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Abstract

Although there is growing interest in measuring integrated information in computational and

cognitive systems, current methods for doing so in practice are computationally unfeasible.

Existing and novel integration measures are investigated and classified by various desirable

properties. A simple taxonomy ofΦ-measures is presented where they are each character-

ized by their choice of factorization method (5 options), choice of probability distributions to

compare (3 × 4 options) and choice of measure for comparing probability distributions (7

options). When requiring the Φ-measures to satisfy a minimum of attractive properties,

these hundreds of options reduce to a mere handful, some of which turn out to be identical.

Useful exact and approximate formulas are derived that can be applied to real-world data

from laboratory experiments without posing unreasonable computational demands.

Author Summary

How can one determine whether an unresponsive patient is conscious or not? Of all the

information processing in your brain that can be measured with modern sensors, which

corresponds to information that you are subjectively aware of and which is unconscious?

A theory that has garnered much recent attention proposes that the answer involves mea-

suring a quantity called integration that quantifies the extent to which information is

interconnected into a unified whole rather than split into disconnected parts. Unfortu-

nately, proposed measures of integration are too slow to compute in practice from patient

data. In this paper, I explore and classify existing and novel integration measures by vari-

ous desirable properties, and derive useful exact and approximate formulas that can be

applied to real-world data from laboratory experiments without posing unreasonable

computational demands. This improves the prospects of making fascinating questions

and theories about consciousness experimentally testable.

Introduction

What makes an information-processing system conscious in the sense of having a subjective

experience? Although many scientists used to view this topic as beyond the reach of science,

the study of Neural Correlates of Consciousness (NCCs) has become quite mainstream in the

neuroscience community in recent years—see, e.g., [1, 2]. To move beyond correlation to
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causation [3], neuroscientists have begun searching for a theory of consciousness that can pre-

dict what physical phenomena cause consciousness (defined as subjective experience [3]) to

occur. Dehaene [4] reviews a number of candidate theories currently under active discussion,

including the Nonlinear Ignition model (NI) [5, 6], the Global Neuronal Workspace (GNW)

model [7–9] and Integrated Information Theory (IIT) [10, 11]. Rapid progress in artificial intel-

ligence is further fueling interest in such theories and how they can be generalized to apply not

only to biological systems, but also to engineered systems such as computers and robots and

ultimately arbitrary arrangements of elementary particles [12].

Although there is still no consensus on necessary and sufficient conditions for a physical

system to be conscious, there is broad agreement that it needs to be able to store and process

information in a way that is somehow integrated, not consisting of nearly independent parts.

As emphasized by Tononi [10], it must be impossible to decompose a conscious system into

nearly independent parts—otherwise these parts would feel like two separate conscious enti-

ties. While integration as a necessary condition for consciousness is rather uncontroversial, IIT

goes further and makes the bold and controversial claim that it is also a sufficient condition for

consciousness, using an elaborate mathematical integration definition [11].

As neuroscience data improves in quantity and quality, it is timely to resolve this controversy

by testing the many experimental predictions that IIT makes [11] with state-of-the-art laboratory

measurements. Unfortunately, such tests have been hampered by the fact that the integration

measure proposed by IIT is computationally infeasible to evaluate for large systems, growing

super-exponentially with the system’s information content. This has lead to the development of

various alternative integration measures that are simpler to compute or have other desirable

properties. For example, Barrett & Seth [13] proposed an attractive integration measure that is

easier to compute from neuroscience data, but whose interpretation is complicated by the fact

that it can be negative in some cases [14, 15]. [16] used an integration measure inspired by com-

plexity theory to successfully predict who was conscious in a sample including patients who

were awake, in deep sleep, dreaming, sedated and with locked-in syndrome. [17] suggest that

state transition entropy correlates with consciousness. Griffith & Koch have proposed defining

integration of a system as the synergistic information that its parts have about the future, which

appears promising although there does not yet exist a unique formula for it [18]. Even the team

behind IIT has updated their integration measure twice through successive refinements of their

theory [10, 11]. Despite these definitional and computational challenges, interest in measuring

integration is growing, not only in neuroscience but also in other fields, ranging from physics

[12] and evolution [19] to the study of collective intelligence in social networks [20].

It is therefore interesting and timely to do a comprehensive investigation of existing and

novel integration measures, classifying them by various desirable properties. This is the goal of

the present paper, as summarized in Tables 1 and 2. In the Methods section, we investigate

general integration measures and their properties. In the Results section, we first present our

taxonomy of integration measures, then derive useful formulas for many of these measures

that can be applied to the sort of time-series data that is typically measured in laboratory exper-

iments with continuous variables, and finally explore further algorithmic speedups and

approximations. We summarize our conclusions in the Discussion session.

Methods

In this section, we present our methods for building a taxonomy of integration measures.

Following Tononi [10], we will use the symbol F to denote integrated information. All mea-

sures of F aim to quantify the extent to which a system is interconnected, yielding F = 0 if the
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system consists of two independent parts, and a larger F the more the parts affect each other.

Mathematically, all F-measures are defined in a two-step process:

1. Given an imaginary cut that partitions the system into two parts, define a measure ϕ of how

much these two parts affect each other. Table 2 lists many ϕ-options.

2. Define F as the ϕ-value for the “cruelest cut” that minimizes ϕ. A major numerical chal-

lenge is that the number of cuts to be minimized over grows super-exponentially with the

number of bits in the system. A further challenge in this step is how to best handle cuts

splitting the system into parts of unequal size.

Note that our analysis is focused only on integration, not on consciousness; besides integra-

tion, a true measure of consciousness may involve additional requirements that this paper

does not consider. For example, Scott Aaronson has criticized in a widely read blog post the

claim that integration is a sufficient condition for consciousness, and IIT discusses postulates

including cause-effect power, composition and exclusion [11].

Before delving into the many different options for defining F, let us first introduce con-

venient notation general enough to describe all proposed integration measures, as illus-

trated in Fig 1.

Interpreting evolution as a Markov process

Consider two random vectors x0 and x1 whose joint probability distribution is p(x0, x1). We

will interpret them as the state of a time-dependent system x(t) at two separate times t0 and t1.

For example, if these are two vectors of 5 bits each, then p is a table of 210 numbers giving the

probability of each possible bit string, while if these are two vectors in 3D space, then p is a

function of 6 real continuous variables. We obtain the marginal distribution p(n)(xn) for the nth

vector, where n = 0 or n = 1, by summing/integrating p over the other vector.

Below we will often find it convenient to denote these vectors as single indices i = x0 and

j = x1. For example, this allows us to write the marginal distribution p0(x0) as ∑j pij, where the

sum over j is to be interpreted as summation/integration over all allowed values of x1. We also

adopt the notation where replacing an index by a dot means that this index is to be summed/

integrated over. This lets us write the marginal distributions p(0)(x0) and p(1)(x1) as

pð0Þi ¼ pi� and pð1Þj ¼ p�j ð1Þ

Table 1. Properties of different integration measures. All but the third are desirable properties; capitalized N/Y (no/yes) indicate when an integration mea-

sure lacks a desirable property or has an undesirable one. The first four properties are generally agreed to be important, while the second set of four have

been argued to be important by some authors. Interpretability refers to the extent to which the measure can be given an information-theoretic interpretation

satisfying desirable properties of integration (see text). Computability refers to the feasibility of evaluating the measure in practice (see text).

ϕ2.5 ϕ2:50 ϕ2:500 ϕ3.0 ϕM ϕB ϕMD ϕMkk0 ϕoak ϕopk ϕots ϕofu ϕnas ϕmas ϕxfk

M
aj
or

Always non-negative y y y y y N y y y y y y y y y

Always finite even for1-dimensional system N y y N y y y y y y y y N y y

Vanishes for deterministic system (drawback) n n n n n n n n n n n n n n Y

Vanishes for separable system y y y y y N y y y y N y y y y

M
in
or

Vanishes for afferent system y y y y N N N N y N N N y y N

Vanishes for efferent system y y y y N N N N N y N N N N N

State-dependent y y y y N N N y y y N N N N y

Based on symmetric probability distance N N N y N N N N N N N N N N N

Intuitively interpretatable 2 2 2 2 2 0 2 2 2 2 0 1 0 0 0

Computationally tractable 1 2 2 0 2 2 2 2 2 2 2 2 1 2 2

doi:10.1371/journal.pcbi.1005123.t001
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As illustrated in Fig 1, it is always possible to model this relation between x0 and x1 as result-

ing from a Markov process, where x1 is causally determined by a combination of x0 and ran-

dom effects. If we write the marginal distributions from eq (1) as vectors p(0) and p(1), this

Markov process is defined by

pð1Þ ¼ Mpð0Þ; ð2Þ

where the Markov matrixMji specifies the probability that a state i transitions to a state j, and

satisfies the conditionsMji� 0 (non-negative transition probabilities) andM�i = 1 (unit col-

umn sums, guaranteeing probability conservation). The standard rule for conditional

Table 2. Integration ϕ for different measures. A�Bt C−1, Ab � BC
� 1
¼ SAtS� 1

b , Σ�C −Bt C−1 B = C −ACAt and

Sb � C � BC
� 1Bt ¼ C � AbCA

t
b ¼ ½C

� 1
þ AtS� 1A�� 1

¼ C � CAtC� 1AC. C is the data covariance matrix and B is the cross-covariance between different times

as defined by eq (46).

