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Soft Origami: Classification,
Constraint, and Actuation of
Highly Compliant Origami
Structures
Herein, we discuss the folding of highly compliant origami structures—“Soft Origami.”
There are benefits to be had in folding compliant sheets (which cannot self-guide their
motion) rather than conventional rigid origami. Example applications include scaffolds
for artificial tissue generation and foldable substrates for flexible electronic assemblies.
Highly compliant origami has not been contemplated by existing theory, which treats ori-
gami structures largely as rigid or semirigid mechanisms with compliant hinges—
“mechanism-reliant origami.” We present a quantitative metric—the origami compliance
metric (OCM)—that aids in identifying proper modeling of a homogeneous origami struc-
ture based upon the compliance regime it falls into (soft, hybrid, or mechanism-reliant).
We discuss the unique properties, applications, and design drivers for practical imple-
mentation of Soft Origami. We detail a theory of proper constraint by which an ideal soft
structure’s number of degrees-of-freedom may be approximated as 3n, where n is the
number of vertices of the fold pattern. Buckling and sagging behaviors in very compliant
structures can be counteracted with the application of tension; we present a method for
calculating the tension force required to reduce sagging error below a user-prescribed
value. Finally, we introduce a concept for a scalable process in which a few actuators
and stretching membranes may be used to simultaneously fold many origami substruc-
tures that share common degrees-of-freedom. [DOI: 10.1115/1.4032472]

Introduction

Soft Origami is relevant to modern engineering due to an
increased need to form components and assemblies from highly
compliant substrates. There are many applications where existing
technology could be used to create intricate 2D patterns that, if
transformed into a 3D geometry, would be enabled. For example,
flexible electronics may be made with existing 2D processes, but
could then be folded into 3D patterns to achieve smaller, more
space-efficient packages [1].

There is also the potential to create 2D patterns for tissue scaf-
folding (including vasculature, connective tissues, nerves, etc.),
deposit cells, and then fold the scaffolds to yield suitable 3D geo-
metries. Successful production of viable, correctly functioning
organs requires not only the presence of the appropriate cell types
but also the ability to correctly arrange cells in relation to one
another in 3D space [2–5]. Existing approaches remain limited in
two ways: parallel, high-throughput methods lack the capability to
achieve complex 3D microstructures [6–9]; and serial, high-
accuracy, fine-resolution methods (such as 3D printing) remain
expensive and rate-limited [10,11]. Origami-inspired assembly of
tissue scaffolds by folding of cell-seeded sheets is one approach
with the potential to achieve high-throughput and high spatial
complexity at low-cost.

The bulk of existing analysis and design theory considers an
origami structure to be a network of rigid or semirigid panels
interconnected by compliant hinges [12–14]. Panels provide stiff-
ness, structure, and self-constraint, while hinges introduce folding
degrees-of-freedom, thus yielding a mechanismlike behavior. It is
common to depict origami using conjugate hinge-linkage
mechanisms—the spherical mechanism, an analog to the four-
hinge vertex found in many patterns such as the Miura-ori, is one
popular example [15].

The practical implementation of these mechanismlike assem-
blies relies upon distinct “panel” and “hinge” features within the
origami structure. The difference in function between these
elements—panels providing stiffness and hinges providing
compliance—manifests in the form of dedicated componentry
(bushings, bearings) or geometric design features at the hinges,
such as the living hinges as shown in Fig. 1.

The production of large assemblies with many small-scale ele-
ments or features (potentially micro- and nanoscale) would
require hundreds or thousands of panels and hinges. Practical
implementation requires a different approach.

We are investigating Soft Origami as one potential solution.
Soft Origami structures are composed of complaint sheets that are
capable of localized bending and creasing. An analogy may be

Fig. 1 Miura-ori lattice machined from high-density polyethyl-
ene (HDPE). Bending allowed by living hinges, this structure’s
designed-in mechanism feature.
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made to bedsheets, which do not have dedicated hinges or folding
components, but instead rely on the user to impose folds and dic-
tate the system’s final geometry. Soft Origami structures exhibit
similarly high levels of compliance (a metric we quantify later on)
and no dedicated hinge features are needed; external constraints
guide the structure into the right geometry.

