proof.
A direct and useful consequence of Proposition 1 is the

following:
Corollary 1: The set Cum

(P ) is open.
Proof: For all t ∈ [0, τend] and i ∈ {1, ..., r} we define

St,i :=
{
x ∈ X

∣∣ Hi < F t,x,um

i (d̄)
}
.
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Then by continuity of F t,x,um

i (d̄) with respect to x, St,i is an
open set. From Proposition 1, we have

Sum
1 =

⋃
t∈[0,τend]
i∈{1,...,r}

St,i.

Therefore Sum
1 is also an open set. Since Sum

2 is open,
Cum

(P ) = Sum
1 ∪ Sum

2 is open as well.
Proof of Proposition 2: If x ∈ CuTRT

(P ), then from the
definition of the capture set, we obtain

Pr(∀t ∈ [0, τend], φ
2
1(t, x2,d)− φ1

1(t, x1,uTRT
) ≥ δ) < P.

(23)
By conditioning on the two events TRT < t∗RT and TRT ≥
t∗RT , we can write relationship (23) in the form of

Pr(∀t, φ2
1(t, x2,d)− φ1

1(t, x1,uTRT
) ≥ δ | TRT < t∗RT )·

Pr(TRT < t∗RT ) + Pr(∀t, φ2
1(t, x2,d)−

φ1
1(t, x1,uTRT

) ≥ δ | TRT ≥ t∗RT ) Pr(TRT ≥ t∗RT ) < P.
(24)

Using (12) and the fact that the second term in (24) is non-
negative, we derive that

Pr(∀t ∈ [0, τend], φ
2
1(t, x2,d)− φ1

1(t, x1,uTRT
) ≥ δ |

TRT < t∗RT ) <
P

p∗
. (25)

Since u0 ≥ um, for all times tRT < t∗RT we have utRT
(t) ≤

ut∗RT
(t). This holds since for t ∈ [0, tRT ) ∪ [t∗RT , τend] we

have utRT
(t) = ut∗RT

(t), and for t ∈ [tRT , t
∗
RT ) we have

utRT
(t)−ut∗RT

(t) = um−u0 ≤ 0. Therefore, by the order pre-
serving property with respect to the input, for all t ∈ [0, τend],
φ2

1(t, x2,d)−φ1
1(t, x1,utRT

) ≥ φ2
1(t, x2,d)−φ1

1(t, x1,ut∗RT
).

Since this relationship is valid for all tRT < t∗RT and TRT is
independent of d, we have

Pr(φ2
1(t, x2,d)− φ1

1(t, x1,uTRT
) ≥ δ ∀t | TRT < t∗RT )

≥ Pr(φ2
1(t, x2,d)− φ1

1(t, x1,ut∗RT
≥ δ ∀t). (26)

Relationships (25) and (26) together imply that x ∈
Cut∗

RT
( Pp∗ ).
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