Name Definition Formula for Gaussian variables

ϕotu (ϕM) IðxA; xBÞ � IðxA
0
; xB

0
Þ 1

2
log jTA jjTB jjCj

jTjjCA jjCB j
¼ 1

2
log jŜA jjŜB j

jSj

ϕB Iðx0; x1Þ � Iðx
A
0
; xA

1
Þ � IðxB

0
; xB

1
Þ 1

2
log jCj2 jTA jjTB j

jTjjCA j
2 jCB j

2 ¼
1

2
log jCjjΣ̂A jΣ̂B j

jSjjCA jjCB j

ϕotum (ϕMD) dMDðp;qÞ; qii0 jj0 ¼
pii0 ��pi�j�p�i0 �j0
pi���p�i0 ��

1

2
ln jĈ j
jΣ̂ j þ tr Ĉ � 1C � Σ̂ � 1S � A

0

tΣ̂ � 1A

0

C
� �h i

for β = 1, Ĉ � ÂCÂ t þ Σ̂

ϕots I(xA, xB) 1

2
log jTA jjTB j

jTj

ϕofs IðxA
1
; xB

1
Þ 1

2
log jCA jjCB j

jCj

ϕofu
�
X

jj0
p��jj0 log

X

ii0

pi�j�p�i0 �j0 pii0 ��
pi���p�i0 ��p��jj0

1

2
ln jCq j

jCj þ trC� 1

q C � n
h i

, Cq � ÂCÂ
t þ Σ̂

�
ofk
kk0 ð�

M
kk0 Þ

X

jj0

pkk0 jj0
pkk0 ��

log
pkk0 jj0 pk���p�k0 ��
pkk0 ��pk0 �j�p�k0 �j0

1

2
xt

0
ðÂ � AÞΣ̂ � 1ðÂ � AÞxþ ln jSA j jSB j

jSj
þ tr Σ̂ � 1S � n

h i

�
oak
kk0

X

j

pkk0 j�
pkk0 ��

log
pkk0 j�pk���
pkk0 ��pk�j�

1

2
Dmt �Σ � 1

A Dmþ ln j�ΣA j
jSA j
þ tr �Σ � 1

A SA � nA
h i

, Dm � ðAA � ÂAÞx
A
0
þ ABx

B
0

�
opk
kk0

X

i

pi�kk0
p��kk0

log pi�kk0 p��k�
p��kk0 pi�k�

1

2
Dmt ~�Σ � 1

A Dmþ ln j~�Σ A j
j~SA j
þ tr ~�Σ � 1

A
~SA � nA

h i
, Dm � ð~AA � ~̂AAÞx

A
0
þ ~ABx

B
1

�
xfk
kk0

IðxA
1
; xB

1
jx0 ¼ kk

0Þ 1

2
log jSA jjSB j

jSj

ϕnas
�
X

j

p��j� log
X

ii0

pii0 j�pi���
nBpii0 ��p��j�

1

�
nak
k �

X

j

pk�j�
pk���

log
X

i0

pki0 j�pk���
nBpki0 ��pk�j�

1

ϕnps
�
X

i

pi��� log
X

jj0

pi�jj0 p��j�
nBp��jj0 pi���

1

�
npk
k (�

2:0

k ) �
X

i

pi�k�
p��k�

log
X

j0

pi�kj0 p��k�
nBp��kj0 pi�k�

1

ϕmas
�
X

j

p��j� log
X

ii0

pii0 j�pi���p�i0 ��
pii0 ��p��j�

1

2
ln jCq j

jCA j
þ trC� 1

q CA � nA
h i

, Cq � SA þ AACAA
t
A þ AABCBA

t
AB

�
mak
k �

X

j

pk�j�
pk���

log
X

i0

pki0 j�pk���p�i0 ��
pki0 ��pk�j�

1

2
Dmt �Σ � 1

A Dmþ ln j�ΣA j
jSA j
þ tr �Σ � 1

A SA � nA
h i

, Dm � ðÂA � AAÞx
A
0

ϕmps
�
X

i

pi��� log
X

jj0

pi�jj0 p��j�p���j0
p��jj0 pi���

1

2
ln jCq j

jCA j
þ trC� 1

q CA � nA
h i

, Cq � ~ΣA þ ~AACA ~A tA þ ~AABCB ~A tAB

�
mpk
k �

X

i

pi�k�
p��k�

log
X

j0

pi�kj0 p��k�p���j0
p��kj0 pi�k�

1

2
Dmt ~�Σ � 1

A Dmþ ln j~�Σ A j
j~ΣA j
þ tr ~�Σ � 1

A
~ΣA � nA

h i
, Dm � ð ~̂AA � ~AAÞx

A
1

ϕ2.5 min {ϕnak, ϕnpk} 1

�
2:50 min {ϕmak, ϕmpk}

�
2:500 min {ϕoak, ϕopk}

doi:10.1371/journal.pcbi.1005123.t002
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probabilities gives

pij ¼ Pðx0 ¼ i& x1 ¼ jÞ ¼

¼ Pðx0 ¼ iÞPðx1 ¼ jjx0 ¼ iÞ ¼ p
ð0Þ

i Mji;
ð3Þ

which uniquely determines the Markov matrix as

Mji ¼
pij
pð0Þi
¼
pij
pi�
; ð4Þ

which is seen to satisfy the Markov requirements Mji� 0 andM�i = 1.

Note that any system obeying the laws of classical physics can be accurately modeled as a

Markov process as long as the time step Δt� t1 − t0 is sufficiently short (defining x(t) as the

position in phase space). If the process has “memory” such that the next state depends not only

on the current state but also on some finite number of past states, it can reformulated as a stan-

dard memoryless Markov process by simply expanding the definition of the state x to include

elements of the past.

Also note that although full knowledge of the Markov matrix M completely specifies the

dynamics of the system, a person wishing to compute its integration may not know M exactly.

If M is not known from having built the system or having examined its inner workings, then

passively observing it in action (without active interventions) may not provide enough infor-

mation to fully reconstruct M [21]. The n!1 limit of continuous variables describes a con-

venient class of systems where M is relatively easy to determine in practice.

A taxonomy of integration measures

We will now see that this Markov process interpretation allows us create a simple taxonomy of

integration measures ϕ that quantify the interaction between two subsystems. The idea is to

approximate the Markov process by a separable Markov process that does not mix information

between subsystems, and to define the integration as a measure of how bad the best such

approximation is. Consider the system x as being composed of two subsystems xA and xB, so

that the elements of the vector x are simply the union of the elements of xA and xB, and let us

Fig 1. We model the time-evolution of the system state as a Markov process defined by a transition

matrix M: when the (possibly unknown) system state evolves from x0 to x1, the corresponding

probability distribution evolves from p0 to p1�Mp0. All competing definitions ofΦ quantify the inability to

tensor factorize M, which corresponds to approximating the system as two disconnected parts A and B that do

not affect one another.

doi:10.1371/journal.pcbi.1005123.g001
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define the probability distribution

pii0 jj0 � Pðx
A
0
¼ i& xB

0
¼ i0 & xA

1
¼ j& xB

1
¼ j0Þ: ð5Þ

(For brevity, we will sometimes refer to this distribution pii0 jj0 as simply p below, suppressing

the indices, and we will sometimes write x without indices to refer to the full state at both

times.) The Markov matrix of eq (4) then takes the form

Mjj0 ii0 ¼
pii0 jj0
pii0 ��

: ð6Þ

The Markov process of eq (2) is separable if the Markov matrix M is a tensor product

MA
MB, i.e., if

Mjj0 ii0 ¼ M
A
jiM

B
j0 i0 ð7Þ

for Markov matrices MA and MB that determine the evolution of xA and xB.

If our system is integrated so that M cannot be factored as in eq (7), we can nonetheless

choose to approximate M by a matrix of the factorizable form MA
MB. If we retain the initial

probability distribution pii0�� for x0 but replace the correct Markov matrix M by the separable

approximation MA
MB, then eq (6) shows that the probability distribution

pii0jj0 ¼ Mjj0 ii0 pii0 �� ð8Þ

gets replaced by the probability distribution qii0 jj0 given by

qii0 jj0 ¼ M
A
jiM

B
j0i0 pii0 �� ð9Þ

which is an approximation of pii0 jj0. If M is factorizable (meaning that there is no integration),

we can factor M such that the two probability distributions qii0 jj0 and pii0 jj0 are equal and, con-

versely, if the two probability distributions are different, we can use how different they are as

an integration measure ϕ.

To define an integration measure ϕ in this spirit, we thus need to make four different

choices, which collectively specify it fully and determine where the ϕ-measure belongs in our

taxonomy:

1. Choose a recipe defining an approximate factorization M�MA
MB.

2. Choose which probability distributions p and q to compare for exact and approximate M

(the distribution for x, x1 or xA1 , say).

3. Choose what to treat as known about pii0�� when computing these probability distributions.

4. Choose a metric for how different the two probability distributions p and q are.

These four options are described in Tables 3, 4 and 5, and we will now explore them in detail.

Options for approximately factoring M

Table 3 lists five factoring options which all have attractive features, and we will now describe

each in turn.

Approximately factoring M using noising. The first option corresponds to the “noising”

method used in IIT [10]: the time evolution of one part of the system (xA, say) is determined

from the past state xA
0

alone, treating xB
0

as random noise with some probability distribution

p(B0) that is independent of xA
0
. In other words, we replace the initial probability distribution

pð0Þii0 ¼ pii0 �� by the separable distribution pð0Þii0 ¼ p
ðA0Þ

i pðB0Þ

i0 . We will now see that if we start with

Improved Measures of Integrated Information
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Table 3. Different options for approximate factorizations M�MA
MB and
~
M �

~
MA 


~
MB. These options correspond to the first superscript in ϕ-mea-

sures such as ϕofuk. The optimal factorizations maximize the accuracy of the approximate probability distribution that they predict, while the “noising” factoriza-

tions are instead defined by treating the input from the other subsystem as random noise, either with uniform distribution (option “n”) or with the observed

marginal distribution (option “m”).

Code Factorization method MA
ji MB

j0 i0
~
MA

ij
~
MB

i0 j0
State-dependent?

n Noising 1

nB

X

i0

pii0 j�
pii0 ��

1

nA

X

i

pii0 �j0
pii0 ��

1

nB

X

j0

pi�jj0
p��jj0

1

nA

X

j

p�i0 jj0
p��jj0

N

m Mild noising
X

i0

pii0 j�p�i0 ��
pii0 ��

X

i

pii0 �j0 pi���
pii0 ��

X

j0

pi�jj0 p���j0
p��jj0

X

j

p�i0 jj0 p��j�
p��jj0

N

o Optimal not knowing state x0
pi�j�
pi���

p�i0 �j0
p�i0 ��

pi�j�
p��j�

p�i0 �j0
p���j0

N

x Optimal given x0
pkk0 j�
pkk0 ��

pkk0 �j0
pkk0 ��

pkk0 j�
pkk0 ��

pkk0 �j0
pkk0 ��

Y

a Optimal given x0, on average pi�j�
pi���

p�i0 �j0
p�i0 ��

pi�j�
p��j�

p�i0 �j0
p���j0

N

doi:10.1371/journal.pcbi.1005123.t003

Table 4. Different options for which probability distributions p and q to compare, corresponding to the second and third superscripts in ϕ-mea-

sures such as ϕofuk. The last three columns specify the formula for q for the three conditioning options we consider: when the state x0 is unknown (u), has a

separable probability distribution (s) and is known (k), respectively.

Code Comparison option p q Conditioning option

u s k

xt unknown xt-distribution separable xt known

qu (pð0Þij ¼ pii0 ��) qs (pð0Þij ¼ pi���p�i0 ��) qk (pð0Þij ¼ dikdi0k0 )

t Two-time state pii0 jj0 qii0 jj0 MA
ji M

B
j0 i0p

ð0Þ

ii0 ðMA
ji p
ð0Þ

i� ÞðMB
j0 i0p

ð0Þ

�i0 Þ MA
ji dikM

B
j0 i0di0k0

f Future state p��jj0 q��jj0
X

ii0
MA
ji M

B
j0 i0p

ð0Þ

ii0 ð
X

i

MA
ji p
ð0Þ

i� Þð
X

i0
MB
j0 i0p

ð0Þ

�i0 Þ MA
jkM

B
j0k0

a Future state of subsystem A p��j� q��j�
X

i

MA
ji p
ð0Þ

i�

X

i

MA
ji p
ð0Þ

i�
MA
jk

p Past state of subsystem A pi��� ~qi���
X

j

~MA
ij p
ð1Þ

j�

X

j

~MA
ij p
ð1Þ

j�
~MA
ik

doi:10.1371/journal.pcbi.1005123.t004

Table 5. Different options for measuring the difference d between two probability distributions p and q: Kullback-Leibler divergence dKL, L1-norm

d1, L2-norm d2, Hilbert-space distance dH, Shannon-Jensen distance dSJ, Earth-Movers distance dEM and Mismatched Decoding distance dMD.

These options correspond to the fourth superscript in ϕ-measures such as ϕofuk. In the text, we considered options where p and q had one, two or four indices,

but in this table, we have for simplicity combined all indices into a single Greek index α.