We begin by presenting a quantitative metric for identifying
sheet materials and geometries that may be folded within this
framework. We discuss the characteristic behavior for each of
three compliance regimes—soft, hybrid, and mechanismlike. We
discuss the constraint of Soft Origami, demonstrating that for best
performance, a structure should always be held in tension. We dis-
cuss the approximation of degrees-of-freedom relative to the num-
ber of vertices within an origami pattern. Finally, we close by
introducing a concept which uses prestrained membranes as a
means for actuating Soft Origami structures.

Definitions

Hinge—A designed-in feature allowing for the folding of an
origami structure. A hinge is an engineering term that describes
the physical embodiment of a crease line on an origami fold pat-
tern. Each possesses finite thickness, length, width, and material
properties.

Lattice—The origami structure to be folded, including any
designed-in hinges or panels.

Membranes—The elastic sheets proposed as potential actuators
for driving folding of Soft Origami structures.

Panel—A panel is an engineering term that describes the physi-
cal embodiment of a facet on an origami fold pattern. Each pos-
sesses finite thickness, length, width, and material properties.
Although intended to remain planar during and after folding, a
panel may exhibit nonideal behaviors such as bending and buck-
ling. Each panel is bordered by hinges and/or the edges of the
folding sheet.

OCM and Regimes

Qualitative Behavior of Soft Origami. Later in this paper, we
present a quantitative definition for Soft Origami, but first it is
important to establish qualitative intuition for how it behaves. At
a high level, origami-inspired folding entails: the demarcation of a
two-dimensional surface into distinct conjoined regions (shapes);
and, the reorientation of these shapes through actuation to produce
a new and distinct two- or three-dimensional topology. Origami
may be externally or internally actuated [16–25], but historically
has been designed to be self-constraining (panel and hinge rigidi-
ties and pattern layout dictate its degrees-of-freedom). In other
words, conventional origami is internally guided and internally or
externally actuated. Soft Origami differs in which it must be both
externally guided and externally actuated.

An idealized Soft Origami structure is considered to be per-
fectly pliant. It may bend (and to a limited extent, stretch), as

shown in Fig. 2, to any imposed curvature. This compliant behav-
ior means that an ideal Soft Origami structure has no capability to
support itself under compressive loads such as gravity—its
degrees-of-freedom are fixed only through connection with its
external constraints. A sheet may be directed into a variety of
desired topologies without the need for dedicated hinge or panel
features.

It is important to establish a quantitative metric for classifying
a given origami structure’s relative compliance. Such a metric
may be used by a designer to quickly identify and predict Soft
Origamilike behavior to tune a folding system for more desirable
Soft Origami characteristics, or to validate the use of Soft Origami
assumptions presented herein. Alternatively, it may be used to
examine a hinged system’s fitness to rigid-origami assumptions.

Important Criteria for a Compliance Metric. We considered
the following criteria when formulating this compliance metric:

� Geometry: The geometry of a single representative panel
from the selected origami lattice.

� Material: The compliance and failure limits depend on the
material from which the lattice is constructed.

� Large Deflections: By its nature, origami involves large
deflections; our metric considers a load case that has a
straightforward large deflection solution (note that large
deflections do not imply large local material deformations—
they must still be small in this model).

� Deformed Shape: Our metric concerns the maximum deflec-
tion a panel may achieve. We therefore apply a displacement
condition and impose uniform curvature upon the panel to
replicate the case of greatest possible deflection before
failure.

Assumptions

(1) The sheet to be folded is of uniform thickness, is continu-
ous, and all panels in the origami fold pattern are identical
(the OCM is the same for all panels).

