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Abstract— We address the problem of predicting whether a
driver facing the yellow-light-dilemma will cross the intersection
with the red light. Based on driving simulator data, we propose
a stochastic hybrid system model for driver behavior. Using
this model combined with Gaussian process estimation and
Monte Carlo simulations, we obtain an upper bound for the
probability of crossing with the red light. This upper bound
has a prescribed confidence level and can be calculated quickly
on-line in a recursive fashion as more data become available.
Calculating also a lower bound we can show that the upper
bound is on average less than 3% higher than the true
probability. Moreover, tests on driving simulator data show that
99% of the actual red light violations, are predicted to cross on
red with probability greater than 0.95 while less than 5% of
the compliant trajectories are predicted to have an equally high
probability of crossing. Determining the probability of crossing
with the red light will be important for the development of
warning systems that prevent red light violations.

I. INTRODUCTION

In 2012 approximately 2.36 million people were injured
in motor vehicle traffic crashes, about 30% of these injuries
happened on or near signaled intersections [1]. Statistics
show that driver distraction or inattention is the most preva-
lent contributing factor for all crashes at signaled intersec-
tions [2].

In [3], experiments have shown that using an on-board
warning system, red light running could be reduced by 77%.
Our objective is to design safety systems that are able to
predict the probability of a red light violation. This ability
will be used to issue warnings and if necessary, take control
over the vehicle to prevent red light violations. In [4], [5],
[6], [7], [8], [9] safety systems were proposed for intersec-
tions without signals and by representing driver inputs as a
disturbance. In this paper we present a combined experimen-
tal/theoretical study where suitably designed experiments in
the driving simulator are used to create a stochastic model of
driver behavior near signalized intersections. Considering the
situation when the traffic light changes from green to yellow
upon intersection approach (yellow-light-dilemma), we use
this model to compute the probability of the driver being on
the intersection while the traffic light is red.

Classification of driver behavior is an active area of
research and several different approaches, mainly using
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machine learning techniques, have been proposed, see for
instance [10], [11], [12], [13], [14], [15] and the references
therein. Most of these studies try to predict specific driving
actions, such as turning left, going straight or stopping. In
[10] the focus is on the prediction of traffic light violations
and in [13] the authors suggest two methods to predict
whether a driver is going to stop after observing a switch
of the traffic light from green to yellow.

In this paper, instead, we seek to estimate the actual prob-
ability of reaching some given state (stochastic reachability
problem). In particular, for the yellow-light-dilemma we
estimate the probability of crossing the intersection on red.
Moreover, we provide a complete model of driving behavior
near intersections, which may be used for other purposes,
including the design of safety-enforcing supervisors.

Stochastic reachability problems have been studied in the
stochastic hybrid systems literature, see [16], [17], [18],
[19]. Exact computation of reach probabilities remains a
challenging problem but Monte Carlo methods have proven
to be an efficient way to deal with the complexity of
stochastic hybrid systems, see [17].

By modeling driver behavior near intersections as a
stochastic hybrid system, we make use of the existing
stochastic reachability literature in order to formally define
the probability of crossing on red. This probability is then
computed by a combined Gaussian process estimation and
Monte Carlo simulation approach. Tests on driving simulator
data show the accuracy of the computed crossing probability.
The method therefore provides a quantification of the danger
instead of just a binary output (safe, dangerous).

In Section II, we state the problem and introduce the math-
ematical model. Then, in Section III, we present our solution
algorithm and in Section IV we provide the experimental
results.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We start by describing the intersection encounter scenarios
that we are considering and then introduce the mathematical
model.

A. Application

When the traffic light changes from green to yellow, the
driver has to decide whether he wants to brake and stop
at the stop line or continue and try to make it through the
intersection before the traffic light turns red. This is known
as the yellow-light-dilemma. The question that we address
is: What is the probability that the driver is going to be on
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the intersection while the traffic light is red? We shall call
this the crossing probability.

The intersection scenarios that we consider start when the
traffic light of the subject vehicle switches from green to
yellow. The vehicle state x = (p, v) ∈ R × R+ is given
by the vehicle position p ∈ R, which represents the signed
distance of the center of gravity of the subject vehicle to
the intersection center and the subject vehicle’s longitudinal
speed v ∈ R+ (Figure 1). We assume that the vehicle state x

Fig. 1. Intersection with coordinate system.

is measured. In practice, this implies that the subject vehicle
is equipped with differential GPS and a map of the area. In
order to be able to estimate the crossing probability we make
the additional assumption that the durations of the yellow and
red light, denoted respectively by τy and τr, are known. This
implies that the infrastructure should be able to communicate
these durations to the vehicle (V2I communication).

