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Abstract
The ability to tailor the energy distribution of plasmons at the nanoscale hasmany applications in
nanophotonics, such as designing plasmon lasers, spasers, and quantum emitters. To this end, we
analytically study the energy distribution and the properfield quantization of 2Dplasmonswith
specific examples for graphene plasmons.Wefind that the portion of the plasmon energy contained
inside graphene (energy confinement factor) can exceed 50%, despite graphene being infinitely thin.
In fact, this very high energy confinement canmake it challenging to tailor the energy distribution of
graphene plasmons just bymodifying the surrounding dielectric environment or the geometry, such
as changing the separation distance between two coupled graphene layers. However, by adopting
concepts of parity-time symmetry breaking, we show that tuning the loss in one of the two coupled
graphene layers can simultaneously tailor the energy confinement factor and propagation
characteristics, causing the phenomenon of loss-induced plasmonic transparency.

1. Introduction

Quantifying the energy of electromagnetic fields is an inseparable part of our understanding of
electromagnetism, fromPoynting’s work in 1884 [1] to Brillouin’s discussions on the electromagnetic energy in
dispersive and lossymedia [2–4]. In optical waveguides andfibers, the fraction of energy of an electromagnetic
mode trapped in the core region of thewaveguide represents the quality of its confinement; this fraction is called
the energy confinement factor [4, 5]. The fundamental importance of the energy confinement factor in
electromagnetism can be appreciated by the following general argument: when a system is perturbed (by the
presence of losses, defects, or other sources), the energy confinement factor is ameasure of how robust the
original system is to these perturbations, and it tells us where (in space) perturbationsmake themost impact
[4, 5]. It is also of fundamental importance for light–matter interactions in quantumnanophotonics [6]. By
knowing the energy in amode, we are able to compute awide array of light–matter interaction processes which
require quantummechanical descriptions, such as stimulated emission, entanglement generation,multi-
photon spontaneous emission, and various scattering processes [6–11].

The energy confinement factor is also of great technological importance. This quantity is an important
parameter in computing the threshold current for semiconductor lasers and designing plasmon lasers, spasers,
and polarization-insensitive amplifiers [12–16]. Of course, the scope of the energy confinement factor reaches
far beyond these applications. One consequence is that tailoring the energy confinement factor gives away to
improve systemswhere losses are a detriment—in particular, by reducing the energy confinement factor where
thematerial dissipation is the highest. For example, an area of interest where losses pose a serious detriment to
devices is plasmonics; thus tailoring the energy confinement factor can be away of overcoming these obstacles.

Due to the high spatial confinement of electromagnetic fields, plasmonics hold great promise to realize
transformative applications in nanophotonics and nanotechnology [17], such as deep-subwavelength plasmon
lasers [13], heat-assistedmagnetic recording [18], light harvesting [19], and quantum computing [20–22].
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However, the same confinement that leads to promising applications also leads to the very high dissipation of
thesemodes. Formany applications of interest, lower losses than previously observed are highly desirable.
Graphene plasmons [23–28] are a unique type of plasmons supported by 2D-electron gases [29–34], and
recently have been experimentally demonstrated to possess strong field confinement and lowdamping [26, 27],
thus emerging as a promising platform tomanipulate light at the nanoscale.Moreover, unlikemost plasmons in
bulkmetals and even other 2D-electron gases, graphene plasmons can be tuned by electrostatic gating [24–28].
Thismakes graphene a plasmonic platformof particular interest and gives rise to the unique possibility of
developing fast, compact, and active optical components ranging fromTHz to infrared [10, 28, 35–37] and
maybe beyond.

Motivated by its importance for nanophotonics (classical and quantum) and the control over loss effects, we
analytically study the energy distribution of 2Dplasmons, as exemplified by graphene plasmons.Wefind that
even though graphene is atomically thin, the energy confinement factor of graphene plasmons can be over 50%.
In contrast, the energy confinement factor is less than 0.3% for transverse-electric (TE) graphene plasmons.
Turning our attention to quantumnanophotonics, we explicitly obtain quantized 2Dplasmon field operators
for a graphenemonolayer by using the derived energy distribution, which illustrates how to extend
electromagnetic field quantization tomore complicatedmedia and structures.Moreover, due to the extreme
energy confinement, one cannot tailor the energy confinement factor of TMgraphene plasmons by simply
modifying the surrounding dielectric environment or the geometry, such as by changing the separation distance
between two coupled graphene layers. This is surprising because such changes are a common strategy used for
similarmodifications in conventionalmultilayer plasmonic structures. In order to efficiently tailor the energy
confinement factors, one has to tune the loss in at least one of the two coupled graphene layers. Thismotivates us
to borrow concepts from the physics of parity-time (PT) symmetry breaking, such as loss-induced transparency,
and to explore them in the context of the energy distribution.Wefind that the phenomenon of loss-induced
plasmonic transparency canwork as a newmechanism to control the loss effects in plasmonic systems.