(2) The thickness of the sheet to be folded is such that the con-
tinuum limit is not reached and the origami lattice may be
considered a continuum at all locations:
(a) It is infinitely divisible.
(b) It is locally homogeneous (material properties do not

change, even if the structure is subdivided many
times).

(3) The origami lattice is composed of an idealized isotropic,
linear-elastic material.

(4) The origami lattice material exhibits a well-defined
Young’s modulus ðEÞ and failure strength ðrf Þ.

(5) Although the total tip-to-tip deflection of the structure may
be large, local deformations are small and anticlastic defor-
mations (those within the cross section of the panel) may
be ignored. As discussed later, this holds true so long as the
radius of curvature in bending ðqÞ is large when compared
to the thickness of the structure ðq=t > 10Þ [26].

Derivation of the OCM. Being perfectly compliant, an ideal
Soft Origami panel may deform to any curvature. Perhaps the sim-
plest and most versatile approximation of a panel—a rectangular
prismatic beam of relatively great width—approaches this ideal
case when its radius of curvature at first failure becomes very
small in comparison with its length.

We begin our derivation by extracting a representative panel
from the lattice of interest and modeling it as a wide beam. We
consider the shortest edge of the panel, as this will produce the
most conservative compliance estimate. We then impose a uni-
form curvature on the beam through the use of a moment loading,
as shown in Fig. 3.

In practice, each origami system will experience 3D loading
involving multiple moments and forces from adjacent panels. This

Fig. 2 Illustration of ideal Soft Origami sheet, capable of bend-
ing to any curvature
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metric is not intended to model the panel’s precise reaction to this
type of loading condition. Rather, it provides an assessment of the
greatest total deflection the panel could conceivably achieve at
the instant before failure. The moment loading is therefore only
used as a mathematical tool to achieve the constant-curvature dis-
placement condition.

In this scenario, the curvature along the length of the beam is
uniform and the displacement solution for this case is valid even
for large displacements. The classic moment-curvature relation
for this wide beam is [27]

j ¼ M 1� �2ð Þ
EI

(1)

where M is imposed moment, E is Young’s modulus, I is bending
moment of inertia, j is beam curvature, and � is Poisson’s ratio.

As with curvature, the stress distribution in the beam remains
constant along its length, varying only with distance from the
beam’s neutral axis

rb ¼
Mz

I
(2)

where rb is the bending stress and z is the distance from neutral
axis

Expressed in terms of the beam’s curvature

rb ¼
Ejz

1� �2
(3)

A beam in pure bending may be said to fail when the maximum
bending stress exceeds the material’s failure stress ðrf Þ. In select-
ing a failure stress, Ashby recommends choosing the yield
strength for metals and polymers, the modulus of rupture for
ceramics, the tear strength for elastomers, and the tensile strength
for composites and woods [28]. Recalling the assumptions of an
isotropic, linear-elastic material with well-defined Young’s
modulus, we remind the reader that the predictive power of this
estimate will lessen as a material strays from these assumptions.

The curvature at which peak bending stress occurs—the maxi-
mum attainable curvature for the beam before failure—is

j ¼ 2rf 1� �2ð Þ
Et

(4)

Here, t is the beam thickness. The total angle through which the
beam curves from tip-to-tip is

h ¼ jL (5)

For an idealized origami mechanism, the terminal folding angle is
180 deg, at which point the panels adjacent to the fold meet; we
assign h a value of p radians, and so the minimum length needed
for a beam to bend 180 deg without failure is

L180 ¼
pEt

2rf 1� �2ð Þ (6)

L180 represents the minimum panel length necessary to achieve
a full 180 deg bend before inducing material failure. If a panel has

thickness, t, Young’s modulus, E, failure strength, rf , and is sig-
nificantly longer than L180, the panel is capable of achieving large
curvatures without failure. Likewise, a panel with identical thick-
ness and material properties but length significantly smaller than
L180 will be unable to achieve such large bending deflections with-
out failing. The OCM—our metric for quantifying an origami
structure’s capacity to deform—is expressed as

OCM ¼ L180

L
¼ p

2

t

L

E

rf

1

1� �2

� �
(7)

Or, in terms of the minimum radius of curvature at failure ðq180Þ,
where q180 ¼ L180=p

OCM ¼ pq180

L
(8)

OCM Regimes. An ideal Soft Origami structure may achieve
an infinitely small bending radius; its OCM is identically zero.
For engineering and design purposes, we designate three behav-
ioral modes with respect to the OCM as seen in Fig. 4.