Figure 2 shows speed over position trajectories for differ-
ent drivers once a yellow light is observed. We see clearly
four different dynamical behaviors based on the driver’s in-
tended driving maneuver (action), namely coasting, braking,
accelerating and waiting for the green light after the car has
stopped. That is, a different dynamical system belongs to
each driver’s action.

Fig. 2. Intersection approaches of different drivers after observing a change
of the traffic light.

Based on Figure 2, we seek a driver model with the

following properties:
1) drivers have a finite set of basic actions that they can

perform such as braking, coasting and waiting;
2) each basic action has its corresponding stochastic con-

tinuous dynamics;
3) the action initially intended by the driver (intention after

observing the yellow traffic light) is unknown.
The framework of (general) stochastic hybrid systems [18]
is adapted to build a driver model that satisfies these re-
quirements. The next section introduces the mathematical
definition of such a model.

B. Hybrid system model

In what follows, we introduce the stochastic hybrid system
model and state some of its properties. A much more detailed
treatment of the subject can be found for instance in [18].

a) State space: Hybrid systems have continuous states,
that is, states that evolve according to a differential equation
and discrete states, called modes, that evolve according to
discrete transitions.

Let n ∈ N be given. The set of modes is denoted by Q and
we define the set-valued map X : Q Rn which assigns to
each mode q ∈ Q an open set in Rn. With this we define
the hybrid state space,

X(Q,X ) :=
⋃
q∈Q
{q} × X (q).

A hybrid state (q, x) =: s ∈ X(Q,X ) is a tuple formed by
the mode q ∈ Q and a continuous state x ∈ X (q). Here S
denotes the closure of the set S .

b) Formal definition and properties: Let T > 0 be a
finite constant and let m ∈ N. We denote by {Wt}t∈[0,T ] the
m-dimensional standard Brownian motion, see for instance
[20, Ch. 2]. A relevant property for this paper is that its
increments are independent, normally distributed and have
zero mean.

Definition 1: A (linear) stochastic hybrid system is a col-
lection H = (Q,X , A, b, σ,R, Init, x0) where
• Q is a finite set;
• X : Q Rn is a set-valued map with open images;
• x0 ∈ Rn is the initial continuous state;
• A : Q→ Rn×n is a matrix-valued map;
• b : Q→ Rn is a vector-valued map;
• σ : Q→ Rn×m is a matrix-valued map;
• R : Q→ [0, 1] is the transition measure;
• Init : Q → [0, 1] is the initial probability distribution

on the modes.
The linear stochastic hybrid system defined here is a

special case of a general stochastic hybrid system, see for
instance [18, Defs. 4.1], where dynamics are linear and only
the modes can have jumps.

Definition 2: A stochastic process {s(t)}t∈[0,T ] =
{(q(t),x(t))}t∈[0,T ] is an execution of a stochastic hybrid
system H if there exist stopping times T 0 = 0 ≤ T 1 ≤
· · · ≤ T k ≤ · · · ≤ T such that for each k ∈ {0, 1, . . . },

(i) s(0) = (q0, x0), where q0 is a Q-valued random
variable with probability distribution Init;



(ii) q(T k+1) = qk+1, where qk+1 is a Q-valued random
variable distributed according to R;

(iii) For all t ∈ [T k, T k+1)], where “)]” is closed when
T k+1 = T and open otherwise, q(t) ≡ qk;

(iv) For all t ∈ ]T k, T k+1], x(t) is the solution of

dx(t) = (A(qk)x(t) + b(qk)) dt+ σ(qk)dWt;

(v) T k+1 = inf
{
t ∈ ]T k, T ]

∣∣ x(t) ∈ ∂X (qk)
}

.
Definition 3: Let C ∈ Rn×1 be a given matrix, H be a

stochastic hybrid system and {s(t)}t∈[0,T ] an execution of H .
An output of H corresponding to the execution {s(t)}t∈[0,T ]

and the output map C is a stochastic process {y(t)}t∈[0,T ]

satisfying y(t) = Cx(t) for all t ∈ [0, T ].
Definition 4: A mode q ∈ Q is stationary if A(q) =

b(q) = σ(q) = 0.
Throughout the paper H = (Q,X , A, b, σ,R, Init, x0)

represents a stochastic hybrid system which satisfies the stan-
dard assumptions [21, Assumption 1-3]. Other than regularity
assumptions on the dynamics that are satisfied in the linear
case, these assumptions demand that the executions have
non-Zeno dynamics. We end the section with some properties
of the hybrid system.

Fact 1 ([21]): Every stochastic hybrid system H has an
execution that is a strong Markov process (see [20, p. 81])
which enjoys the càdlàg property, which means sample paths
are continuous from the right and have left limits, [20, p. 4].

