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Abstract

We report on wide-field optically detected magnetic resonance imaging of nitrogen-vacancy centers
(NVs) in type IIa polycrystalline diamond. These studies reveal a heterogeneous crystalline
environment that produces a varied density of NV centers, including preferential orientation within
some individual crystal grains, but preserves long spin coherence times. Using the native NVs as
nanoscale sensors, we introduce a three-dimensional strain imaging technique with high sensitivity
(<105 Hz /%) and diffraction-limited resolution across a wide field of view.

1. Introduction

Recent years have seen rapid advances in the development of quantum memories and sensors based on solid-
state spin systems. At the forefront of these spin systems is the nitrogen vacancy center in diamond (NV), which
has an electron spin triplet ground state with exceptionally long coherence time even at room temperature [1].
Measuring these spins by optically detected magnetic resonance (ODMR) has enabled high performance sensing
of electromagnetic fields [2, 3], temperature [4] and pressure [5]. The highest-sensitivity experiments have used
single-crystal diamond grown through chemical vapor deposition. However, such samples remain expensive
and small (on the scale of millimeters), which limits the adoption and scaling of NV sensing techniques.
Polycrystalline diamond (PCD) presents an attractive alternative as it can be grown on the wafer scale and at
lower cost, with the potential for long spin coherence times [6, 7]. However, a major concern with PCD has been
that the diverse crystal structure, including grain boundaries and varied growth regimes, could lead to
inconsistent and poor NV properties. In this work, we employ wide-field ODMR spectroscopy [8—11] to
characterize the properties of hundreds of individually resolved NVs across a field of view of >300 yzm” and to
use those centers as high-resolution nanoscale sensors of local crystal strain. These studies reveal that NVs in
PCD are naturally preferentially aligned in some crystal grains, have spatially varying concentration, can be
strongly strained near grain boundaries, and exhibit consistently long spin coherence times. Using these NV, we
introduce a method for wide-field strain imaging. We produce detailed, three-dimensional strain maps of PCD
structure with diffraction-limited resolution and sensitivity below 10> Hz /2, outperforming traditional
optical strain measurement techniques such as Raman imaging [12]. These studies show the application of NVs
for high-resolution strain imaging, and demonstrate the viability and potential advantages of PCD for quantum
sensing and information processing.

The NV is an electronic spin-1 system consisting of a substitutional nitrogen atom adjacent to a vacancy in
the diamond lattice [13]. The ground-state spin can be coherently manipulated by microwave fields, as well as
initialized and detected through optical illumination because the m; = 1 sublevels are dark states that emit
reduced fluorescence. The ground state Hamiltonian describing the system is:

1
H = —[(Dy + £} = £S5 = S + E/(SeS, + 5,501 + %s B, D

where Dy = 2.87 GHz is the spin—spin interaction energy, £ = dg - (E + o) is the energy of interaction with
external electric (E) and strain (o) fields, B is the magnetic field at the location of the NV, dg is the NV electric
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Figure 1. (a) Experimental concept. The PCD sample is illuminated with 532 nm light, and the red fluorescence emitted by NVs
embedded in the polycrystalline diamond is collected onto a CCD (not shown). NV electron spins are manipulated via microwave-
frequency excitation applied from a wire on the diamond surface (MW), and the static magnetic field is controlled along three
independent axes by electromagnets (EM). The NV symmetry axis defines the z direction. (b) Bright-field image of PCD. (c) Wide-
field image under 532 nm excitation. Bright fluorescence is seen on grain boundaries. The white lines serve as guides to the eye,
outlining the crystal grains. (d) Confocal scan taken at 100 x magnification of a single grain. Within the grain, NV density varies
depending on growth sector. (e) Image of a density transition; each spot corresponds to a single NV. Color scale: relative intensity (arb.
units).