Code Metric Definition Positivity Monotonicity Interpretability Tractability Symmetry

k dKL(p, q)
X

a

pa log pa

qa

Y Y Y Y N

1 d1(p, q)
X

a

jpa � qaj Y Y (Y) N Y

2 d2(p, q) X

a

ðpa � qaÞ
2

" #1=2 Y Y (N) (Y) Y

h dH(p, q) cos � 1
X

a

ðpaqaÞ
1=2 Y Y Y N Y

s dSJ(p, q) X

a

pa

2
log 2pa

paþqa
þ

qa

2
log 2qa

paþqa

� �
" #1=2 Y Y Y N Y

e dEM(p, q) min
fab�0

X

ab

fabdab; fa� ¼ pa; f�b ¼ qb
Y Y Y N Y

m dMD(p, q) See eqs (24) and (25) Y Y Y N N

doi:10.1371/journal.pcbi.1005123.t005
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eq (2), i.e., the Markov equation p(1) = Mp(0), then this noising prescription gives p(A1) = MA

p(A0) for a particular matrix MA. Eq (2) states that

pð1Þjj0 ¼
X

ii0
Mjj0ii0p

ð0Þ

ii0 ; ð10Þ

and substituting the separable “noising” form of pð0Þii0 from above gives

pðA1Þ

j � pð1Þj� ¼
X

ii0
Mj�ii0p

ðA0Þ

i pðB0Þ

i0 ¼
X

i

MA
ji p
ðA0Þ

i ; ð11Þ

where we have defined

MA
ji �

X

i0
Mj�ii0p

ðB0Þ

i0 ¼
X

i0

pii0j�p
ðB0Þ

i0

pii0 ��
: ð12Þ

IIT chooses the noise to have maximum entropy, i.e., a uniform distribution over the nB possi-

ble states of subsystem B [10]:

pðB0Þ

i0 ¼
1

nB
: ð13Þ

Table 3 lists the MA-matrix corresponding to this noising choice as well as the analogous MB-

matrix.

Approximately factoring M using mild noising. One drawback of this choice is that uni-

form distributions are undefined for continuous variables such as measured voltages, because

they cannot be normalized. This means that any ϕ-measure based on this noising factorization

is undefined and useless for continuous systems. This problem can be solved by adopting

another natural choice for the noise distribution:

pðB0Þ

i0 ¼ p�i0 ��; ð14Þ

i.e., simply the marginal distribution for xB
0
. We term this option “mild noising”, since the

noise is less extreme (its entropy is lower) than with the previous noising option. Table 3 lists

the MA-matrix corresponding to this mild noising choice as well as the analogous MB-matrix.

Optimally factoring M. A drawback of both factorizations that we have considered so far

is that they might overestimate integration: there may exist an alternative factorization that is

better in the sense of giving a smaller ϕ. The natural way to remedy this problem is to define ϕ
by minimizing over all factorizations. This elegantly unifies with the fact that capital F is

defined by minimizing over all partitions of the system into two parts: we can capture both

minimizations by simply saying “minimize over all factorizations”, since the choice of a tensor

factorization includes a choice of partition.

In practice, the definition of the optimal factorization depends on what we optimize. We

discuss various options below, and identify three particularly natural choices which are listed

in Table 3. The first option makes the approximate probability distribution qii0jj0 as similar as

possible to pii0jj0, where similarity is quantified by KL-divergence. The second option treats the

present state x0 as known and makes the conditional probability distribution for the future

state x1 as similar as possible to the correct distribution. This factorization thus depends on the

state and hence on time, whereas all the others we have considered are state-independent. The

third option is the factorization that minimizes this state-dependent ϕ on average; we will

prove below that this factorization is identical to the first option.

In summary, Table 3 lists five factorization options that each have various attractive fea-

tures; options 3 and 5 turn out to be identical. It is easy to show that if the Markov matrix M is
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factorizable (which means that the probability distribution is separable as pii0 jj0 ¼ pAij p
B
i0 j0 ), then

all five factorizations coincide, all giving MA
ji ¼ p

A
ji=p

A
i� andMB

j0i0 ¼ p
A
i0 j0=p

A
i0 �. This means that they

will all agree on when ϕ = 0; otherwise the noising factorizations will yield higher ϕ than an

optimized factorization.

Options for which probability distributions to compare

Table 4 lists four options for which probability distributions p and q to compare. Arguably the

most natural option is to simply compare the full distributions pii0jj0 and qii0jj0 that describe our

knowledge of the system at both times (the present state and the future state). Another obvious

option is to merely compare the predictions, i.e., the probability distributions p��jj0 and q��jj0 for

the future state. A third interesting option is to compare merely the predictions for one of the

two subsystems (which we without loss of generality can take to be subsystem A), thus com-

paring p��j� and q��j�.
Generally, the less we compare, the easier it is to get a low ϕ-value. To see this, consider a

system where A affects B but B has no effect on A. We could, for example, consider A to be

photoreceptor cells in your retina and B to be the rest of your brain. Then the second compari-

son option (“f”) in Table 4 would give ϕ> 0 because we predict the future of your brain worse

if we ignore the information flow from your retina, while the third comparison option (“a”) in

the table would give ϕ = 0 because the rest of your brain does not help predict the future of

your retina. In other words, comparison option “a” makes ϕ vanish for afferent pathways,

where information flows only inward toward the rest of the system.

IIT argues that any good ϕ-measure indeed should vanish for afferent pathways, because a

system can only be conscious if it can have effects on itself—other systems that it is affected by

without affecting will act merely as parts of its unconscious outside world [10]. Analogously,

IIT argues that any good ϕ-measure should vanish also for efferent pathways, where informa-

tion flows only outward away from the rest of the system. The argument is that other systems

that the conscious system affects without being affected by will again be unconscious, acting

merely as unconscious parts of the outside world as far as the conscious system is concerned.

Option “p” in Table 4 has this property of ϕ vanishing for efferent pathways. It is simply the

time-reverse of option “a”, quantifying the ability of xA
1

to determine its past cause xA
0

instead

of quantifying the ability of xA
0

to determine its future effect xA
1

.

To formalize this, consider that there is nothing in the probability distribution pii0jj0 that

breaks time-reversal symmetry and says that we must interpret causation as going from t0 to t1
rather than vice versa. In complete analogy with our formalism above, we can therefore define

a time-reversed Markov process ~M whereby the future determines the past according to the

time-reverse of eq (2):

pð0Þ ¼ ~Mpð1Þ; ð15Þ

where eqs (6) and (9) get replaced by

~Mii0 jj0 ¼
pii0 jj0
p��jj0

ð16Þ

and

~qii0 jj0 ¼ ~MA
ij

~MB
i0 j0p

ð1Þ

jj0 : ð17Þ

This time reversal symmetry doubles the number of q-options we could list in Table 4 to six in

total, augmenting qii0jj0, q��jj0 and q��j� by ~qii0 jj0 , ~q ��jj0 and ~q ��j�. In the interest of brevity, we have
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chosen to only list ~q��j�, because of its ability to kill ϕ for efferent pathways—the formulas for

the two omitted options are trivially analogous to those listed.

Options for what to treat as known about the current state

Above we listed options for which probabilities p and q to compare to compute ϕ. To complete

our specification of these probabilities, we need to choose between various options for our

knowledge of the present state; the three rightmost columns of Table 4 correspond to three

interesting choices.

The first option is where the state is unknown, described simply by the probability distribu-

tion we have used above:

pð0Þij ¼ pii0 �� ð18Þ

This corresponds to us knowing M, the mechanism by which the state evolves, but not know-

ing its current state x0. Note that a generic Markov process eventually converges to a unique

stationary state p = p(0) = p(1) which, since it satisfies Mp = p, can be computed directly from

M as the unique eigenvector whose eigenvalue is unity (the only Markov processes that do not

converge to a unique steady state are ones where M has more than one eigenvalue equal to

unity; these form a set of measure zero on the set of all Markov processes). This means that if

we consider a system that has been evolving for a significantly long time, its full two-time dis-

tribution pii0jj0 is determined by M alone; conversely, pii0jj0 determines M through eq (6). Alter-

natively, if pii0jj0 is measured empirically from a time-series xt which is then used to compute

M, we can use eq (6) to describe our knowledge of the state at a random time.

A second option is to assume that we know the initial probability distributions for xA
0

and

xB
0
, but know nothing about any correlations between them. This corresponds to replacing eq

(18) by the separable distribution

pð0Þij ¼ pi���p�i0 ��; ð19Þ

and can be advantageous for ϕ-measures that would conflate integration with initial correla-

tions between the subsystems.

A third option, advocated by IIT [10], is to treat the current state as known:

pð0Þij ¼ dikdi0k0 ; ð20Þ

i.e., we know with certainty that the current state x0 = kk0 for some constants k and k0. IIT

argues that this is the correct option from the vantage point of a conscious system which, by

definition, knows its own state.

A natural fourth option is a more extreme version of the first: treating the state not merely

as unknown, with p(0) given by its ensemble distribution, but completely unknown, with a uni-

form distribution:

pð0Þij ¼ constant: ð21Þ

Although straightforward enough to use in our formulas, we have chosen not to include this

option in Table 4 because it is rather inappropriate for most physical systems. For continuous

variables such as voltages, it becomes undefined. For brains, such maximum-entropy states

never occur: they would have typical neurons firing about half the time, corresponding to

much more extreme “on” behavior than during an epileptic seizure. The related option of con-

sistently treating xA
0

as known but xB
0

as unknown when predicting xA
1

(and vice versa when
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predicting xB
1
) corresponds to the noising factorization options described above. For further

discussion of this, including so-called “noising at the connection”, see [11, 14, 22].

Finally, please note that if we choose to determine the past rather than the future (the “p”-

option from the previous section and Table 4), then all the choices we have described should

be applied to pð1Þij rather than pð0Þij .

Options for comparing probability distributions

The options in the past three sections uniquely specify two probability distributions p and q,

and we want the integration ϕ to quantify how different they are from one another:

� � dðp; qÞ ð22Þ

for some distance measure d that is larger the worse q approximates p. There are a number of

properties that we may consider desirable for d to quantify integration:

1. Positivity: d(p, q)� 0, with equality if and only if p = q.

2. Monotonicity: The more different q is from p in some intuitive sense, the larger d(p, q)

gets.

3. Interpretability: d(p, q) can be intuitively interpreted, for example in terms of information

theory.

4. Tractability: d(p, q) is easy to compute numerically. Ideally, the optimal factorizations can

be found analytically rather than through time-consuming numerical minimization.

5. Symmetry: d(p, q) = d(q, p).

Any distance measure dmeets the mathematical requirements of being ametric on the space

of probability distributions if it obeys positivity, symmetry and the triangle inequality

d(p, q)� d(p, r) + d(r, q).

Table 5 lists seven interesting probability distribution distance measures d (p, q) from the

literature together with their definitions and properties. All these measures are seen to have

the positivity and monotonicity, and all except the first are also symmetric and true metrics.

We will now discuss them one by one in greater detail.

The distance dKL is the Kullback-Leibler divergence, and measures how many bits of infor-

mation are lost when q is used to approximate p, in the sense that if you developed an optimal

data compression algorithm to compress data drawn from a probability distribution q, it

would on average require dKL(p, q) more bits to compress data drawn from a probability distri-

bution p than if the algorithm had been optimized for p [23]. This has been argued to be the be

the best measure because of its desirable properties related to information geometry [24, 25].

d1 and d2 measure the distance between the vectors p and q using the L1-norm and L2-

norm, respectively. The former is particularly natural for probability distributions p, since they

all have L1 norm of unity: d1 (0, p) = p. = 1. It is easy to see that 0� d1(p, q)� 2 and

0 � d2ðp; qÞ �
ffiffiffi
2
p

.