Using the terminology of [22], let q ∈ Q be given and
recall that the fundamental matrix Φq : [0, T ] → Rn×n of
the linear system ẋ(t) = A(q)x(t) + b(q) is defined by

Φq(t) := eA(q)t =

∞∑
i=0

(A(q)t)
i

i!
. (1)

Fact 2: Let H be a linear stochastic hybrid system, q ∈ Q
and x ∈ X (q). Then, the stochastic process {xq(t, x)}t∈[0,T ]

satisfying xq(0, x) = x and

dx(t, x) = (A(q)x(t) + b(q)) dt+ σ(q)dWt, (2)

is given for all t ∈ [0, T ] by the stochastic integral

xq(t, x) = Φq(t)

(
x+

∫ t

0

Φ−1
q (s)b(q)ds

)
+ Φq(t)

∫ t

0

Φ−1
q (s)σ(q)dWs. (3)

Moreover, {xq(t, x)}t∈[0,T ] is a diffusion, i.e., time-
homogenous and strongly Markovian with continuous sam-
ple paths. Finally, the stochastic process {Eq(t)}t∈[0,T ] de-
fined by

Eq(t) := Φq(t)

(∫ t

0

Φ−1
q (s)σ(q)dWs

)
, (4)

is a Gaussian process, where for all t, t′ ∈ [0, T ], E(Eq(t)) =
0 and the covariance function Σq(t, t′) is given by

Σq(t, t′) :=∫ min{t,t′}

0

(
Φq(t− s)σ(q)σ(q)T Φq(t′ − s)T

)
ds. (5)

For a proof of these results see for instance [20] and [22].
The deterministic part of (3) is denoted by:

ϕq(t, x) := Φq(t)

(
x+

∫ t

0

Φ−1
q (s)b(q)ds

)
. (6)

C. Problem formulation

We start with the data that we assume is available at all
time.

Data: Let S ∈ [0, T ] and for all q ∈ Q, Nq ∈ N. Then
the following is given:
• It = [S, T ] – time interval;
• Iy = [ymin, ymax] – target set for the output;
• For each mode q ∈ Q, {eq1(t), . . . , eqNq (t)}t∈[0,T ] is

a set of observed sample paths of Nq independent
stochastic processes distributed as {Eq(t)}t∈[0,T ].

We impose the following assumptions on the stochastic
hybrid system H .

Assumption 1: (i) There exists a stationary mode q̄ ∈ Q
and X (q̄) = Rn;

(ii) The transition measure is for all and q ∈ Q given by
R(q) = 1{q̄}(q), where 1S(·) is the indicator function
of the set S;

(iii) There exists a set T ⊂ Rn such that for all q ∈ Q \ q̄
we have that ∂X (q) = T .

The assumption implies that when the continuous state enters
set T , then a transition into the stationary mode q̄ must occur.
Moreover, once in the stationary mode, there cannot be any
mode transitions anymore.

Problem 1: Let α > 0, C ∈ Rn×1 and the above data
be given. Moreover, let {s(t)}t∈[0,T ] = {(q(t),x(t))}t∈[0,T ]

be an execution of H and {y(t)}t∈[0,T ] be the output
corresponding to C. Finally, let N ∈ N and x(t0) =
x0, . . . ,x(tN ) = xN be measurements of the continuous
state trajectory, where 0 = t0 < t1 < · · · < tN < T . Find a
1− α confidence upper bound for the probability

PN := Pr(y(INt ) ∩ Iy 6= ∅ |
x(t0) = x0, . . . ,x(tN ) = xN ), (7)

where INt := It ∩ [tN , T ].
Determining a 1−α confidence upper bound implies that

we seek an algorithm that will produce with probability 1−α
an upper bound for the true probability PN . Notice that with
an analogous approach we can also find a 1− α confidence
lower bound to verify the tightness of the upper bound. The
motivation for solving Problem 1 is to assess the risk of the
output entering the set Iy . Taking an upper bound guarantees
that we do not underestimate that risk which provides a
certain safety guarantee.

D. Illustration with application

We illustrate the previous definitions with the help of the
application described in Section II-A.

The time interval that we are interested in is from the
moment when the traffic light switches from green to yellow
until it becomes green again. Hence T represents this time
span, that is, T := τy +τr and time 0 is when the traffic light



turns yellow. Modes should represent the basic driver actions
braking, coasting, and waiting, see Section II-A. Notice that
accelerating is not relevant to the model as it occurs after
time T . Thus the set of modes is Q = {1, 2, 3}, where 1
stands for braking, 2 for coasting, and 3 for waiting. It is clear
that waiting should be the stationary mode. Concerning mode
transitions, there are two facts that are relevant. First, there
should be a mode transition from braking to waiting when
the car reaches zero speed. Secondly, cars should not have
negative speed. Recalling that the vehicle state x = (p, v) is
given by position p and speed v, we define X : Q R2:

X (q) :=

{
R× ]0,+∞[ if q = {1, 2}
R2 if q = 3,

which leads to the hybrid state space

X(Q,X ) := {1, 2} × R× ]0,+∞[ ∪ {3} × R2.