dipole moment, g the electron g-factor, and j¢;, the Bohr magneton. Strain or electric fields along the Z direction
defined by the NV axis (figure 1(a)) correspond to shifts in lattice spacing that preserve the NV’s trigonal
symmetry and affect both m, = £ 1 spin levels equally, while the levels are split in the presence of non-axial
strains (&, &,)thatbreak this symmetry. For low transverse magnetic fields B, = |B? + B)f <K Dy, the
ground state transition frequencies are

fiwy = Dy + & £ JET + (guyB)?, )

where & = /&2 + Si is the perpendicular effective electric field. This expression indicates two limiting
regimes corresponding to the dominance of the B, or &, terms In the high-field regime, B, > &£, ,the NV
resonance frequency is not sensitive to changes in £, in first order. A large magnetic bias field therefore allows
probing of NV orientation based on magnetic field projection along the NV axis. In the low-field regime,
B, < &, theNVissensitive to changesin & but not B. Operating in this regime by eliminating the bias
magnetic field enables probing of local strain through measurement of both &, and £, . The change in energy per
unit strain £(o) is anisotropic and has been measured in separate cantilever-based experiments [14, 15] as well
as under isotropic pressure [5]. For this work, we assume a shiftof £, = 20.6 GHz and &£, = 9.38 GHz derived
from the mean of the reported values.

2. Wide-field ODMR

To probe the properties of NVs in PCD, we performed wide-field ODMR measurements using a custom-built
fluorescence microscope (figure 1(a)). Optical illumination is provided by a 532 nm green laser modulated by a
double-pass acousto-optic modulator, and resulting NV fluorescence is spectrally filtered (650 nm long-pass)
and collected on an electron-multiplying CCD camera. Spin manipulation is accomplished by applying
microwaves through a 15 um copper wire placed nearby to the area of interest, while the external magnetic field
is controlled by three orthogonal current-controlled electromagnets in addition to a permanent rare-earth
magnet. The measurements were performed at room temperature without external stabilization or control.

We investigated a type-1Ia PCD provided by Element6, grown by chemical vapor deposition with a nitrogen
concentration <50 ppb. We firstimaged the sample in fluorescence. Individual crystal grains vary in size from
10-1000 zm? in area, and are easily identified in fluorescence imaging by their boundaries (figures 1(c) and (d)).
These grain boundaries fluoresce brightly across the visible band, likely due to a high density of optically active
lattice traps and amorphous carbon [7], and indicate the transition between two growth regimes. Individual NV
centers within individual PCD grains are visible under 100 x magnification (figures 1(b) and (c)). The
measurements show an NV density that varies significantly within and between grains, from roughly ~0.1
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Figure 2. (a) Wide-field fluorescence image of NVs in polycrystalline diamond. Each fluorescent spot corresponds to a single NV, and
the background corresponds to many out-of-focus NVs. Bright grain boundaries are visible on the edges of the image. (b) ODMR
spectrum averaged over the field of view. Dimming corresponds to driving between the mg = 0 and m; = —1 spin sublevels of
different geometric classes of NVs. (¢) and (d) ODMR contrast images corresponding to the resonance marked with the green (red)
arrow in b. The geometric classes of NVs is spatially distinct.

NV pm™ to densities approaching 1 NV zm 2. This heterogeneity contrasts with the homogenous NV
distribution in single-crystal CVD diamond.

We then investigated NV properties in the high magnetic field regime. An external magnetic field of ~100 G
was applied and the ODMR spectrum of NVs within the field of view obtained under continuous-wave
microwave and optical excitation (figures 2(a) and (b)). The observed resonance frequencies correspond to
specific geometric classes of NVs {i}, each with a defined angle to the external magnetic field resultingin a
different resonance frequency /iw; = Dy, + g1, B, (i). Interestingly, only three distinct NV orientations appear
in this region, rather than the four possible classes corresponding the four crystallographic (111) directions. In
figures 2(c) and (d), we map the location of NV geometric classes {i = 1, 2} by showing ODMR at frequencies
w;. This shows spatial separation of NV classes, likely by growth region as no intersecting grain boundary is
observed, with the lower region only containing NVs at a single frequency. This effect persists independent of the
direction of the applied permanent magnetic field (supplemental material), and across grains in the PCD.
Preferential orientation of NVs through engineered growth has been theoretically predicted [16, 17] and
observed previously in single crystal diamond with controlled growth along {110} [18, 19], {111} [20, 21] and
{113} [22]. These results indicate that preferential alignment occurs naturally in PCD, possibly due to
predominant {110} and {111} grain textures.