The measure dH is the Hilbert-space distance: if, for each probability distribution, we define

a corresponding wavefunction ci � p
1=2

i , then all wavefunctions lie on a unit hypersphere

since they all have unit length: hψ|ψi = p. = 1. The distance dH is simply the angle between two

wavefunctions, i.e., the distance along the great circle on the hypersphere that connects the

two, so dH(p, q)� π/2. It is also the geodesic distance of the Fisher metric, hence a natural

“coordinate free” distance measure on the manifold of all probability distributions.
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The measure dSJ is the Shannon-Jensen distance, whose square is defined as the average of

the KL-divergences of the two distributions to their average:

dSJðp; qÞ
2
�

dKLðp; ½pþ q�=2Þ þ dKLðq; ½pþ q�=2Þ

2

¼ S½ðpþ qÞ=2� � ðS½p� þ S½q�Þ=2:

ð23Þ

It is bounded by 0� dSJ� 1, satisfies the triangle inequality and is information-theoretically

motivated [26].

The measure dEM is the Earth-Movers distance [27]. If we imagine piles of earth scattered

across the space x, with p(x) specifying the fraction of the earth that is in each location, then

dEM is the average distance that you need to move earth to turn the distribution p(x) into q(x).

The quantity dij in the definition in Table 5 specifies the distance between points i and j in this

space. For example, if x is a 3D Euclidean space, this may be chosen to be simply the Euclidean

metric, while if x is a bit string, dij may be chosen to be the L1 “Manhattan distance”, i.e., the

number of bit flips required to transform one bit string into another. IIT 3.0 argues that the

earth mover’s distance dEM is the most appropriate measure d on conceptual grounds (whereas

IIT 2.0 was still implemented using dKL). Unfortunately, dEM rates poorly on the tractability

criterion. It’s definition involves a linear programming problem which needs to be solved

numerically, and even with the fastest algorithms currently available, the computation grows

faster than quadratically with the number of system states—which in turn grows exponentially

with the number of bits. For continuous variables x, the number of states and hence the

computational time is formally infinite.

The measure dMD is based on “mismatched decoding” as advocated by [15]. The distance

measure dMD is defined not for all probability distributions, but for all distributions over two

variables, which we can write with two indices as pij:

dMDðp; qÞ � IðpÞ � max
b
I�ðp; q;bÞ; ð24Þ

where

IðpÞ � �
X

j

p�j logp�j þ
X

ij

pij logpjji;

I�ðp; q;bÞ � �
X

j

p�j log
X

i

qb

jjipi� þ
X

ij

pij logqb

jji;
ð25Þ

and the conditional distribution qj|i� qij/qi�. Here I(p) is simply the mutual information

between the two variables, since combining eq (34) with the conditional entropy definition

from eq (37) gives the well-known equivalent expression for mutual information

IðA;BÞ ¼ SðAÞ � SðAjBÞ: ð26Þ

I�(p, q, β) can be interpreted as the amount of information that one variable predicts about

the other if the correct conditional distribution pj|i is replaced by a possibly incorrect one qb

jji

(renormalized to sum to unity) when making the prediction [28]. This renormalization is

strictly speaking unnecessary, because it cancels out between the two terms in I�(p, q, β). Rais-

ing probabilities to positive powers β has the effect of concentrating them (decreasing entropy)

if β> 1 and spreading them more evenly (increasing entropy) if β< 1. It can be shown that

I�(p, q, β)� I(p) with equality for q = p and β = 1, and that I�(p, q, β)� 0, so one always has

0� dMD(p, q)� I(p) [28]. Mismatched decoding can presumably be further generalized by
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replacing the maximization over powers pβ by maximization over arbitrary monotonically

increasing functions f(p) that map the unit interval onto itself.

The integration measures of IIT3.0 have a more complex probability comparison that can-

not be fully cast in the form of a simple function of d(p, q): it makes the metric choice d(p, q) =

dEM(p, q), but considers not only probability distributions for the whole system and a bipar-

tition, but also for all possible subsets, providing an elaborate interpretation of the results in

terms of “conceptual structures” [11].

Results

In this section, we present our taxonomy results.

Optimal factorization with dKL

Our taxonomy of integration measures is determined by four choices: of factorization, vari-

able selection, conditioning and distance measure. Although we have now explored these

four choices one at a time, there are important interplays between them that we must exam-

ine. First of all, the three optimal factorization options in Table 3 depend on what is being

optimized, so let us now explore which of these optimizations are feasible and interesting to

perform in practice and let us find out what the corresponding factorizations and ϕ-mea-

sures are.

The mathematics problem we wish to solve is

� � min
MA;MB

dðp; qÞ ð27Þ

i.e., minimizing d(p, q) over MA and MB given the constraints that MA and MB are markov

Matrices: MA
�j ¼ 1,MB

�j0 ¼ 1,MA
ij � 0 andMB

i0 j0 � 0. Table 4 specifies the options for how p and

q are computed and how q depends on MA and MB, while Table 5 specifies the options for

computing the distance measure d. We enforce the column sum constraints using Lagrange

multipliers, minimizing

L � dðp; qÞ �
X

i

liðM
A
�i � 1Þ �

X

i0
mi0 ðM

B
�i0 � 1Þ; ð28Þ

and need to check afterwards that all elements of MA and MB come out to be non-negative (we

will see that this is indeed the case).

As mentioned, numerical tractability is a key issue for integration measures. This means

that it is valuable if the Lagrange minimization can be rapidly solved analytically rather

than slowly by numerical means, since this needs to be done separately for large numbers

of possible system partitions. There is only one d-option out of the above-mentioned five

for which I have been able to solve the optimization over M-factorizations analytically: the

KL-divergence dKL. The runner-up for tractability is d2, for which everything can be easily

solved analytically except for a final column normalization step, but the resulting formulas

are cumbersome and unilluminating, falling foul of the interpretability criterion. Although

dKL lacks the symmetry property, it has the above-mentioned positivity, monotonicity

and interpretability properties, and we will now show that it also has the tractability

property.

Let us begin with the q-options in the upper left corner of Table 4, i.e., comparing the two-

time distributions treating the present state as unknown. Substituting eq (9) into the definition
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of dKL from Table 5 gives

dKLðp; qÞ ¼
X

ii0 jj0
pii0jj0 log

pii0 jj0
pii0 ��MA

jiMB
j0i0
¼

Sðx0Þ � SðxÞ �
X

ij

pi�j� logMA
ji �

X

i0 j0
p�i0 �j0 logMB

j0 i0 ;

ð29Þ

where the entropy for a random variable x with probability distribution p is given by Shan-

non’s formula [29]

SðxÞ ¼ �
X

i

pi logpi: ð30Þ

To avoid a profusion of notation, we will often write as the argument of S a random variable

rather than its probability distribution. For convenience, we will take all logarithms to be in

base 2 for discrete distributions (so that entropies are measured in units of bits) and in base e
for continuous Gaussian distributions (so that equations get simpler). In the latter case, where

the entropy is based on the natural logarithm, entropy is measured in “nits” or “nats” which

equal 1/ln2� 1.44 bits.

Substituting eq (29) into eq (28) and requiring vanishing derivatives with respect toMA
ij ,

MB
i0 j0 , λj and μj0 shows that the solution to our minimization problem is

MA
ji ¼

pi�j�
pi���

; MB
j0 i0 ¼

p�i0 �j0
p�i0 ��

: ð31Þ

We recognize these equations as simply the Markov matrix estimator from eq (4) applied sepa-

rately to subsystems A and B after marginalizing over the other system. Substituting this back

into eq (9) gives

qii0 jj0 ¼
pii0 ��pi�j�p�i0 �j0
pi���p�i0 ��

: ð32Þ

Although the full probability distributions q and p typically differ, eq (32) implies that three

marginal distributions are identical: qi�j� = pi�j�, q�i0�j0 = p�i0�j0 and qij0�� = pij0��.
Substituting eq (32) back into the definition of dKL gives the extremely simple result that the

integration is

�
otuk
ðpÞ ¼

X

ii0 jj0
pii0 jj0 log

pii0 jj0pi���p�i0 ��
pii0 ��pi�j�p�i0 �j0

¼ IðxA; xBÞ � IðxA
0
; xB

0
Þ;

ð33Þ

where the mutual information between two random variables is given in terms of entropies by

the standard definition

IðxA; xBÞ � SðxAÞ þ SðxBÞ � SðxÞ: ð34Þ

Since we will be deriving a large number of different ϕ-measures that we do not wish to

conflate with one another, we superscript each one with four code letters denoting the four tax-

onomical choices that define it. These letter codes are

1. factorization: n/m/o/x/a

2. comparison: t/f/a/p

3. conditioning: u/s/k
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4. measure: k/1/2/h/s/e/m

and are defined in Tables 3, 4 and 5. For example, the integration measure ϕotuk from eq (33)

denotes optimized (o) factorization comparing the two-time (t) probability distributions with

the current state unknown (u) and KL-divergence (k). Almost all measures discussed below

will involve the k-measure (KL-divergence), so when this is the case we will typically drop this

last index k to avoid a confusing profusion of indices, for example writing ϕotuk = ϕotu. For

brevity, we will also define ϕM� ϕotu, since we will be referring to this “Markov measure” ϕotu

many times below.

Although we derived this optimal factorization by comparing the two-time distribution

(option t) for an unknown state (option u), an analogous calculation leads to the exact same

optimal factorization for the options a+u, s+f and a+s. The option t+s is undefined and the

option f+u gives messy equations I have been unable to solve analytically. It is therefore rea-

sonable to view eq (31) as the optimal factorization when the state is unknown (option o), and

for the remainder of this paper, we will simply define the o-option as using the factorization

given by eq (31).

Note that our result in eq (33) involves a time-asymmetry, singling out t0 rather than t1 in

the second term. This is because we chose to interpret our Markov process as operating for-
ward in time, determining the state at t1 from the state at t0. As we discussed in the previous

section, we could equally well have done the opposite, using the Markov process ~M operating

backward in time, which would have yielded the alternative integration measure

�
o~tu
ðpÞ ¼ IðxA; xBÞ � IðxA

1
; xB

1
Þ: ð35Þ

In practice, one usually estimates all statistical properties from a time-series that is assumed to

be stationary. This means that IðxA
0
; xB

0
Þ ¼ IðxA

1
; xB

1
Þ, so that the these two integration measures

become identical.