For the longitudinal dynamics we consider a second-order
model. Thus for q ∈ {1, 2}, we have

A(q) =

(
0 1
aq1 aq2

)
, b(q) =

(
0
bq

)
, σ(q) =

(
0
σq

)
, (8)

which also implies that we consider a one dimensional
standard Brownian motion. The Brownian motion models the
uncertainty in the driver behaviors by introducing a random
deviation from the nominal acceleration profile.

We describe in Section IV-B how the parameters can be
identified from data. The initial distribution of the modes
Init also has to be learned from data. The transition measure
R is already given by Assumption 1. Consider now the prob-
lem of estimating the crossing probability. The intersection
is given by the interval [dl, du], see Figure 1. Thus we set
ymin := dl − df and ymax = du + dr, where df and dr
represent the distance from the vehicle’s center of gravity
to the vehicles front, respectively to its rear. Using that the
duration of the yellow light is known, we set S := τy such
that It = [S, T ] are the times when the traffic signal is red.
With these definitions, the car is on the intersection if its
position p is in the interval Iy . Hence we set C = (1, 0).

III. PROBLEM SOLUTION

Next we propose an algorithm to solve Problem 1.

A. Problem decomposition

We start with a lemma that allows to decompose the
problem into a mode estimation and a simpler reachability
problem. Then we address these sub-problems.

Lemma 3.1: Let (ti, xi), i ∈ {0, . . . , N}, be as in Prob-
lem 1. Assume that (ti, Cxi) /∈ It × Iy for all i. Then if
xN /∈ T ,

PN =
∑
q∈Q

(
Pr(q(0) = q | x(tN ) = xN , . . .x(t0) = x0)·

· Pr(y(INt ) ∩ Iy 6= ∅ | q(tN ) = q,x(tN ) = xN )
)
, (9)

and otherwise PN = 1Iy (CxN ).

To simplify the notation we omit in what follows the
variables on which we condition, for instance Pr(q(0) =
1 | x(tN ) = xN , . . .x(t0) = x0) will be denoted by
Pr(q(0) = 1 | xN , . . . , x0).

Proof: By Assumption 1, if xN ∈ T then q(tN ) = q̄
and PN = 1Iy (CxN ) follows from the stationarity of q̄.

Consider now the case when xN /∈ T . Then, by As-
sumption 1, we have that tN < inf {t ∈ ]0, T ] | x(t) ∈ T },
that is, no mode transition has occurred yet. In particular
q(tN ) = q(0). This leads to

PN =
∑
q∈Q

Pr(q(0) = q | xN , . . . , x0)·

· Pr(y(INt ) ∩ Iy 6= ∅ | q(tN ) = q, xN , . . . , x0).

We then obtain (9) by using the Markov property of the
execution {(q(t),x(t))}t∈[0,T ], see Fact 1.

B. Mode estimation

Motivated by Lemma 3.1 we start by solving the following
sub-problem:

Problem 2: Let x0, . . . , xN be as in Problem 1 and as-
sume that xN /∈ T . For all q ∈ Q compute the probability

P ∗N (q) := Pr (q(0) = q | xN , . . . , x0) . (10)
The problem is solved by using Bayes’ theorem and then

standard Gaussian process theory techniques, see [23].
Since xN /∈ T there have not been any mode tran-

sitions. When setting q(0) = q, it follows from Fact 2
that x(t) = xq(t, x0) for all t ∈ [0, tN ]. The process
{xq(t, x0)}t∈[0,T ] is Gaussian and it follows from the def-
inition of its covariance function Σq , given by (5), that
the random variables xq(t1, x0), . . . ,xq(tN , x0) have a joint
probability density. For all 1 ≤ i ≤ j ≤ N , we denote
by fqi,j the joint density function of the random variables
xq(ti, x0),xq(ti+1, x0), . . . ,xq(tj , x0), that is,

fqi,j(x) = fx(ti),x(ti+1),...,x(tj)(x | q(0) = q).

Analogously, for i ∈ {1, . . . , N}, the density of xq(ti, x0)
is denoted by fqi , that is,

fqi (x) = fx(ti)(x | q(0) = q).

We use a similar notation for the covariance function. Thus,
for all i, j ∈ {1, . . . , N} we set Σq

i,j := Σq(ti, tj) and Σq
i :=

Σq(ti, ti). Finally, recalling that the mean function of the
Gaussian process {xq(t, x0)}t∈[0,T ] is given by (6), we set
for all i ∈ {1, . . . , N}, εqi := xi − ϕq(ti, x0).