3. Strain imaging

We next turn to strain mapping of the PCD by wide-field continuous-wave ODMR spectroscopy. These
measurements must be performed in the low magnetic field regime where B, < & ; to achieve this, we canceled
external magnetic fields using three-axis electromagnets. Figure 3(b) shows a representative ODMR spectrum.
From double-Lorentzian fits to these low-field spectra, taken in parallel across the field of view with a total
measurement time of 150 s, we extracted (D, + &) and £, following equation (2), and converted them to
strain. The resulting strain maps are shown in figures 3(c) and (d), respectively. Axial strain values relative to a
Dgs parameter of 2.87 GHz are shown. For non-axial strain, the minimum detectable resonance splitting is set by
the magnetic field induced from the NV-site "*N nuclear spin [3], allowing for absolute calibration of a zero
value. The possible presence of multiple NV orientations could lead to a worst-case underestimation of strain
through both the axial and non-axial parameters by a factor of two. Figure 3(c) indicates a maximal axial strain of
6 x 10~ *at the grain boundary which relaxes towards the center of the grain, while figure 3(d) indicates a
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Figure 3. (a) Wide-field fluorescence image of NVs in polycrystalline diamond. A grain boundary is visible in the upper-right corner
indicated by the black dashed line. (b) Low-field ODMR spectra corresponding to the locations indicated in a. The differences in £,
and &, areindicated. (c) and (d) strain maps. Axial and non-axial strains both increase near the grain boundary. The data are binned in
a4 x 4pixel (~320 nm) region and smoothed over single-pixel nearest neighbors.
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Figure 4. (a) Histogram of the 68% confidence interval on the fitted resonance frequencies for each pixel of the strain image shown in
the main text figure 3. (b) Spatial distribution of resonance fitting confidence intervals.

maximum non-axial strain of 1.8 x 10~ *. These strains relax to their minimum value over a distance of 24 zzm
from the grain boundary, setting a relevant length scale of the use of PCD in device design.

The sensitivity of this technique can be characterized by the 68% confidence interval on the fitted resonance
frequencies, which corresponds to the measurement standard deviation and depends primarily on the detected
photon rate. Due to the non-uniform illumination across the field of view as well as background fluorescence
near grain boundaries, the sensitivity varies spatially. The mean 68% confidence interval on the two resonance
frequencies for each 320 x 320 nm” pixel in the field of view is displayed in figure 4. We achieve a median per-
pixel ODMR spectral resolution of 245 kHz, resulting in an axial strain measurement precision of 2.7 x 107>
(nonaxial 1.2 x 10~°)and a corresponding sensitivity of 3.21 x 10~*Hz'/? (non-axial 1.5 x 10~*Hz '/?)for
a 150 second measurement. To characterize a best-case sensitivity without the sample-specific background near
the grain boundaries, we focus on the high-SNR regions corresponding to in-focus individual N'Vs at the center
of the field of view. In these regions, we achieve 68% confidence intervals of 79 kHz, corresponding to a
measurement precision of 8.2 x 1076 (non-axial 3.8 x 107°) and sensitivity of 1.02 x 10~* Hz /2 (non-axial
4.7 x 1075 Hz V3.
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Figure 5. Three-dimensional strain imaging. (a) Fluorescence (b) non-axial strain and (c) axial strain. The vertical images are offset by
1 pum, with the top image on the surface of the diamond. The black line indicates the location of the grain boundary, and the spatial
units are microns.