� Soft Origami ðOCM� 1Þ: The lattice is capable of extreme
deflections without hinges. It will readily conform to dis-
placements imposed by external constraints and actuators.
The lattice degrees-of-freedom are externally defined by its
actuators.

� Mechanism-reliant origami ðOCM� 1Þ: The lattice requires
hinges to achieve large deflections. Imposing large deflec-
tions without hinges will result in material damage and/or
failure. The lattice degrees-of-freedom are internally defined
by its geometry and panel stiffness.

� Hybrid origami ðOCM � 1Þ: The lattice is capable of moder-
ately large deflections before failure, but a significant frac-
tion of the panel must bend to accommodate such
deflections. The lattice will not readily conform to arbitrary

Fig. 3 Model of wide beam exposed to moment loads “M.” The
beam exhibits constant curvature along its length

Fig. 4 Examples of peak curvatures achievable by structures
representing each of the three OCM regimes
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geometries. The lattice degrees-of-freedom depend on both
its external actuators and its own geometry/stiffness (it is not
exclusively internally or exclusively externally defined).

When evaluating a system using this metric, it is important to
remember that the OCM value is not a measure of the structure’s
resistance to deflection under load; it is not a stiffness estimate.
Rather, it is a measure of the structure’s capacity to achieve large
deflections without failing.

OCM Examples. In Table 1, we give two OCM values to pro-
vide an intuitive example of what the OCM value means; plastic
wrap and sheet metal serve as familiar examples. Often to the
frustration of the user, plastic wrap used for storing food seems
capable of assuming virtually any shape and it falls well within
the Soft Origami regime. By comparison, a 1.5-mm thick steel
square would be classified as a mechanism-reliant structure
because it must experience significant yielding before even mod-
erate deflections would occur.

Design Factors for Tuning an Assembly’s OCM Value. An
engineer interested in tuning the OCM of an origami system may
do so by adjusting the system’s material properties and geometry.
The relationship between the OCM and the tunable property is
proportional to first order in both cases

OCM / t=L (9)

OCM / E=rf (10)

Origami designs are typically specified with prescribed panel
shapes and lengths, so adjustment of the OCM value by geometry
is most easily accomplished by changing the thickness of the fold-
ing substrate. Panel thickness values are generally dictated by ma-
terial processing limitations and design requirements of the
system, though thickness changes of 1–2 orders of magnitude are
feasible in some cases.

The OCM varies by roughly 3 orders of magnitude for different
engineering materials, with the ratio E=rf ranging from a mini-
mum of roughly �10 (plastics and polymers) to a maximum of
�10; 000 (some metals and ceramics). Performance may therefore
be changed drastically by simply selecting a different material for
folding.

In the limiting case where both the geometric and material
ratios range from their extreme values, the OCM value may
vary by a factor of �100; 000: In practice, where the range
of valid materials and geometries is more limited, a more feasible
expectation for adjustment of the OCM value is a factor of
�100 – �1000.

Extension to Nonuniform Origami Sheets. A lattice exhibit-
ing nonuniformities in thickness, in panel dimensions, or in mate-
rial properties may not exhibit a constant OCM across its entire
structure. In this case, the full range of OCM values for the lattice
must be considered. Calculating the OCM across all panels allows
one to produce a map of the compliance behavior across the struc-
ture, while calculating the OCM for the least- and most-compliant
panels will produce the range of values under which the lattice

will behave. Even if some or many values differ, if all values are
contained within a single compliance regime, the lattice as a
whole may be said to behave within that regime (it will be glob-
ally soft, hybrid, or mechanism-reliant). If the OCM values span
multiple regimes, the lattice will exhibit locally soft, hybrid, or
mechanism-reliant behavior but global classification for the entire
structure is not possible.