Fix an arbitrary q ∈ Q. By Bayes’ formula we have then

P ∗N (q) =
fq1,N (x1, . . . , xN )Init(q)∑

q̃∈Q f
q̃
1,N (x1, . . . , xN )Init(q̃)

. (11)

Efficient computation of (11) is achieved by using the
following update formulas that exploit the Markov property
of executions, see Fact 1.

Update Formulas: For all q ∈ Q we have that

P ∗1 (q) =
fq1 (x1)Init(q)∑

q̃∈Q f
q̃
1 (x1)Init(q̃)

, (12)



where

fq1 (x1) =
exp

(
− 1

2 (εq1)
T

(Σq
1)−1εq1

)
√

(2π)n det(Σq
1)

. (13)

Moreover for all N > 1,

P ∗N (q) =
fqN (xN | xN−1)P ∗N−1(q)∑

q̃∈Q f
q̃
N (xN | xN−1)P ∗N−1(q̃)

, (14)

where

fqN (xN | xN−1)

=

exp

(
− 1

2 (εqN − µ
q
N )

T
(

Σ̂q
N

)−1

(εqN − µ
q
N )

)
√

(2π)n det(Σ̂q
N )

, (15)

and µq
N := Σq

N,N−1

(
Σq

N−1

)−1
εqN−1 and Σ̂q

N := Σq
N −

Σq
N,N−1

(
Σq

N−1

)−1
Σq

N−1,N .

C. Stochastic reachability of an interval

For this section, let q ∈ Q be an arbitrary mode, assume
that xN /∈ T and α̃ ∈ ]0, 1[. We solve the following problem:

Problem 3: Using the data provided in Section II-C, find
a 1− α̃ confidence upper bound for the probability

PN (q) := Pr(y(INt ) ∩ Iy 6= ∅ | q(tN ) = q,x(tN ) = xN ).
We assume in the following that q 6= q̄ because otherwise

PN (q) = 1Iy (CxN ).
To solve the problem we use Nq sample paths of the

process {y(t)}t∈[0,T ] and then estimate for what fraction of
the sample paths there exists a time in INt for which the
sample path takes values in Iy . By (3), we know that

x(t) = ϕq(t− tN , xN ) + Eq(t− tN ), ∀t ∈ [tN , T
1],

where T 1 = inf {t ∈ [tN , T ] | x(t) ∈ T }. As ϕq(t−tN , xN )
is a deterministic function, we have that defining for all i ∈
{1, . . . , Nq} the functions

xqi (t) := ϕq(t− tN , xN ) + eqi (t), ∀t ∈ [tN , T ],

{xqi (t)}i∈{1,...,N
q}

t∈[tN ,T ] is a set of observed sample paths of
Nq independent random processes that are distributed as
{ϕq(t − tN , xN ) + Eq(t − tN )}t∈[tN ,T ]. This leads to
the corresponding set of observed stopping times T 1

i :=
inf {t ∈ [tN , T ] | xqi (t) ∈ T }. Finally, since by Assump-
tion 1 q(t) = q̄, for all t ≥ T 1, we infer that by defining

yqi (t) :=

{
Cxqi (t) if t < T 1

i

Cxqi (T 1
i ) otherwise,

{yqi (t)}i∈{1,...,N
q}

t∈[tN ,T ] is a set of observed sample paths of Nq

independent random processes {yq
i (t)}i∈{1,...,N

q}
t∈[tN ,T ] that are

identically distributed as {y(t)}t∈[tN ,T ] given that s(tN ) =
(q, xN ).

Let us now associate a Bernoulli variable with each of the
random processes {yq

i (t)}i∈{1,...,N
q}

t∈[tN ,T ]

Y q
i :=

{
1 if yq

i (It) ∩ Iy 6= ∅
0 otherwise.

(16)

Since the processes {yq
i (t)} are independent and identically

distributed, the same is true for Y q
i . Moreover, we have that

PN (q) = Pr(Y q
i = 1) for all i. Then it is well known

that the sum Zq :=
∑Nq

i=1 Y
q
i has the binomial distribution

B(Nq, PN (q)). Set for all i ∈ {1, . . . , Nq},

γqi :=

{
1 if yqi (INt ) ∩ Iy 6= ∅
0 otherwise.