Comparison with the Ay/Barrett/Seth integration measures

In the paper [13] where Barrett & Seth proposed their easier-to-compute integration measure

ϕB (see below), they also mentioned an alternative measure that they termed ~�E, defined by

~�E � Sðx
A
0
jxA

1
Þ þ SðxB

0
jxB

1
Þ � Sðx0jx1Þ; ð36Þ

where the conditional entropy of two variables A and B is defined by

SðAjBÞ � SðA;BÞ � SðBÞ: ð37Þ

This measure had been introduced earlier by Ay [30, 31] in a context unrelated to IIT, under

the name “stochastic interaction”, and was further discussed in [15, 32]. Applying eqs (37) and

(34) to eq (36) shows that

~�E ¼ SðxAÞ � SðxA
1
Þ þ SðxBÞ � SðxB

1
Þ � SðxÞ þ Sðx1Þ

¼ IðxA; xBÞ � IðxA
1
; xB

1
Þ ¼ �

o~tu
;

ð38Þ

i.e., that ~�E is identical to the time-reversed Markov measure �
o~t u

. This equivalence provides

another convenient interpretation of �
o~tu

: as the average KL-divergence between (i) the proba-

bility distribution of the past state x0 given the present state x1 and (ii) the product of these

conditional distributions for the two subsystems.
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It is also interesting to compare our result in eq (33) with the popular integration measure

�
B
ðpÞ ¼ Iðx0; x1Þ � Iðx

A
0
; xA

1
Þ � IðxB

0
; xB

1
Þ ð39Þ

proposed by Barrett & Seth [13]. The intuition behind this definition is to take the amount of

information that a system predicts about its future and subtract of the information predicted

by both of its subsystems. Unfortunately, the result can sometimes go negative [14, 15], violat-

ing the desirable positivity property and making the ϕB difficult to interpret. Consider the sim-

ple example of two independent bits that never change. If they start out perfectly correlated,

then they will remain perfectly correlated, giving Iðx0; x1Þ ¼ IðxA0 ; x
A
1
Þ ¼ IðxB

0
; xB

1
Þ ¼ 1 and

integrated information ϕB(p) = −1.

By substituting eq (34) into eqs (33) and (39), we find that

�
B
ðpÞ ¼ �MðpÞ � IðxA

1
; xB

1
Þ: ð40Þ

In other words, we can make the Barrett-Seth measure non-negative by adding back any final

mutual information between the two subsystems. When this is done, it becomes the integra-

tion measure we derived, therefore having a simple information-theoretic interpretation: it is

the KL-divergence between the actual probability distribution p and the best separable approx-

imation, which is guaranteed to be non-negative.

Comparison with the mismatched decoding integration measure

The measure ϕM is also closely related to themismatched decoding measure ϕMD introduced in

[15]. ϕMD makes the same taxonomical choices “otu” as ϕM for the first three options: optimal

factorization (o), comparing full two-time distributions (t), and treating the past state as

unknown (u). However, it uses probability distance measure “m” (mismatched decoding dMD)

instead of KL-divergence. We can therefore write this measure in our notation as ϕotum =

dMD(p, q), where q is the optimal factorization given by eq (32). Whether this factorization is

also optimal in the sense of minimizing dMD(p, q) is not obvious.

The measure ϕM (or more specifically its time-reverse �
o~tuk

) has been criticized in [15, 25]

for being able to exceed the mutual information I(x0, x1) between the past and present: for

example, if a two-bit system evolves from “00” to either “00” or “11” with equal probability,

then �
M
¼ IðxA; xBÞ � IðxA

0
; xB

0
Þ ¼ 1 � 0 ¼ 1 bit, even though I(x0, x1) = 0. This means that

ϕM counts as a contribution to integration also correlated random noise added to both subsys-

tems. It is debatable whether this should count as integration: the “con” argument is that no

information flows between the subsystems, while the “pro” argument is that the two subsys-

tems get linked by shared information flowing into both of them.

Both ϕM and ϕMD have intuitive bounds: 0� ϕM� I(xA, xB) and 0� ϕMD� I(x0, x1); these

upper bounds correspond to the total mutual information across space and time, respectively.

Optimal state-dependent factorization

Let us now turn to factorization option “x”, optimized knowing the current state. Consider

some conscious observer (perhaps the system itself) who knows nothing about the system

except its dynamics (encoded in M) and its state at the present instant, encoded in x0 = kk0.
What can this observer say about the system state at earlier and later times? How integrated

will this observer feel that the system is? To answer this question, we simply want to find the

best approximate factorization of the conditional future stateMjj0kk0 (or the past stateMkk0ii0),

where k and k0 are known constants.
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To gain intuition for this, let us temporarily write this conditional distribution as pii0, sup-

pressing the known parameters kk0 for simplicity. Given an arbitrary bivariate probability dis-

tribution pii0, what is best separarable approximation qii0 � aibi0 in the sense that it minimizes

dKL (p, q)? By minimizing dKL (p, q) using Lagrange multipliers, one easily obtains the long-

known result that ai = pi., bi0 = p.i0 and dKL (p, q) = I, the mutual information of p. In other

words, even if we had never heard of marginal distributions or mutual information, we could

derive them all from dKL: the best factorization simply uses the marginal distributions, and the

mutual information of a bivariate distribution is simply the KL-measure of how non-separable

it is.

This means that the optimal factorization given k and k0 is simply the one giving the mar-

ginal conditional distributions

MA
ji ¼

pkk0 j�
pkk0 ��

; MB
j0 i0 ¼

pkk0 �j0
pkk0 ��

; ð41Þ

and the corresponding integration is simply

�
xfkk
¼ IðxA

1
; xB

1
jx0Þ: ð42Þ

ϕxtkk is identical. We can alternatively obtain this result directly from eq (33) by noting that the

IðxA
0
; xB

0
Þ-term vanishes now that the state x0 is known.

This result highlights a striking and arguably undesirable feature of measures based on the

x-factorization option: they vanish for any deterministic system! If the system is deterministic

and the present state x0 is known, then the future state x1 is also known, so all entropies in eq

(42) vanish and we obtain ϕ = 0. With ϕ-measures based on x-factorization, the only source of

integration is therefore correlated noise generated by the system.

Minimizing integration on average

Let us now turn to our final factorization option, “a”, where we pick the state-independent fac-

torization that minimizes integration on average. Given the present state x0 = kk0, let us com-

pare the exact and approximate future probability distributions

pjj0 ¼ Pðx1 ¼ jj0jx0 ¼ kk0Þ ¼ Mkk0jj0 ;

qjj0 ¼ PðxA
1
¼ jjxA

0
¼ kÞPðxB

1
¼ j0jxB

0
¼ k0Þ ¼ MA

kjM
B
k0 j0

ð43Þ

by computing their KL-divergence ϕ = dKL(p, q). The answer clearly depends on the present

state kk0, and we saw in the previous section what happens when we minimize separately for

each state kk0. Let us now instead average dKL(p, q) over all current states and find the state-

independent factorization that minimizes this average:

hdKLðp; qÞi ¼
X

kk0
Pðx0 ¼ kk

0Þ dKLðp; qÞjx0 ¼ kk
0

¼
X

kk0
pkk0 ��

X

jj0
Mkk0 jj0 log

Mkk0jj0

MA
kjM

B
k0 j0
:

ð44Þ

Substituting eq (6) shows that this expression is identical to that from eq (29), so minimizing it

gives the exact same optimal factors MA and MB and the exact same minimum ϕ. The compari-

son option “t” gives the same result as well, so in conclusion, although they appear quite differ-

ent from their definitions, the factorization options “o” and “a” are in fact identical.
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The full taxonomy

Now that we have derived the explicit form of all our factorization options, we can complete

our integration measure classification. Our taxonomy is determined by four choices: of factori-

zation (n/m/o/x/a), variable selection (t/f/a/p), conditioning (u/s/k) and distance measure (k/1/

2/h/s/e/m). Although this nominally gives 5 × 4 × 3 × 7 = 420 different integration measures,

most of these options turn out to be zero, undefined or identical to other options. For noising

factorizations (factorization options n and m), subsystem B is randomized, so the only well-

defined options are ϕnas
�

, ϕnak
�

, ϕnps
�

, ϕnpk
�

, ϕmas
�

, ϕmak
�

, ϕmps
�

and ϕmpk
�

, where � denotes any

option for the distance measure. For o-factorization, we find that ϕoau
�

= ϕoas
�

= ϕopu
�

= ϕops
�

= 0

and ϕotk
�

= ϕofk
�

. For x-factorization, ϕxt
��

is undefined and one easily shows that ϕxak
�

= ϕxpk
�

=

0, ϕxau
�

= ϕxas
�

and ϕxpu
�

= ϕxps
�

. We interpret k-conditioning as x0 being known for o-factoriza-

tion and as xA
0

being known for noising factorizations, since the reverse options vanish and are

undefined, respectively.

Whereas there are strong interactions between the factorization, variable selection and con-

ditioning, we can freely choose any of the 7 distance measures independently of the other

choices without changing whether ϕ vanishes or is well-defined. We consider the option k

(KL-divergence) by default below since it results in the simplest and most intuitive formulas;

the formulas for the other options are straightforward to derive by combining Tables 3, 4 and

5. This leaves us with only the 21 separate options shown in Table 2 to consider. To provide

intuition for these formulas, let us recapitulate key definitions in words:

• ϕM is the KL-divergence of the two-state probability distribution and the best separable

approximation.

• ϕMD is a measure of how much less information the present gives about the past if factorized

dynamics is assumed.

• �Mkk0 is the KL divergence between (i) the future of the whole given the specific present state

of the whole, and (ii) the product of this for the parts calculated separately.

• ϕoak is the KL divergence between (i) the distribution for the future state of subset A given

the current state of A and (ii) the distribution for the future state of subset A given the cur-

rent state of the whole system.

• ϕopk is ϕoak swapping “future” for “past”.

• The subsequent ones are versions from above with different factorizations applied.

Which integration measures are best?

Table 1 summarizes the desirable and undesirable traits for each of these integration measures,

showing that merely a handful lack any major drawbacks. Let us now rate the various options

in more detail.

For the choice of probability distance measure (k/1/2/h/s/e/m), option “e” (the Earth-

Mover’s distance dEM used in ϕ3.0 [11]) remains an attractive candidate for discrete distribu-

tions with small number of bits, but is otherwise computationally unfeasible as we discussed

above. All options in Table 1 except ϕ3.0 and ϕMD therefore use option “k” (the KL-divergence).

Note that whether it is an advantage for the probability distance measure to be symmetric (as

advocated in [11]) depends on the interpretational context. For example, there is nothing

asymmetric about the mutual information that ends up defining ϕM in Table 2.

For the choice of factorization (n/m/o/x/a), we can quickly dispense with option “a” (for

being identical to “o”) and option “x” (because it has the highly undesirable property of always

Improved Measures of Integrated Information

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1005123 November 21, 2016 18 / 34



vanishing for deterministic systems). Which of the remaining options (n/m/o) is preferable

depends on other choices. If one wishes to use a distance measure other than the KL-diver-

gence, then the noising options “n” or “m” are computationally preferable, since the optimal

factorization “o” can no longer be found analytically. Otherwise, “m” is arguably inferior to

“o” because it is no simpler to evaluate and can overestimate the integration as described

above. If one has a philosophical preference for the factorization depending only on the mech-

anism M and not on any other information about state probabilities, then “n” is the only

choice. If one wishes to consider continuous systems, on the other hand, “n” is undefined. In

summary, the best factorizations are therefore “o” and “n”, depending ones preferences. In

practice, numerical experiments show that “n”, “m” and “o” usually give quite similar ϕ-values

for a wide range of M-matrices and probability distributions, so the choice between the three

is a relatively minor one.

Turning now to the choice variable selection and conditioning, Table 1 shows that many

of the otherwise well-defined integration measures from Table 2 have serious flaws.