2. TMplasmons inmonolayer 2Dmaterial

2.1. Dispersion andpropagation characteristics
Webegin by studying the basic properties of TMplasmons in amonolayer graphene. Figure 1 compares these
properties when calculated by using threewidely-usedmodels of graphene surface conductivity, ss (see
Supplemental note 1), i.e. the randomphase approximation (RPA) [10, 36], theKubo formula [38, 39] and the
Drude expression [36]. Herewe assume graphene is located at the interface between region 1 and region 2 (see
figure 1), where their relative permittivities are e .1,2r Asfigure 1(a) shows, when the system is sufficiently below
the inter-band threshold, their dispersions from theDrude, Kubo andRPAmodelsmatchwell. This is to be
expected.When the system steps into the inter-band regime, the three dispersion lines deviate largely from each

other. Figure 1(b) shows the inverse damping ratio g =- { }
{ }
q

qp
1 Re

Im
[26], a (dimensionless)figure ofmerit of

propagation damping, where q is thewavevector component parallel to the graphene plane. Note that

p=
l

{ }
{ }

4 ,
q

q

LRe

Im

p

spp
where the propagation length =

{ }
L

qp
1

2Im
is the distance for the intensity of graphene plasmons

to decay by a factor of /1 e and l = p
{ }qspp

2

Re
is thewavelength of graphene plasmons. Recently, g »- 25p

1 has

been experimentally reported in [26], in accordance with our calculation. The inverse damping ratio from the
RPA calculation decreases rapidly when /w m> 1.1 c due to the high loss in the inter-band regime. The inverse
damping ratio from theKubo orDrude calculation also decreases linearly when w goes to zero. This is because

when w is small, we approximately have wµ{ }qRe 2 and wµ{ }qIm (see figure S2), leading to wµ{ }
{ }

.
q

q

Re

Im

Note that in our RPA calculation, { }qIm is calculated by using equation (15) in [36], which becomes
inappropriate at small w where the condition /w{ }qRe c is not fulfilled. Therefore, when w is small, the
inverse damping ratio from the RPA calculation deviates slightly from theKubo orDrude calculation.

2.2. Energy confinement factor

Figure 1(c) shows the energy confinement factor G =
+ +

,
W

W W W

gra

gra 1 2
whereW1,2 andWgra are the plasmon energy

in the regions 1, 2 and in the graphene layer, respectively, calculated by using the Brillouin formula [3, 4]

= +we e
w

wm m
w

¶
¶

¶
¶( ){ }{ }∭ ∣ ¯∣ ∣ ¯ ∣( ) ( )

W x y z E Hd d d Re Re1

2
2 1

2
20 r 0 r (See Supplemental note 2 formore technical

details).Wefind that G  0.5when /w m> 0.1 .c The highest values of G are found in cases where nonlocal
effectsmodify the plasmon dispersion such as in the inter-band regime.However for TMgraphene plasmons at
high frequency (which require a nonlocal description), the losses are quite high because of the presence of
Landau damping. In this high loss regime, our energy calculations can only be seen as qualitative due to the fact
that the Brillouin energy density only applies to temporally narrow-band fields [3, 4].Moreover, because the
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Brillouin formula is onlymeaningful in transparencywindows [3], it is onlymeaningful when { } { }q qIm Re
(or in a formalism inwhich q is real andω is complex, w w{ } { }Im Re [40]). Therefore, issues of backbending
in the dispersion should not be important here [40]. Such high values of G imply that a significant part of the
plasmon energy is confined inside graphene.We thus argue that TMgraphene plasmons can easily ‘see’ the loss
within graphene, and therefore their propagating characteristics should be highly dependent on the quality of
the graphene samples. In particular, the energy confinement factor from theDrude calculation approximates to
0.5 and seldomdepends on the frequency. This is because the energy confinement factor can be approximately
reduced to

/

/ /
G » » -

s e
w
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w
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where the right-most expression is found valid in case /w{ }qRe c. Here, = w
{ }

v
qp Re
and = w¶

¶ { }
vg qRe

are the

phase and group velocities of graphene plasmons, respectively. For the special case of theDrude-like surface
conductivity