The values γqi correspond to realizations of the Bernoulli
random variables Y q

i , hence zq :=
∑Nq

i=1 γ
q
i is a realization

of the binomial variable Zq .
Providing a 1− α̃ confidence upper bound for the param-

eter P of a binomial distribution B(Nq, P ) from a given
observation is a standard statistical problem. For this study,
we use the upper bound of the classical Clopper-Pearson
confidence interval [24]. Hence a 1 − α̃ confidence upper
bound for PN (q), for all q ∈ Q \ q̄ is given by,

uqN (α̃) = Beta (1− α̃; zq + 1, Nq − zq) , (17)

where Beta(κ; υ, ν) is the κ-quantile from a beta distribution
with shape parameters υ and ν. Finally, for q̄ we have the
exact probability

uq̄N (α̃) = 1Iy (CxN ). (18)

To summarize, let N ∈ N, q ∈ Q and α̃ ∈ ]0, 1[ be
arbitrary. Equations (12)-(15) provide an exact formula for
the probability P ∗N (q) and uqN (α̃) is a 1 − α̃ confidence
upper bound for the probability PN (q). The probability that
uqN (α̃) ≥ PN (q) for all q ∈ Q \ q̄ is (1− α̃)r−1, where r is
the number of modes. Consequently, setting

α̃ := 1− r−1
√

1− α, (19)

and using Lemma 3.1, a 1 − α confidence upper bound for
the probability PN , is given by

∑
q∈Q P

∗
N (q)uqN (α̃).

D. Solution algorithm

Using the results of the previous sections, we provide an
algorithm to solve Problem 1.

Algorithm 1: 1. For initialization let N = 0, t0 = 0 and
the initial state x0 is observed. We define α̃ as in (19)
and initialize P ∗0 (q) := Init(q), for all q ∈ Q. By (9)
we have that P̄0 :=

∑
q∈Q P

∗
0 (q)uq0(α̃), where uq0(α̃) is

defined by (17)-(18), is a 1− α confidence upper bound
for P0.

2. For N → N + 1, let tN+1 ∈ ]tN , T ] be the current
time and x(tN+1) = xN+1 the new state observation. If
xN+1 ∈ T or tN+1 = T , then PN+1 = 1Iy (CxN+1)
and the algorithm stops. Otherwise P ∗N+1(q) is ob-
tained from (12) and (14) and we set P̄N+1 :=∑

q∈Q P
∗
N+1(q)uqN+1(α̃), where uqN+1(α̃) is defined by

(17)-(18). P̄N+1 is a 1 − α confidence upper bound for
PN+1. Repeat step 2.



Fig. 3. Driving simulator at UMTRI where experiments were conducted

IV. APPLICATION

A. Experimental setup

We use driving simulator data that was gathered at the
University of Michigan Transportation Research Institute
(UMTRI), see Figure 3. There were 24 subjects in this exper-
iment. Twelve were under age 30 and 12 were older than 60.
Within each age group there was an equal number of men
and women. Each subject drove two test blocks, each block
consisting of 70 intersections 200m apart. The subjects were
instructed not to turn at any of the intersections (to make
motion sickness less likely and simplify construction of the
virtual world). In some intersections, the traffic light would
remain green, in others it would turn to yellow and for some
it would already be red upon approach. All intersections were
crosses, with a single lane in each direction and in each
intersection scenario there were up to four cars in addition
to the subject vehicle.

In order to prevent excess speed, there was always a
lead vehicle present, that is, a vehicle driving in front of
the subject vehicle. The lead vehicle would however always
cross the intersection when the traffic light changed to
yellow, leaving the decision of whether to comply with the
signal completely to the subject. Notice that the behavior of
other traffic participants was not taken into account in the
prediction (no vehicle-to-vehicle communication).

For our purpose, mainly intersections where the traffic
light changed to yellow were of interest. In total, we consid-
ered 1, 534 such intersection approaches. The signal change
from green to yellow would occur at three possible values
for the time to intersection (TTI), which is the distance to
the stop line divided by the current speed. Those values were
respectively, 2.8s, 3.5s and 4.2s. Those are chosen such that
in the case with the largest TTI the subject has a comfortable
amount of time to react while with the smallest TTI the time
to react is relatively short.

The data set provided by UMTRI includes position, speed
and acceleration measurements for the subject vehicle as well
as the traffic light information. Measurements were taken at
a frequency of 60Hz.

B. System identification

This section is concerned with the identification of the
model parameters A, b, σ and Init from data. Since we
used standard methods, we mainly provide references to the
relevant literature.

As a first step, we divided the data into a training and a
test set both containing 767 intersection approaches. Only
the training data was used for parameter identification. The
separation into training and test data sets was done in a way
that kept the ratios between male and female, old and young
drivers, unchanged. Moreover, the training data was taken
from subjects different from those of the test data in order
to avoid correlation between the two sets.