Limitations. The fifth assumption in this model—negligible
anticlastic deformations—assumes the local radius of curvature is
large in comparison with the thickness of the material. In this
analysis, the radius of curvature/thickness ratio may be written as

q180

t
¼ E

2rf
(11)

For most engineering materials, the ratio of Young’s modulus (E)
to failure stress (rf ) is at least 10:1; for metals and many plastics
and polymers, the ratio is approaches or exceeds 100:1 [6]. In the
case of these materials, the approximation presented will serve as
a good estimate of the material’s response to an induced deflec-
tion. However, many elastomers exhibit ratios less than 1:1 and
the designer should proceed with caution.

Constraint of Soft Origami Structures

Rayleigh–Ritz Buckling Criterion. Ideal Soft Origami struc-
tures cannot support compressive loads and must be constrained
externally. This is easily demonstrated using the Rayleigh–Ritz
buckling quotient resulting from the principle of virtual work. For
a beam of relatively great width, the net critical compressive load
needed to induce buckling is [29]

N ¼ EI

1� �2

ðL

0

dw00dw00dx

ðL

0

dw0dw0dx

(12)

where N is critical buckling load, E is Young’s modulus, I is the
bending moment of inertia, L is the beam length, and � is Pois-
son’s ratio.

In this formulation, w is the characteristic shape function asso-
ciated with deflection during buckling. The variables dw0 and dw00

are the first and second variations of the shape function,
respectively.

The zero-thickness assumption for an ideal Soft Origami struc-
ture produces a zero-valued moment of inertia ðIÞ and therefore a
zero-valued critical buckling load; the structure will buckle under
any imposed compressive load.

Tension to Prevent Buckling and Sagging. As demonstrated,
ideal Soft Origami cannot sustain a net compressive load, but
induced tensile forces are tolerable and will work to prevent buck-
ling. This result has important practical implications: to avoid
buckling failure in a functional Soft Origami device (which expe-
riences loads such as gravity), one must maintain a net tension in
each in-plane direction across all points on all faces. This could
be accomplished (though perhaps not in the most practical way)
by assigning an actuator to each vertex and then maintaining a
tension force between all adjacent actuator pairs (each pair of ver-
tices connected by a single edge on the folding diagram).

Sagging of the panel due to gravity is also counteracted by
imposing tension. An upper bound for the tension needed to
acceptably counteract sagging can be derived by assuming a
worst-case scenario where: (a) the panel is positioned horizontally
(gravity acts transversely) and (b) the panel behaves as ideal Soft
Origami (it has zero bending stiffness). Making these assump-
tions, a Soft Origami panel behaves as a level-span catenary

Table 1 Example OCM values for two 25 mm3 25 mm panels

Plastic wrap (HDPE) Sheet metal (1018 Steel)

E ðGPaÞ 1 205
t ðmmÞ 0.0125 1.5
rf ðMPaÞ 20 250
L ðmmÞ 25 25
� 0.40 0.29
OCM 0.047 84
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element, as shown in Fig. 5. We seek an expression for the hori-
zontal tension force (relative to the weight of the panel) required
to reduce sagging below a desired level; this relationship is
derived here.

We begin with the two well-known equations governing a
standard catenary element

D ¼
H cos h

Sw

2H

� �
� 1

� �

w
(13)

L ¼
2Hð Þsin h

Sw

2H

� �

w
(14)

where S is the spanned length, D is the sag height, w is the panel
weight per unit length, L is panel length, H is horizontal tension
force, and g is direction of gravity.

We define the horizontal tension force to be a multiple, c, of the
total panel weight

c ¼ H

Lw
(15)

where c is the tension ratio (horizontal tension to total span
weight).