Neither ϕots and ϕofs are guaranteed to vanish for separable systems, which means that we

cannot in good conscience interpret them as measures of integration. Numerical experiments

show that ϕnas, ϕnps, ϕmas and ϕnps tend to be extremely small in practice (ϕmas is plotted in Fig

2). This is because they differ little from the corresponding measures using optimal factoriza-

tion (ϕoas and ϕops), which always vanish. In other words, they are not really measures of

Fig 2. Numerical comparison of different integration measures, averaged over 3,000 random trials. In

the bottom panel, all elements of p are independently drawn from a uniform distribution and normalized to sum

to unity. In the top panel, only p(0) is randomly generated, and M is defined so as to swap the two subsystems,

i.e., Mjj 0 ii 0 = δij 0δi 0 j.

doi:10.1371/journal.pcbi.1005123.g002
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integration, merely measures of how suboptimal the factorizations “n” and “m” are. For brev-

ity, we have included merely three of these six flawed measures in Table 1.

Fig 2 shows that ϕofu also tends to be much smaller than some other integration measures.

We can intuitively understand this by recalling that ϕoau = 0, which means that optimal factori-

zation lets us predict the future marginal distributions for A and B perfectly. Since ϕofu quanti-

fies the inability of optimal factorization to predict the full future distribution, we expect that it

will at most be of the order of IðxA
1
; xB

1
Þ, the extent to which this distribution is not separable

(determined by its marginal distributions). For randomly generated probability distributions

generated as in Fig 2), one can show that IðxA
1
; xB

1
Þ ! 1 � 1=2 ln 2 � 0:28 bits in the limit

where n!1, and numerical experiments indicate that ϕofu is never much larger than this

value for any p.

Dispensing with flawed/problematic ϕ-measures narrows our list of remaining top candi-

dates to merely nine: ϕotu, ϕotum, ϕofk, ϕoak, ϕopk, ϕnak, ϕnpk, ϕmak and ϕmpk. Morover, the last

six can be elegantly combined into merely three even better ones. As we discussed above, they

have the advantage that they vanish for either afferent or efferent systems.

By following the prescription of [10] and taking the minimum of two such complemen-

tary measures, we can construct an even better one that vanishes for both afferent and

efferent systems. All three of these improved measures are listed in Table 2. The first is

ϕ2.5�min{ϕnak, ϕnpk}. We denote it “2.5” because it combines attractive features of both

IIT2.0 and IIT3.0: it starts with the ϕnpk, which is precisely the IIT2.0 measure, and improves

it by taking the minimum of cause/effect integration in the spirit of IIT3.0 (but retaining

the KL-divergence of IIT2.0 instead of the harder-to-compute Earth-mover’s distance of

IIT3.0). The second is �
2:50
� minf�mak

; �
mpk
g, which has the advantage of remaining

defined even for continuous variables. The third is �
2:500
� minf�oak

; �
opk
g, which uses the

optimal factorization.

How large can ϕ get?

In summary, our taxonomy of ϕ-measures produces merely a handful of truly attractive

options: ϕ2.5, �
2:50

, �
2:500

, ϕ3.0, ϕMD, ϕM and �
M
kk0 . Fig 2 shows examples of what they evaluate to

numerically. The lower panel shows that for randomly generated probability distributions,

none of them exceed 1 − 1/2ln2� 0.28 bits on average, which as mentioned above is the

mutual information in a random bivariate distribution. However, ϕ2.5, �
2:50

, �
2:500

, ϕM, ϕMD and

�
M
kk0 can get arbitrarily large for some systems, as illustrated in the top panel, growing logarith-

mically with the size n of the subsystems A and B. In other words, the maximum integration is

of the order of the number of subsystem bits. For the example shown where the dynamics

merely swaps the two subsystems, we obtain ϕ2.5 = log2 n, because noising givesMA = 1/n,

q = 1/n2 and p is a Kronecker δ. ϕM, ϕMD and �
M
kk0 are seen to give about twice the integration

for this example.

Note that although this dynamics M that merely swaps the subsystems has such a large ϕ-

value only for this particular cut that separates the systems being swapped. Consider, for exam-

ple, a system of four bits labeled 1, 2, 3 and 4, where the dynamics swaps 1 with 3 and 2 with 4.

There is a different cut where ϕ = 0: simply define the new subsystems A’ and B’ to be the first

and second halves of the A and B-systems, i.e., A0 = 1, 3 and B0 = 2, 4. The swapping is now car-

ried out internally within A’ and B’, revealing that there is no integration and upper-case F = 0.

However, there are plenty of systems for which even the true integration F grows like the

number of subsystem bits, log2 n. A simple example accomplishing this (in the spirit of the ran-

dom coding example in [12]) is when the n4 probabilities pii0jj0 are all set to zero except for a
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randomly selected subset of n2 of them that are set to 1/n2. Now ϕM * log2 n even when mini-

mized over all bipartitions of the 2log2 n bits in the system. For this example, we have S(x) =

log2 n2 = 2 log2 n. The marginal distributions for xA, xB, xA
0

and xB
0

are all rather uniform, with

entropy on average less than a bit from the value for a uniform distribution, giving S(xA) * S
(xB) * log2 n2, SðxA

0
Þ � SðxB

0
Þ � log 2n, I(xA, xB) = S (xA) + S (xB) − S(x) * 2 log2 n,

IðxA
0
; xB

0
Þ ¼ SðxA

0
Þ þ SðxB

0
Þ � Sðx0Þ � 0 and therefore

�
M
¼ IðxA; xBÞ � IðxA

0
; xB

0
Þ � 2 log 2n � log 2n.

Fig 3 shows that the measures ϕM and ϕMD can sometimes be quite similar: they give

numerically similar values for the 3,000 random examples shown. Moreover, they appear to

satisfy the inequality ϕofum � ϕotuk. Further examination shows that for these these random

examples, the β-complication in eq (24) makes essentially no perceptible difference in prac-

tice, in the sense that the computation of ϕMD can be accurately accelerated by setting β = 1

rather than minimizing over it. However, [15] shows that there are real-world cases

where β is far from unity and also where ϕMD� ϕM, particularly when noise correlations

dominate over causal correlations. To understand this, consider the extreme case of two

perfectly correlated bits that are independently randomized by both time 0 and time 1, so

that xA
0
¼ xB

0
and xA

1
¼ xB

1
, with no correlation between the two times. Then ϕMD = 0 whereas

�
M
¼ IðxA; xBÞ � IðxA

0
; xB

0
Þ ¼ 2 � 1 ¼ 1, which is arguably undesirable.

The n!1 limit of continuous variables

All our previous results are fully general, applying regardless of whether the variables are dis-

crete (such as bits that equal zero or one) or continuous (such as voltages or other variables

Fig 3. Numerical comparison of the two measures ϕotuk and ϕofum for 3,000 random trials, generated

the same way as in Fig 2. The two measures are seen to be rather similar for these examples, and to satisfy

the inequality ϕofum� ϕotuk.

doi:10.1371/journal.pcbi.1005123.g003
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measured in fMRI, EEG, MEG or electrophysiology studies). We can view the latter as the

n!1 limit of the former, since a single real number can be represented as an infinite string

of bits. In this section, we will focus on the continuous case and see how our previous formulas

can be greatly simplified by assuming Gaussianity. We therefore replace i, i0, j and j0 in all our

formulas by xA
0
, xB

0
, xA

1
and xA

1
, respectively, and replace all sums by integrals.

How Gaussianity gives linearity. To make things tractable, we will make one strong but

very useful assumption: that x has a Gaussian distribution. The most general d-dimensional

multivariate Gaussian distribution is parametrized by its mean vector m� hxi and covariance

matrix T� hxxti − mmt and takes the form

g½x;m;T� �
1

ð2pÞ
d=2
jTj1=2

e� 1
2
ðx� mÞtT� 1ðx� mÞ; ð45Þ

so we are making the assumption that there is some m and T such that p(x) = g(x; m, T). Let us

write m and T as

m ¼
m0

m1

 !

; T ¼
C0 B

Bt C1

 !

; ð46Þ

where mi and Ci are the mean and covariance of xi, respectively.

Interpreting the sum in the denominator of eq (6) as an integral and evaluating it gives

Mðx1; x0Þ ¼ g½x1;m1 þ Aðx0 � m0Þ;S�; ð47Þ

where

A � BtC� 1

0
; ð48Þ

S � C1 � BtC� 1

0
B ¼ C1 � AC0A

t: ð49Þ

The following well-known matrix identities are useful in the derivation of this and other

matrix results in this paper:

A B

C D

�
�
�
�
�

�
�
�
�
�
¼ jAD � ACA� 1Bj; ð50Þ

A B

C D

 !� 1

¼
½A � BD� 1C�� 1

� A� 1B½D � CA� 1B�� 1

½D � CA� 1B�� 1CA� 1 ½D � CA� 1B�� 1

 !

; ð51Þ

½Aþ BD� 1C�� 1
¼ A� 1 � A� 1B½Dþ CA� 1B�CA� 1: ð52Þ

Eq (47) encodes the well-known result that the conditional distribution x1 | x0 for Gaussian

variables is Gaussian with mean m1 þ BC� 1

0
ðx0 � m0Þ and covariance matrix C1 � BtC� 1

0
B.

These equations embody a remarkable simplicity that we can exploit. First of all, the covari-

ance matrix S is independent of x0, which allows us to interpret x1 as simply a function of x0

plus a random noise vector n that is independent of x0. Second, this function is affine, involv-

ing simply a linear term plus a constant. In other words, we can write

x1 ¼ m1 þ Aðx0 � m0Þ þ n; ð53Þ
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where the noise vector n satisfies

hni ¼ 0; hnxti ¼ 0; hnnti ¼ S: ð54Þ

It is worth reflecting on how remarkable this is, since it is easy to overlook. The future state x1

of a system can depend on the present state x0 in some arbitrarily complicated non-linear way.

Moreover, for a generic Markov process, the scatter of x1 around its mean will depend strongly

on x0. Yet as long as all probability distributions are Gaussian, which is often a useful approxi-

mation for laboratory data, both of these complications vanish and we are left with the simple

linear dynamics of eq (53).

Autoregressive processes. Let us now briefly review the formalism of so-called autore-

gressive processes and how it relates to our problem at hand. A simple special case of the above

is where the random process is stationary, i.e., where the statistical properties are independent

of time. This implies that mi = m and Ci = C for some m and C that are independent of i. For a

stationary process, it is convenient to redefine new zero-mean variables x0i � xi � m. Dropping

the prime for simplicity, this allows us to rewrite eq (53) as

xiþ1 ¼ Axi þ ni; ð55Þ

where the noise vectors ni have vanishing mean and vanishing correlations between different

times, i.e., hnintji ¼ dijS. The covariance matrix between vectors at two subsequent times is

therefore

hxxti �
C CAt

AC ACAt þ S

 !

; x �
x0

x1

 !

: ð56Þ

Even if the random process is not stationary initially, it will eventually converge to a stationary

state where covariance is time-independent as long as all eigenvalues of A have magnitude

below unity, so that memory of the past gets exponentially damped over time. Once the covari-

ance has become time-independent, eq (56) implies that C = ACAt + S. This is known as the

Lyapunov equation, and is readily solved by special-purpose techniques or, rapidly enough, by

simply iterating it to convergence. If we write the covariance matrix hxxtimeasured from

actual time series data as

T � hxxti ¼
C B

Bt C

 !

; ð57Þ

then equating it with eq (56) lets us compute the matrices we need from the data:

A ¼ BtC� 1; ð58Þ

S ¼ C � ACAt ¼ C � BtC� 1B: ð59Þ

These equations hold regardless of whether the probability distributions are Gaussian or not.

If the noise n is Gaussian, then all distributions will be Gaussian in the steady state, so this is

an alternative way of deriving eqs (67) and (49) (without the subscripts).