The training data was then further divided by identifying
the trajectories belonging to the same mode. For all q ∈
{1, 2}, the parameters aq1, aq2 and bq characterizing the maps
given in (8) can then be identified in the same way as this
was done in [25], i.e., by solving a least square optimization
problem [25, (4)]. As a result we found the parameters a1

1 =
−0.04, a1

2 = −0.27, b1 = −10.23, a2
1 = −0.003, a2

2 = 0.04
and b2 = −2.12.

The parameter σq defined in (8) is a so-called hyperpa-
rameter of a Gaussian process. Hyperparameters of Gaussian
processes are classically estimated with a maximum likeli-
hood method, see [23, Ch. 5]. A general statement of the
corresponding optimization problem is for instance given in
[23, p. 113]. The resulting parameters are σ1 = 2.54 and
σ2 = 0.66.

Consider next the problem of identifying the initial distri-
bution Init. Let {s(t)}t∈[0,T ] = {(q(t), p(t), v(t))}t∈[0,T ] be
a hybrid state trajectory from the training set. As described
in Section IV-A, experiments were performed with the traffic
light changing at three different times to intersection. Hence
p(0)/v(0) ∈ {2.8, 3.5, 4.2} =: I . We then define the
distribution Ĩnit : Q×I → [0, 1] by the law of large numbers
as relative frequencies, that is,

Ĩnit(q, τ) :=
# training trajectories s.t. (q(0), p(0)

v(0) ) = (q, τ)

# of training trajectories
.

Then, using this we have the estimator Înit(q; p0, v0) :=

Ĩnit(q, p0/v0) for the initial distribution Init of the hy-
brid system with initial state x0 = (p0, v0). In particular,
we found that Ĩnit(1, 4.2) = 0.93, Ĩnit(1, 3.5) = 0.81,
Ĩnit(1, 2.8) = 0.47, Ĩnit(2, τ) = 1 − Ĩnit(1, τ) for all
τ ∈ I and finally Ĩnit(3, τ) = 0 for all τ ∈ I . These values
show that less drivers will brake when time to intersection
decreases.

Algorithm 1 estimates the mode based on discrete obser-
vations of the vehicle’s state. These observations obviously
only reflect the driver’s intended reaction to the traffic light
change once the driver had time to recognize the change
of the traffic light and react accordingly. Therefore we do
not start Algorithm 1 at the moment when the traffic light
changes but 2s later. The 2s value corresponds to the 90%
quantile of the cumulative human response time distribution,
see [26]. Response time was defined as the time from the



moment the risk is presented to the driver until the driver
input starts, see the SAE J2944 standard.

C. Experimental results

In this section, we provide results obtained from Algo-
rithm 1. The algorithm was implemented in MATLAB and
run on a 2.6GHz dual-core computer. Computing the mode
update by using the formulas (12)-(15) takes less than 0.3ms.
Computing uqN (α̃), takes less than 5ms. A full iteration of
Algorithm 1 is performed in less than 10ms. All results were
obtained by running the algorithm on the 767 intersection
approaches of the test data set and with parameter α = 0.05.
478 of these approaches comply with the traffic light, the
remaining 289 are violating trajectories.

The purpose of Algorithm 1 is to assess the risk that a
car will cross on red. As it returns an 1 − α confidence
upper bound, it guarantees that the crossing probability is
underestimated only with probability α. Moreover, using an
analogous procedure as to compute the upper bound P̄N , we
can compute a corresponding 1−α confidence lower bound,
that we denote by P̃N . It follows that P̄N −PN ≤ P̄N − P̃N

with probability 1−2α. Table I shows the average difference
P̄N − P̃N as a function of the number of observations N .
Measurements were taken at a frequency of 10Hz and the
average is taken over all 767 trajectories from the test set.

TABLE I
TIGHTNESS OF UPPER BOUND P̄N

Number of observations N

1 5 10 15

Avg. of P̄N − P̃N 0.023 0.021 0.021 0.02

Table I shows that prediction accuracy increases slowly
with the number of measurements and that independent of
the number of measurements N , P̄N − PN is on average
less than 0.023. The standard deviation is always less than
4 ∗ 10−4. This bound is theoretical in the sense that it is
based on the theoretical result that for all q, P ∗N (q) is the
actual probability of mode q. It is, however, confirmed by
our experiments. We ran Algorithm 1 on each test trajectory
and made predictions at a frequency of 10Hz, which led to a
total of 14, 623 predictions, of which at most 20 were taken
from the same trajectory. In 98% of the 5, 301 cases when
P̄N was larger than 0.95, the vehicle would actually cross
on red. Similarly, in less than 1% of the 7, 979 cases when
P̄N was lower than 0.05, the vehicle would cross on red.