/
s w µ

w t+
( )

( )
,s

i

i
one obtains the constant G » 0.5.More importantly, due to the extreme

confinement, equation (1) is applicable to arbitrary values of e1r and e ,2r and the energy confinement factor only
negligibly changes when the surrounding dielectrics vary (seefigure S3). In addition, we find that G decreases
rapidly to zerowhen /w m< 0.1 .c This is because for small frequencies, we have

/
wµ

w
{ }q

c

Re
and the in-plane

wavevector q becomes comparable to thewavevector in the surrounding dielectric, and then the plasmons are
no longer tightly confined in graphene (note that the right-most expression in equation (1) is invalidwhen

/w m< 0.1 ,c because the condition /w{ }qRe c is no longer fulfilled; see figure S2). Further details on the
energy confinement factor can be found in the supplemental note 2.Moreover, note that from the perspective of
dispersion and energy confinement factor, TMgraphene plasmons behave similar to the even TMplasmon
eigenmode supported by an ultrathinmetal slab (see figure S6), assuming the losses of such a slab could have
beenmade small enough.

Figure 1.Basic properties of TMplasmons in amonolayer graphene. Graphene’s surface conductivity is calculated by theDrude,
Kubo, or RPAmodel.We set e = 1,1r e = 4,2r the chemical potential m = 0.2c eV, and the relaxation time t = 0.2 ps, which
corresponds to themobility of 10 000 cm2 V−1 s−1. (a)Dispersion. The green and light orange shaded areas represent regimes of
intra-band and inter-band excitations, respectively. = m


k

vF
c

F
is the Fermi wavevector. (b) Inverse damping ratio /{ } { }q qRe Im . (c)

Energy confinement factor, i.e. the portion of plasmon energy contained inside graphene. The inset in (c) shows the structural
schematic.

3

New J. Phys. 18 (2016) 105007 XLin et al



2.3. Field quantization of 2Dplasmons
Moreover, when /w{ }qRe c (in the electrostatic limit) and there is a negligible loss in graphene, one can have
the total energyWtotal per unit area of the x-y plane (denoted as )Wa as

= » e e e¶
¶ ¶

+ ( )∣ ∣ ( )W . 2a
W

x y

E

q2

2
total 1

2
0 1r 2r

In equation (2), »
we e

∣ ∣ ∣ ∣E H ,
q

1
2

1
0 1r

where the unknown constant ∣ ∣E1 and ∣ ∣H1 are themagnitude of the electric

andmagnetic fields in region 1 very close to graphene, respectively.With equation (2), it can nowbe seen that the
normalization constant ∣ ∣E1 for the quantized graphene plasmonfields, representing an excitation of a single
plasmon of energy w , is

w=
e e e+

∣ ∣ ( )
( )

E . 3
q

1
2 2

0 1r 2r

Wederive this result in the supplemental note 4, wherewe showon very general grounds how to normalize
electromagneticmodes in order to correctly write the second quantized electromagnetic field operators that are
used to compute awide array of light–matter interaction processes. Our derivation extends previous efforts in
quantizing surface waves [41] to 1D, 2D, and 3D translationally invariantmaterials with arbitrary dispersion and
anisotropy.

3. TE plasmons inmonolayer 2Dmaterial

Recently, TE plasmonswere theoretically predicted in a graphenemonolayer with e e e= =1r 2r r [42]; they are
reminiscent of the TE0mode guided in an ultrathin dielectric film. Figure 2 shows the basic properties of TE
plasmons in amonolayer graphene.Wefind the energy confinement factor of TE graphene plasmons to be:

Figure 2.Basic properties of TE plasmons in amonolayer graphene.We set e e e= = ,1r 2r r the chemical potential m = 0.2c eV, and

the relaxation time t = 0.2 ps. (a)Dispersion. The surrounding dielectric has awavevector
w e

=k
c

.0
r (b) Inverse damping ratio

/{ } { }q qRe Im . (c)Energy confinement factor.
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2

2

2 Since the TE graphene plasmons have thewavevector q very close to = w e
k

c0
r

(figure 2(a)), the nonlocal response can be neglected and theKubo formula can be used tomodel the surface
conductivity. As opposed to TMplasmons, TE graphene plasmons propagate with negligible losses and have

very large inverse damping ratios >( ){ }
{ }

10
q

q

Re

Im
4 infigure 2(b). This is because their energy confinement factor is

very small < ´ -( )3 10 ,3 indicating that TE plasmons ‘see’negligible amounts of loss within graphene. Figure 2
also shows that when increasing the relative permittivity of the surrounding dielectrics, the spatial field
confinement becomes poorer and less energy becomes contained inside graphene, leading to larger inverse
damping ratios.