Using this low magnetic field ODMR technique, we performed wide-field strain imaging in three-
dimensions across several crystal grains. These studies again reveal a strong strain gradient near grain
boundaries. In the grain shown in figures 3(a)—(c), the Dy, parameter corresponding to axial strain is lower near
the boundary than in the center of the grain. This corresponds to tensile rather than compressive strain, while
the reverse is true for the grain shown in figures 3(c) and (d). The non-axial strain at the center of the field of view
is reduced with increased depth into the diamond, from a maximal value >1 x 10~* near the surface to
<5 x 107> atadepth of 3 um. As visible in the fluorescence profile (figure 5(a)), the location and angle of the
grain boundary varies with depth into the diamond, which is in turn reflected by rotation in the axial strain
profile (figures 5(b) and (c)). Here the strain is observed to relax within 10 y#m from the grain boundary. Further
strain images, including extreme strain gradients and comparisons to reference single-crystal diamonds, are
included in the supplemental material. These maps demonstrate the power of this technique for imaging crystal
strain with high precision in three-dimensions.

4. Discussion

Our studies reveal advantages and disadvantages of PCD for NV-based applications. The observation of
preferential NV alignment within PCD grains, in combination with consistently high NV spin coherence times
similar to single-crystal samples, can greatly improve the signal-to-noise of NV sensing applications (i.e a
fourfold improvement in ODMR contrast) [18]; the large areas available for PCD diamond add to the usefulness
in wide-field sensing applications, for example in biology [23]. Strong strain gradients could also allow for sub-
diffraction resolution of individual NVs using ODMR [11]. In photonic devices, well-defined angular alignment
of NVs can improve NV-dipole coupling to optical modes. PCD enables the production of wafer-scale photonic
circuits in diamond, but roughness and scattering from grain boundaries have limited device performance
compared to single-crystal diamond [24]. Large grains with low intra-grain roughness, such as those present in
the sample characterized in this work, may reduce loss while still providing large-area substrates. Wide-field pre-
characterization of the PCD could also allow for identification of and design compensation for grain boundaries.

PCD could also serve as a natural environment for studying correlations between crystal strain and the spin
and optical properties of embedded emitters. For example, high strain could break the orbital degeneracy of the
SiV [25], changing spin and orbital coherence properties, or strain gradients could be employed to tune relative
NV sensitivity to electric and magnetic fields [26]. PCD provides a substrate that is ultra-pure and enables long
spin coherence times, in contrast to other highly strained host materials such as nanodiamond. The strain in
PCD can be very large; the observed NV ground state spin strain shifts of over S8MHz in the axial direction are
higher than those reported in cantilever-based experiments [ 14, 15] and would require pressures in the tens of
GPato produce externally.

5. Conclusion and outlook

The NV-based strain imaging technique introduced in this work reaches the optical diffraction limit and a high
sensitivity of 107> Hz ~!/2 (< 10 MPa), which outperforms more traditional strain imaging techniques such as
Raman imaging [12] that are limited to absolute sensitivities >10 MPa in addition to being orders of magnitude
slower [27]. Through sectional imaging, this 3D imaging technique also offers an advantage over birefringence
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[28,29] or x-ray topography [30] strain imaging methods, which image whole-sample and near-surface strains,
respectively. Although limited to diamond and other materials with optically accessible, strain-sensitive spin
defects (e.g. silicon carbide [31]), this technique has potential for precisely characterizing internal strains, such as
those induced by geological formation [32] or in strain-engineered devices, as well as for mapping externally
applied strains. More advanced dynamical-decoupling sequences can increase axial strain sensitivity [33, 34],
which in turn could enable sub-diffraction strain imaging by resolving NVs in the spectral domain. While this
work images individual NVs, higher-NV-density samples would increase sensitivity [35], potentially enabling
the imaging of few-site dislocations in single-crystal diamond or increasing the field of view. By imaging NVs in
different independent orientations, this technique additionally could provide full vector reconstruction of the
local strain. Since the NV is a truly nanoscale sensor, operable over a wide range of temperatures [36] and
pressures [5], this method can be used to perform ultra-high resolution strain mappings dynamically in
previously unexplored regimes.
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