A crucial question from an application point of view is
how many observations are needed to predict a traffic light
violation with high probability, assuming there will be one.
To be more precise, call a prediction decisive when the cross-
ing probability is above 0.95 and then define the detection
rate at a given time as the percentage of traffic light violating
trajectories that have gotten a decisive prediction at that
time. Table II compares the detection rates for the algorithm
if we take measurements and update the probability at 5,
10 and 30Hz respectively. Data was obtained by running

the algorithm on all 289 traffic light violating intersection
approaches.

TABLE II
DETECTION RATES OF RED CROSSING TRAJECTORIES

Elapsed time in seconds

0.033 0.067 0.1 0.2 0.4

Detection rate 30Hz 51 80 92 99 99
Detection rate 10Hz – – 84 96 99
Detection rate 5Hz – – – 92 98

As the results in Table II show, the traffic light violations
are detected by the algorithm in most cases in less than 0.2s.

In the recent paper [10] the problem of detecting traffic
light violations was studied. The authors argued that a
behavior classification procedure should be able to provide
an accurate classification at a time when traffic participants
still have time to react to the danger. To ensure this, it was
required that warnings are given (if necessary) before TTI
becomes smaller than a lower bound TTImin > 0, see
Section IV-A. We use the same values for TTImin as in
[10], i.e., TTImin ∈ {1s, 1.6s, 2s}, corresponding to the
human response time distribution percentiles 45%, 80% and
90% respectively, see [26]. Response time is defined as in
Section IV-B. Table III shows the result for our red light
crossing prediction. We say that crossing is detected at the
time TTImin whenever crossing has a decisive prediction
at that time. In addition to detection rate, the table shows
the percentage of compliant trajectories that were classified
as crossing, these are called false positives. Finally, the last
row shows the percentage of violating trajectories within the
trajectories that were classified as dangerous, this is called
the percentage of justified warnings. As in [10], we took
position measurements at a frequency of 10Hz during a
maximum of 2s or until the bound on time to intersection was
reached, whatever occurred first. In order to allow the drivers
to respond to the yellow light before TTI would become
smaller than TTImin, we used only the 204 trajectories
where the traffic light changed when TTI was 4.2s. 27 of
these trajectories were traffic light violations.

TABLE III
DETECTION AND FALSE POSITIVE RATES AT CRITICAL TTI VALUES

TTImin

1s 1.6s 2s

% Detected actual crossing 96 96 81
% Falsely detected crossing 0 2 4
% Justified warnings 100 87 76

We see in Table III that the detection rate is high, even
with the largest TTImin, while unjustified warnings remain
on an acceptable level (24%). Moreover, there is a substantial
increase in both the detection rate and the percentage of
justified warnings when we decrease TTImin from 2s to
1.6s.



A major difference in our scenario compared to [10]
is that we start the algorithm when the traffic light turns
yellow. Consequently, the time window until TTImin varies
from case to case, while in [10] the number of observations
available to perform the classification was fixed. Moreover,
we consider a scenario with a traffic light change while in
[10] there is always a red light. The detection rate in this
study is at least 10% higher in all cases, the false positive
rate is always below the 5% of [10] and even in the worst
case we have 76% justified warnings, while even in the best
case in [10] it is only 63%1.

In [13] the experimental setting was very similar to ours,
i.e., the authors proposed two algorithms to predict whether a
car would cross after observing a yellow light. The methods
were also compared with those of [10]. For TTImin = 1s
the detection rate in [13] is 100%, however for the other
two cases our detection rate is at least 5% higher and we
have lower false positive rates in all cases. Notice also that
the methods in [10] and [13] use acceleration measurements
while Algorithm 1 uses only position and speed.

V. CONCLUSIONS

In this paper, we studied the dilemma a driver is facing
when the traffic light changes from green to yellow. Our
objective was to determine an upper bound on the crossing
probability, where the upper bound has a prescribed confi-
dence level. The algorithm that we presented here is based
on a stochastic hybrid system model with hidden modes and
uses Gaussian process theory to estimate the mode online
using measurements of the continuous state of the hybrid
system. For testing we used 767 intersection approaches
recorded during experiments in a driving simulator. We find
that the percentage of actual crossing trajectories within the
set of trajectories that were predicted to cross with a prob-
ability smaller than 0.05 was 1%. Similarly, the percentage
of actual crossing trajectories within the set of trajectories
that were predicted to cross with probability larger than 0.95
was 98%. Moreover, the percentage of crossing trajectories
that were predicted to cross with probability larger than 0.95
within the set of all actual crossing trajectories is 99%. These
results show the accuracy of the predictions and that in most
cases crossing trajectories can be quite clearly identified.

An important direction for future research is the use of
the constructed model to design warning/override systems to
prevent red light violations and warn other traffic participants
of dangerous situations.
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