4. TMplasmons in two coupled 2D layers

4.1. Tailoring the energy distribution of 2Dplasmons bymodifying the geometry
Next, wewould like to explore various limits and opportunities for tailoring the energy distribution and the
energy confinement factor of 2Dplasmons.Multilayer structures with two (ormore) plasmonic layers are awell-
known approach to tailoring plasmonic properties whose operating principle is themodification ofmodes due
to the coupling between the plasmonic layers. Figure 3 shows the properties of TMplasmons in a symmetric
system composed of two coupled graphene layers. A detailed derivation can be found in the supplemental note 2.

Here s s=∣ ∣s s,1 2 ,2 3 and the energy confinement factor åG = G= ,
j j1

2
where s +j js, 1 is the surface conductivity of

thefirst ( = )j 1 or second ( = )j 2 graphene layer and Gj is the portion of energywithin the first or second
graphene layer. From the results infigure 1, it is reasonable to use theKubo formula tomodel the surface
conductivity when /w m< .c When the separation distance between the two graphene layers decreases, the

Figure 3.Properties of TMgraphene plasmons in two coupled graphene layerswith different separation distances d.We set the
relative permittivity in each region to be e = 4,r the chemical potential m = 0.2c eV, and the relaxation time t = 0.2 ps. (a)
Dispersion. (b) Inverse damping ratio /{ } { }q qRe Im . (c)Energy confinement factors of the even and odd plasmon eigenmodes,
almost independent of d.The inset in (c) shows the structural schematic.
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degenerate even and odd eigenmodeswill split into two dispersion lines as shown infigure 3(a). Hence, the
variation of the separation distancewill drastically alter the dispersion and inverse damping ratios (figures 3(a),
(b)). Note that although the even eigenmode (with a larger { })qRe has a better spatial confinement than the odd
one infigure 3(a), its propagation length still appears to be approximately the same as that of the odd one.
Therefore, its inverse damping ratio /{ } { }q qRe Im is larger than that of the odd one infigure 3(b). This indicates
that when decreasing the separation distance, the even eigenmode can have better spatial confinement with a
negligible change of the propagation length.

Figure 3(c) demonstrates an intriguing result: the energy confinement factor is almost independent of the
geometry. Specifically, wefind that when w{ }Re q ,

c
 both the even and the odd eigenmodes have almost the

same energy confinement factor (seefigure 3(c)), despite their different dispersions and inverse damping ratios.
This indicates that the same portion of plasmon energy of the two eigenmodes ‘see’ the loss within the two
graphene layers, explicitly explaining the nearly equal propagation length for the even and odd eigenmodes.
More rigorously, the near-equal energy confinement factor can be explained analytically when w{ }Re q ,

c


since the energy confinement factor of both TM-eigenmodes can be approximately reduced to equation (1). This
tells us that due to the extreme confinement, the coupling betweenTMgraphene plasmons in the symmetric
two-graphene layer systemwill seldom change the portion of plasmon energy concentratedwithin the graphene
layers. Controlling the energy distribution is, however, possible by introducing a different approach: varying the
losses of at least one of the graphene layers in an asymmetric way.

4.2. Tailoring the energy distribution of 2Dplasmons by designing the loss distribution
Losses are detrimental to optical systems, thus controlling the effect of losses is a long-standing andmajor
challenge in plasmonic systems [43]. Figure 4 shows that by unbalancing the loss distribution between the two
graphene layers, one can tailor the energy confinement factor of TMplasmons. As a counterintuitive result, we
find that increasing the losses can play a positive role, increasing the propagation length of graphene plasmons.
This is due to the interesting fact that there is an exceptional point [44] for TMgraphene plasmons existing in
this system.Note that parity-time (PT) symmetry breaking can be observed in systemswith an unbalanced loss/
gain distribution, which is because any coupled systemwith an arbitrary gain and loss profile can be transformed
into a PT symmetric one [43–49].