We saw above how we can equally well interpret our system as a Markov process operating

backward in time, where the future causes the past. Repeating the above derivation for this

case, we can write

xi� 1 ¼
~Axi þ ni; ð60Þ
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where

~A ¼ BC� 1 ¼ SAt~Σ� 1; ð61Þ

~Σ ¼ C � BC� 1Bt ¼ C � ~AC~At;

¼ ½C� 1 þ AtS� 1A�� 1
¼ C � CAtC� 1AC:

ð62Þ

Although the matrices S and ~Σ are different, it is easy to prove that their determinants are

identical, which means that the conditional entropy is the same both forward and backward in

time.

Optimal factorization. In summary, a Markov process p1 = Mp can be described much

more simply when all probability distributions are Gaussian: instead of keeping track of the

infinite-dimensional Markov matrix M or the infinite-dimensional rank-4 tensor p (both of

which have as indices the four continuous variables xA
0
, xB

0
, xA

1
, xB

1
), we merely need to keep

track of the 2n × 2n covariance matrix T, from which we can compute and quantify the deter-

ministic and stochastic parts of the dynamics as the matrices A and S, respectively.

Let us now translate the rest of our results from our integration taxonomy into this simpler

formalism. To separate out the effects occurring within and between the subsystems A and B,

let us name the corresponding blocks of the A-matrix and the matrix T� hxxti from eq (46) as

follows:

A ¼
AA AAB

ABA AB

 !

; ð63Þ

T ¼

CA CAB BA BAB

Ct
AB CB BBA BB

Bt
A Bt

BA CA CAB

Bt
AB Bt

B Ct
AB CB

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

; x ¼

xA
0

xB
0

xA
1

xB
1

0

B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
A

: ð64Þ

Analogously to how eq (6) gave us eq (47), eq (31) now gives the optimal factorization

MA xA
1
; xA

0

� �
¼ g½xA

1
; ÂAx

A
0
; Σ̂A�; ð65Þ

MB xB
1
; xB

0

� �
¼ g½xB

1
; ÂBx

B
0
; Σ̂B�; ð66Þ

where

ÂA � Bt
AC
� 1

A ; Σ̂A � CA � Bt
AC
� 1

A BA; ð67Þ

ÂB � Bt
BC
� 1

B ; Σ̂B � CB � Bt
BC
� 1

B BB: ð68Þ

In other words, the “o”-factorization approximates x1 = Ax0 + n by

x̂1 �
x̂
A
1

x̂
B
1

 !

� Âx0 þ n̂; Â �
ÂA 0

0 ÂB

 !

; ð69Þ
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where the noise vector n̂ has zero mean and covariance matrix

Ŝ �
ŜA 0

0 ŜB

 !

: ð70Þ

We see that tensor factorization in the previous section now corresponds to the matrices A

and S being block-diagonal.

Noising factorization. Eq (55) tells us that

xA
1

xB
1

 !

¼ Ax0 þ n ¼
AAx

A
0
þAABx

B
0
þ nA

ABx
B
0
þABAx

A
0
þ nB

 !

: ð71Þ

The idea with noising is to take the terms AABxB0 and ABAxA0 and reinterpret them not as signal

but as noise, with zero mean and uncorrelated with anything else. The noising option “n” is

unfortunately undefined for this continuous-variable case, because it says to use a uniform dis-

tribution for these noised versions of xA
0

and xB
0
, which has infinite variance and hence gives,

e.g., hxB
0
xBt

0
i ¼ 1 when xB

0
is noised. The mild noising option “m”, however, remains well-

defined, saying to use the actual distributions for these noised versions of xA
0

and xB
0
, hence giv-

ing hxA
0
xAt

0
i ¼ CA and hxB

0
xBt

0
i ¼ CB when these variables are noised.

Computing the first and second moments of eq (71) therefore tells us that “m”-factorization

approximates x1 = Ax0 + n by

�x1 �
�xA

1

�xB
1

 !

� �Ax0 þ �n; �A �
AA 0

0 AB

 !

; ð72Þ

where the noise vector �n has zero mean and covariance matrix

�S �
SA þAABCBA

t
AB 0

0 SB þABACAA
t
BA

 !

: ð73Þ

Note that in contrast to the “o”-factorization of eq (69), the “m”-factorization has no tildes on

the AA and AB-matrices in eq (72).

Results. We now have all the tools we need to derive the Gaussian versions of the ϕ-for-

mulas in Table 2. Starting with eq (34), interpreting the sum in eq (30) as an integral and per-

forming it when p is the Gaussian distribution of eq (45) gives the well-known formula

I xA; xBð Þ ¼
1

2
log
jTAj jTBj

jTj
ð74Þ

for the mutual information between two multivariate Gaussian random variables. This imme-

diately gives the five matrix formulas for ϕM, ϕB, ϕots, ϕofs and ϕxfk in the right column of

Table 2. The second version listed for ϕB is also given in [13].

Starting with the KL-divergence definition dKL p; qð Þ �
P

ipi log pi
qi

from Table 5, we again

interpret the sum as an integral and use eq (45). This gives the well-known formula

DKL fp; fq
� �

¼

1

2
DmtC� 1

q Dmþ trC� 1

q Cp þ ln
jCqj

jCpj
� n

" #
ð75Þ

for the KL-divergence between two Gaussian probability distributions fp and fq with means mi
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and covariance matrices Ci (i = p, q), where Δm�mp − mq. The first term in eq (75) thus rep-

resents the mismatch between the means and the remainder (which is also guaranteed to be

nonnegative) represents the mismatch between the covariances.

For ϕofu, the future distribution p(x1) with mean zero and covarance matrix C is approxi-

mated by the distribution q(x1) that has mean zero and covariance matrix ÂCÂt þ Σ̂, which

follows from eqs (69) and (70). Substituting these means and covariance matrices into eq (75)

gives the matrix formula for ϕofu in Table 2. For ϕmas, both means again vanish, but now the

future distribution p xA
1

� �
has covariance matrix CA while the approximation q xA

1

� �
has covari-

ance matrix SA þ AACAA
t
A þ AABCBA

t
AB, which follows from eqs (72) and (73).

For the remaining options in Table 2, i.e., ϕofk, ϕoak, ϕopk, ϕmak and ϕmpk, the means do not

vanish, since they reflect information about the known state. For ϕofk, the future distribution

p(x1) with mean Ax0 and covariance matrix S is approximated by the distribution q(x1) that

has mean Âx0 and covariance matrix Σ̂, so eq (75) gives the matrix formula for ϕofk in the

table. For ϕoak, the future distribution p xA
1

� �
has mean AAxA0 þ ABxB0 and covariance matrix S,

while the approximation q xA
1

� �
has mean ÂAxA0 and covariance matrix Σ̂A. Finally, for ϕmak,

the future distribution p xA
1

� �
with mean ÂAxA0 and covariance matrix Σ̂A is approximated by

q xA
1

� �
with mean �AAxA0 and covariance matrix �ΣA. The time-reversed measures ϕopk, ϕmps and

ϕmpk are identical to ϕoak, ϕmas and ϕmak, but with A and S replaced by their time-reversed ver-

sions ~A and ~Σ from eq (61).

Substituting the above Gaussian formulas into eqs (24) and (25) gives

�
MD
¼

ln jĈj
jΣ̂j þ tr Ĉ� 1C � Σ̂� 1S � �AtΣ̂� 1 �A C

h i

2
; ð76Þ

where �A � A � Â and Ĉ � ÂCÂt þ Σ̂ for the simple but important case β = 1.

Graph-theory approximation to make computations feasible

The problem. The ϕ-formulas for discrete variables in the left column of Table 2 require

working with the n × nmatrix M, where n = 2b for a system of b bits. In other words, the time

to evaluate ϕ for a given cut grows exponentially with the system size b, which becomes com-

putationally prohibitive even for modest system sizes such as 100 bits—let alone the set of neu-

rons in the human brain with b* 1011. Even 300 bits give n greater than the number of

particles in our universe.

When the system state is described not by bits but continuous variables (such as voltages or

other variables measured in fMRI, EEG, MEG or electrophysiology studies), things get even

worse, since represending even a single variable requires an infinite number of bits. However,

[13] pointed out that the Gaussian approximation radically simplifies things, and we saw in

The n!1 limit of continuous variables how ϕ can then be computed dramatically faster. Not

only does the infinity problem go away for most measures in Table 2, but the formulas in the

right column are exponentially faster to evaluate than those in the left column even when each

bit is replaced by a separate real number! This is because if there are b real numbers, the n × n
matrix T has n = 2b, not n = 2b. This means that ϕ can now be computed in polynomial time,

more specifically O(b3) time, since the slowest matrix operations in Table 2 scale as O(n3).

Unfortunately, even after this exponential speedup in computing ϕ, computing the upper-

case version F is still exponentially slow. This is because F is the minimum of ϕ over the expo-

nentially many ways of splitting the system into two parts. Even if we limit ourselves to sym-

metric bipartitions, the number of ways to split an even number n elements into two parts of
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size n/2 is

n
n=2

� �

¼
n!

n=2ð Þ!2
�

ffiffiffiffiffiffi
2

pn

r

2n; ð77Þ

where we have used Stirling’s approximation n! �
ffiffiffiffiffiffiffiffi
2pn
p

n=eð Þ
n
. In other words, examining all

symmetric bipartitions is pretty much as exponentially painful as examining all 2n bipartitions,

because most bipartitions are close to symmetric.

An approximate solution. Being able to compute F approximately is clearly better than

not being able to compute it at all. In this spirit, let us explore an approximation that exponen-

tially accelerates the computation of F. Starting with the linear dynamics xi+1 = Ax + n from

eq (55), let us motivate our approximation by considering the case where the noise is n uncor-

related (where S is diagonal) so that it introduces no correlations between the two systems,

regardless of the cut. This means that the only source of integration can be the A-matrix trans-

ferring information between the two subsystems. Let us visualize this information flow as a

directed graph (Fig 4, bottom), where each node represents a variable i and each edge repre-

sents a non-zero element Aij, i.e., non-zero information flow from element j to element i. If

this graph consists of two disconnected parts A and B of equal size, as in the lower right corner

of Fig 4, then we clearly have F = 0, since there is no information flow and hence no integra-

tion between these two parts. In other words, if we permute the elements so that all elements

of A precede all elements of B, the matrix A becomes block-diagonal (Fig 4, middle right), for

which all integration measures in the right column of Table 2 will give ϕ = 0.

Note that before the elements were permuted (Fig 4, top right), this fact that ϕ = 0 was less

obvious. Moreover, examining all n! permutations (or all n
n=2

� �
symmetric bipartitions) would

have been an enormously inefficient way of finding that best bipartition for which ϕ vanishes.

In contrast, finding the connected components of a graph is quite simple, as is evident from

staring at Fig 4, with complexity between O(n) and O(n2). This means that if we know that

F = 0, then we can find the best bipartition (“cruelest cut”) easily, in polynomial time.

Let us now define an approximation taking advantage of this idea: replace all unimportant
elements |Aij|< � by zero, and adjust � so that the largest connected component has size as close
as possible to n/2. Letting this largest connected component define our approximation of the

best bipartition, we now compute its ϕ-value and use this as our approximation for F.