Solving for the suspension length, L, needed to span S with a
tension ratio c

L ¼ S

2cð Þsin h�1
1

2c

� � (16)

The nondimensional ratio of sag height to the spanned length,
D=S, as a function of tension ratio c, can therefore be expressed as

D

S
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

4c2
þ 1

r
� 1

2csch�1 2cð Þ
(17)

The sagging ratio is highly sensitive to the horizontal tension
ratio, as seen on the log–log plot in Fig. 6.

As the tension ratio reaches c ¼ 10 (where the horizontal ten-
sion force is ten times the weight of the panel), the sagging ratio
is approximately D=S ¼ 0:0125. We therefore recommend a ten-
sion ratio of c ¼ 10 or greater in order to reduce sag error below
1:25% (sagging is further reduced by panel stiffness and increas-
ingly vertical orientation).

Degrees-of-Freedom. For a folding pattern with n vertices, we
assign n actuators. As each vertex has three translational degrees-
of-freedom in Cartesian space, an ideal Soft Origami structure—
with zero-thickness, zero weight, and zero minimum bending
radius—therefore can be idealized to have 3n degrees-of-freedom.
This assumes there are no rotational degrees-of-freedom associ-
ated with the vertices.

We may use this result to approximate a nonideal structure’s
degrees-of-freedom as also being 3n; this approximation becomes
more accurate with decreasing OCM values, decreasing contact
area at the actuator–lattice interface, and increasing the imposed
tensions (this will reduce sagging deflections induced by gravity).

Actuation of Soft Origami Structures

Any actuation mechanism for folding Soft Origami must satisfy
many functional requirements. An ideal actuation mechanism
must:

� Constrain and actuate each vertex
� Avoid interference between actuators/actuation points
� Simultaneously actuate all vertices along precise paths
� Achieve large actuation strokes relative to the lattice size
� Possess great stiffness relative to that of the folding lattice
� Avoid any self-interference
� Robustly scale with the number of vertices
� Robustly scale with the characteristic panel size

Of these, robust scaling with respect to vertex count is perhaps
the most difficult requirement. This is because, for a square grid
of vertices, the total vertex count scales as n2; where n is the ver-
tex count on an edge. Folding of very small Soft Origami assem-
blies is straightforward, as an independent, dedicated actuator can
be assigned to each vertex. This approach loses feasibility as the
size of the origami lattice increases. For example, the lattice
depicted in Fig. 7—measuring just six panels by six panels—

Fig. 5 The level-span catenary suspension representation of
sagging panel. Note that vertical forces (not pictured here) are
also exerted at the endpoints of the span, with total magnitude
equivalent to the weight of the span.

Fig. 6 Sagging ratio as a function of tension ratio

Fig. 7 6 3 6-panel Miura-ori folding diagram. Dotted lines, solid
interal lines, and dots represent valley folds, mountain folds,
and vertices, respectively.
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would already require nearly 50 separate actuators. For large sys-
tems with dozens, hundreds, or thousands of actuation points,
individual actuation is not practical and a new approach is needed.

Membrane-Driven Folding. Time- and cost-efficient folding
of Soft Origami systems with hundreds or thousands of vertices
requires a massively parallel, scale-robust solution not currently
possible with conventional actuation. This behavior can be
achieved by using elastic membranes as actuators to drive the Soft
Origami folding processes. Perhaps the simplest pattern that is
compatible with this folding technique, and that can serve as an
instructive example, is the accordion fold shown in Fig. 8. The
accordion fold is comprised of identical, equally spaced, repeating
units. The vertices of each mountain fold remain co-planar, as do
the vertices of each valley fold, so membrane-based actuation is a
feasible option. The folding of this pattern would proceed in the
following manner:

(1) Prestretch two membranes to suitable levels of strain (often
much more than 100%) with one membrane directly above
the other.

(2) Place the unfolded Soft Origami sheet between the two
membranes.

(3) Bring the upper and lower membranes together.
(4) Using vacuum pressure, adhesive, or other means, fix the

“valley” vertices of the Soft Origami lattice to the lower
membrane, and fix the “mountain” vertices of the lattice to
the upper membrane (the membranes and lattice should
remain flat during this process).

(5) In a controlled manner, release the strain in the membranes
while drawing them apart. The relative rates of membrane
relaxation and separation will depend upon the geometry of
the structure being folded. Tension between vertices must
be maintained for proper constraint.

In this way, membrane-driven folding achieves simultaneous
actuation and constraint of all vertices with only two actuation
inputs for each membrane (to control biaxial stretching). When
compared to individual actuators, a strained membrane offers a
number of significant advantages:

(1) A biaxial load may be induced throughout a membrane
using only two actuators; the number of physical actuators
does not need to scale with the number of actuation points.

(2) Pure biaxial tension produces uniform strain in either in-
plane direction of the membrane. An arbitrary “grid of
dots” drawn on a membrane may be stretched or scaled as

desired, mimicking uniform actuation between each of
those points.

(3) Increasingly large origami patterns (increasing panel count)
may be accommodated by simply increasing the size of the
prestrained membranes.

(4) Relaxation of the membranes will actuate all origami points
simultaneously.

The drawback of the membrane-driven folding approach is the
limited range of compatible folding patterns. A pattern is only via-
ble for this type of folding if its prefold and postfold vertex fields
are related by a linear transformation map. That is, the pre and
postfold vertex fields must be related by some combination of
global stretch, rotation, translation, and/or skew transformations.
Membrane-driven folding sacrifices some folding complexity for
the sake of scalability.

Poisson’s Effect. During folding it is important to be aware of
the Poisson effect within the stretched membranes, especially as
the membranes actuate across a large range of strains. For an
accordion fold, only one strain is released—the other must remain
constant. Actuators in the nonreleased direction must be pro-
gramed to correct for relaxation occurring when strain in the actu-
ated direction is released. On a machine with only uniaxial
control, the Poisson’s effect may be counteracted by using a sepa-
rate membrane for each row of vertices and fixing the vertices to
the centers of each membrane. Although the membranes will
experience the Poisson’s effect, their centers (where the vertices
are attached) will remain equidistant from one another. We are also
investigating the use of composite membranes and membranes that
have layers with tunable directional Poisson’s characteristics.

Preliminary Testing. We have built and are currently testing a
machine to fold Soft Origami sheets using the membrane-driven
process. Figure 9 shows the result of an early test, where a two-
unit Soft-Origami accordion pattern was successfully folded by
the machine. In this test, polyester film ðOCM � 0:08Þ was con-
strained to latex membranes using neodymium magnets. The pur-
pose of this test was to demonstrate, i.e., to show the practicality
of, the folding of Soft Origami using the proposed membrane-
driven technique. The regular, repeated accordion pattern and
crisp folded hinges are clearly visible in Fig. 9. These are prelimi-
nary results; the design of the folding machine and comprehensive
results warrant their own treatment and will be the subject of a
future paper.

Conclusion

In this paper, we have introduced Soft Origami, a new class of
compliant, foldable structures suitable for flexible electronics,

Fig. 8 Membrane-driven folding process by which a Soft Ori-
gami sheet may be folded using elastic membranes

Fig. 9 Preliminary test of the membrane-driven technique. A
Soft Origami polyester film is shown passing through an inter-
mediate folding angle.
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folding tissue scaffolds, and other applications where conven-
tional rigid and mechanistic origami structures may not be suita-
ble. We developed the OCM, a means by which candidate
materials and geometries are evaluated for fitness within the Soft
Origami regime. We demonstrate that despite their extreme com-
pliance, Soft Origami structures can be well-constrained if held at
all vertices and maintained in tension. Finally, we have introduced
a scale-robust process capable of both constraining and folding
Soft Origami structures, wherein just two stretching membranes
are needed to drive the folding process even if the origami struc-
ture is very large.
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