Note that this approximation can be trivially generalized to asymmetric bipartitions (the

subtle conceptual challenges of how to weight or otherwise handle asymmetric partitions [10,

11, 13, 22] are neither ameliorated nor exacerbated by our fast approximation).

In practice, we determine � by using the interval halving method. A final technical point is

that we have two separate definitions of graph connectivity to choose between: weak and

strong. A graph is strongly connected if you can move between any pair of elements following

the directional arrows on the edges. This means that every element can (at least through

intermediaries) affect and be affected by every other element, precisely capturing the integra-

tion spirit of [10]. Strong connectivity is therefore the logical choice when using our approxi-

mation to compute F2.5, F2:50 , F2:500 , since it will reflect their property that integration vanishes

for afferent and efferent pathways. A graph is weakly connected if you can move between any

pair of elements ignoring edge arrows—in other words, if it simply looks connected when

drawn. Using weak connectivity is arguably the better approximation for the F-measures that

do not vanish for afferent/efferent pathways, and numerical experiments confirm this.

Fig 5 illustrates the accuracy of our approximation. For this example, we randomly generate

7,000 different 16 × 16 matrices A and compute FM both exactly (as the minimum of ϕM over
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Fig 4. Illustration of our fastΦ-approximation for an n = 16 example. The structure of the A-matrix can be

visualized either as a grid (top four examples) where each pixel color shows the value of the corresponding

element Aij ranging from the smallest (black) to the largest (white), or as a graph (bottom examples) showing

all non-zero matrix elements. Both of the matrices on the left correspond to the same graph below them, and

both of the matrices on the right correspond to the same (disconnected) graph below them. Our method zeros

all matrix elements |Aij| < � below the threshold � that makes the largest connected graph component involve

merely half of the elements, which in the matrix picture means that there is a permutation of the elements

(rows and columns) rendering the matrix block-diagonal (middle right). Whereas it would take exponentially

long to try all matrix permutations, graph connectivity can be determined in polynomial time, thus enabling us

to rapidly find a good approximation for the “cruelest cut” bipartition.

doi:10.1371/journal.pcbi.1005123.g004
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all 16

8

� �
¼ 12; 870 symmetric bipartitions) and using our approximation. Here we generate A-

matrices by first computing

A ¼ ZA0 þ
A1 0

0 A2

 !

; ð78Þ

where A0, A1 and A2 are random matrices (whose elements are independent Gaussian random

variables with zero mean), each normalized to have their largest eigenvalue equal to unity. We

then renormalize A so that its largest eigenvalue equals 0.99. The parameter η controls the typi-

cal level of integration: η = 0 gives F = 0 since A is block-diagonal, whereas η!1 gives maxi-

mal integration, with no special cut put in by hand; η is randomly chosen to be 0.1, 0.3, 0.5,

0.7, 1, 2 or 10 with equal probability. Once we have generated A, we compute C as the solution

to the Lyapunov equation C = ACAt + S with S = I.

For comparison, we also compute the maximum FM
max over the bipartitions. The ratio Fmax/

F� 1 (where F� Fmin) quantifies how relatively decomposable a system is, whereas the ratio

Fapprox/F� 1 quantifies how well our approximation works, with a value of unity signifying

that it is perfect and found the optimal bipartition. Fig 5 plots these two quantities against each

other, and reveals that they are strongly related. For fairly separable systems, the approxima-

tion tends to be excellent: it gives exactly the correct answer 95% of the time when Fmax/F> 2

and 99.96% of the time when Fmax/F> 3. When FmaxF≲ 2, on the other hand, so that there

is less of a clear winner among the bipartitions, our approximation is seen to overestimate the

true F-value by up to 15% on average (this is the median).

An alternative implementation, which we find works even better for some examples, is to

apply the above-mentioned graph-based bipartition-finding scheme not to the evolution

matrix A but to the covariance matrix C. We therefore recommend computing two approxi-

mate bipartitions, one based on A and one based on C, and selecting the one producing the

smaller ϕ-value.

Fig 5. How well our fastΦ-approximation works for 7,000 simulations of the n = 16ΦM-example

described in the text. Whereas it is seen to be excellent at finding the best bipartition when not all are

comparably good, (i.e., whenΦmax/Φmin� 1), the approximation is seen to overestimateΦ by up to 15% (the

median) when there is no clear winner (left side). From top to bottom, the three curves show the 95th, 50th

and 5th percentiles of the overestimation factor. The shaded region delimits the largest overestimation

possible, whenΦappox =Φmax.

doi:10.1371/journal.pcbi.1005123.g005
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Discussion

Motivated by the growing interest in measuring integrated information F in computational

and cognitive systems, we have presented a simple taxonomy of F-measures where they are

each characterized by their choice of factorization method (5 options), choice of probability

distributions to compare (3 × 4 options) and choice of measure for comparing probability

distributions (5 options). We classify all the integration measures revealed in this taxonomy

by various desirable properties, as summarized in Table 1. When requiring the F-measures

to satisfy a minimum of attractive properties, the hundreds of options reduce to a mere

handful, some of which turn out to be identical. All leading contenders are summarized in

Table 2.

Unfortunately, these most general integration measures are unfeasible to evaluate in prac-

tice, with the computational cost growing doubly exponentially with b, the number of bits in

the system: they involve a Markov matrix of size n = 2b, and they also involve minimizing over

approximately N = 2n = 22b bipartitions. Generalizing the pioneering work of [13], we derive

formulas for the Gaussian case that are exponentially faster, involving manipulations of a

matrix whose size grows as 2b rather than 2b with the number of variables b. Moreover, we

show how the second exponential can also be avoided using an approximation using graph

theory, thus reducing the computational cost from doubly exponential to merely polynomial

in the system size b.

WhichΦ-measures are best?

As described in detail in Results, six F-measures stand out from the taxonomy of hundreds of

measures as particularly attractive: FM, FM
kk0 , F3.0, F2.5, F2:50 and F2:500 . FM retains all the attrac-

tive features of the Barrett/Seth measure FB and adds further improvements: it is guaranteed

to vanish for separable systems and to never be negative. If state-dependence is viewed as

desirable, then its cousin FM
kk0 adds that feature too.

F3.0 is the measure advocated by IIT3.0 and has the many attractive features described in

[11]. It has the drawback of being the slowest of all the measures to evaluate numerically: its

definition involves a linear programming problem which needs to be solved numerically, and

even with the fastest algorithms currently available, the computation for a given bipartition

grows faster than quadratically with the number of system states—which in turn grows expo-

nentially with the number of bits, and is infinite for continuous variables.

The remaining three top measures, F2.5, F2:50 and F2:500 , share with F3.0 the arguably desir-

able feature of vanishing for afferent and efferent systems, but are much quicker to compute.

F2.5 combines core ideas from IIT3.0 with the computational speed of IIT2.0 [10, 11] and ele-

gantly depends only on the system’s dynamics and present state, not on any assumptions

about which states are more probable. Its drawback of being infinite for continuous variables

is overcome by its cousin F2:50 .

A potential philosophical objection to both F2.5 and F2:50 is that they are arguably not mea-

sures of integration, but measures of how suboptimal the factorizations “n” and “m” are, since

they would both vanish if an optimal factorization were used—the measure F2:500 eliminates

this concern.

Outlook

Although the results in this paper will hopefully prove useful, there is ample worthwhile work

left to do on integration measures.
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One major open question is how to best handle asymmetric partitions. We deliberately

sidestepped this challenge in the present paper, since it is independent of our results, which is

why the subtle normalization issue raised by [10, 11, 13, 22] never entered. The crux is that if

we apply any of the measures in our taxonomy with an asymmetric bipartition, the resulting

ϕ-value will tend to get small when any of the two subsystems is very small, so simply defining

F as the minimum of ϕ over all bipartitions (symmetric or not) makes no sense. IIT3.0 makes

an interesting proposal [11] for how to handle asymmetric partitions, and it is worthwhile

exploring whether there are other atttractive options as well.

Another foundational question is whether our taxonomy can be placed on a firmer logical

footing. Although our classification based on factorization, comparison, conditioning and

measure may seem sensible and exhaustive, it is interesting to consider whether one or several

F-measures can be rigorously derived from a small set of attractive axioms alone, in the same

spirit as Claude Shannon derived his famous entropy formula, eq (30).

Yet another foundational question is whether integration maximization can be placed on

a firmer physical footing, as advocated by [33, 34] in the context of continuous physical

fields and by [12] in the context of quantum systems. The formulas in our taxonomy take

information, measured in bits, as a starting point. But when I view a brain or computer

through my physicist eyes, as myriad moving particles, then what physical properties of the

system should be interpreted as logical bits of information? I interpret as a “bit” both the

position of certain electrons in my computer’s RAM memory (determining whether the

micro-capacitor is charged) and the position of certain sodium ions in your brain (deter-

mining whether a neuron is firing), but on the basis of what principle? Surely there should

be some way of identifying consciousness from the particle motions alone, or from the

quantum state evolution, even without this information interpretation? If so, what aspects

of the behavior of particles corresponds to conscious integrated information? In other

words, how can we generalize the quest for neural correlates of consciousness to physical
correlates of consciousness? IIT argues that the consciousness occurs at precisely the level of

course-graining in space and time that maximizes F [10], which is a prediction that should

be tested.

A more practical question involves exploring ways of generalizing and further improving

our graph-theory-based approximation for exponential speedup. One obvious generalization

would involve taking advantage of the structure of S (which our method ignored) and the

effect of x (for those F-measures that are state-dependent). Another interesting opportunity is

to generalize from continuous Gaussian systems to arbitrary discrete systems. For example, if

the system consists of b different bits coupled by a nonlinear network of gates, one can apply a

similar graph-theory approach by defining a b × b coupling matrix Aij that in some way quanti-

fies how strongly flipping the jth bit would affect the ith bit at the next timestep. As an example,

consider defining Aij as the probability that flipping the jth bit will flip the ith bit at the next

timestep. If we have six bits evolving according to

x1 ¼

a1

b1

c1

d1

e1

f1

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

¼ f x0ð Þ ¼

a0

NOT a0

RANDOM

c0 XOR d0

c0 ANDd0

c0 ANDd0 AND e0

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

;
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then the coupling matrix is

A ¼

1 0 0 0 0 0

1 0 0 0 0 0

0 0 0 0 0 0

0 0 1 1 0 0

0 0 pd pc 0 0

0 0 pde pce pcd 0

0

B
B
B
B
B
B
B
B
B
B
@

1

C
C
C
C
C
C
C
C
C
C
A

;

were pc denotes the probability that c0 = 1, pde denotes the probability that d0 = 1 and e0 = 1,

etc. This coupling matrix is block-diagonal, showing that the bits a, b are completely indepen-

dent of the others. For a state-independent F-measure, these probabilities can be computed as

time-averages, otherwise they are each zero or one depending on the state. In either case, some

elements of the A-matrix can be small but non-zero (making the graph-theory approximation

useful) if the system involves noisy gates or other randomness.

As regards practical challenges, it is important to note that there are many other issues

besides speed that deserve further work because they have hindered the practical computation

of integration F-measures from real brain data, including non-stationarity, statistical issues

with estimating large numbers of parameters from short data windows without overfitting,

possibilities of statistical bias, numerical instabilities, etc.
Last but not least, a veritable goldmine of data is becoming available in neuroscience and

other fields, and it will be fascinating to measure F for these emerging data sets. In particular,

the exponentially faster F-measures we have proposed will hopefully facilitate quantitative

tests of theories of consciousness.
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