The loss in graphene can be described by the relaxation time, where a smaller relaxation time corresponds to
a larger loss.Here the asymmetric two-graphene layer system,workingwith a separation distance =d 50 nmat

/w m= 0.5 ,c is assumed to have a variable relaxation time t1 in thefirst graphene layer and a constant
relaxation time of t = 12 ps in the second graphene layer [10, 36, 37].When t1decreases from1 to 0.15 ps, the
two eigenmodes approximately possess the same Im{q} and inverse damping ratios (figures 4(a)–(c)). This can
be attributed to the fact that the portion of energy of each eigenmode is approximately the samewithin the two
graphene layers (figures 4(d), (e)), and theHy-field patterns of the two eigenmodes are approximately either even

Figure 4.Dependence of TMplasmons in two coupled graphene layers on the relaxation time of thefirst graphene layer
at /w m= 0.5 .c Thefirst graphene layer (the red dashed line in (f)–(k)) is located at = -z 25 nm. The second graphene layer (white
dashed line in (f)–(k)) at =z 25 nmhas a constant relaxation time of 1 ps. The other parameters are the same as those infigure 3. (a),
(b)Real and imaginary part of thewavevector parallel to propagation direction. (c) Inverse damping ratio /{ } { }q qRe Im . (d), (e)
Portion of plasmon energy of each eigenmodewithin thefirst or second graphene layer. (f)–(k)Hy-field pattern of the even or odd
eigenmodes for the cases of various relaxation times in thefirst graphene layer. l = p

{ }qspp
2

Re
.
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or oddwith respect to the plane of =z 0 (figures 4(f)–(i)). In fact, the point of t = 0.151 ps infigure 4 is the
exceptional point for TMgraphene plasmonswith unbalanced loss distribution.When t1decreases further from
0.15 to 0.01 ps (more lossy), the Im{q} and inverse damping ratios will split into two branches.While the Im{q}
(inverse damping ratio) of the odd eigenmode continues to increase (decrease), the Im{q} (inverse damping
ratio) of the even eigenmode starts to decrease (increase) (figures 4(b), (c)). This is because the portion of energy
of each eigenmodewithin the two graphene layers becomes largely different (figures 4(d), (e)). A greater portion
of the energy of the odd eigenmodewill emerge in the first graphene layer (figure 4(d)), where itsHy-field
becomesmainly located near the first graphene layer (figure 4(j)). In contrast, a greater portion of the energy of
the even eigenmodewill appear in the second graphene layer (figure 4(e)), leading itsHy-field to bemainly
located near the second graphene layer (figure 4(k)). Since the loss in the second graphene layer ismuch smaller
than that in the first graphene layer, the even eigenmodewill ‘see’ less losses during propagation compared to the
odd one.

4.3. Loss-induced transparency of 2Dplasmons
As a clear demonstration of the plasmonic exceptional point, the loss-induced transparency of TMgraphene
plasmons is revealed infigure 5. Figures 5(a)–(c) show the plasmon field pattern excited by a point source, where
the basic setup is the same as that infigure 4. Figure 5(a) shows thatwhen the first graphene layer has a small loss
of t = 11 ps, there are outputs fromboth graphene layers. In contrast, figure 5(b) shows thatwhen increasing the
loss to t = 0.151 ps, there is no output in either layer, because both excited plasmon eigenmodes propagate with
severe loss. Finally, figure 5(c) shows thatwhen further increasing the loss to t = 0.011 ps, there is an output at
the second graphene layer again, even comparable to the one infigure 5(a), because the excited even plasmon
eigenmode propagates with small loss. Generally, onewould expect that the output decreases with increasing
system loss.However, by properly engineering the energy confinement factor through adjusting the loss
distribution, the output of propagating graphene plasmons in our designed system can increase as the loss
grows. Through the understanding of the energy distribution in such systems, and variousways of tailoring it,
one can take full advantage of this interesting phenomena.

5. Conclusions

In conclusion, we studied the energy distribution of TMplasmons supported by 2D-electron gases, as
exemplified by graphene.We provided a full analytical description of the energy distribution and energy

Figure 5. Loss-induced transparency of TMgraphene plasmons at /w m= 0.5 .c The relaxation time t2 in (a)–(c) is 1 ps, and the
other parameters are the same as those in figure 4. For the purpose of clear demonstration, the background field generated by the point
source is eliminated.
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confinement factor, which is also applicable to other photonic systems involving losses.We also showhow these
calculations lead to correct quantization of 2Dplasmonfields. Largely different fromTE graphene plasmons, a
large portion of energy of TMplasmons is found to be concentratedwithin the atomically thin graphene layer.
We reveal that due to the extreme field confinement, the energy confinement factor of TMgraphene plasmons is
robust to changes in the surrounding dielectric environment and in the geometry (e.g., changing the separation
distance between two coupled graphene layers). However, tuning the loss in one of the two graphene layers is
shown to tailor the energy confinement factor, which leads to the emergence of the loss-induced plasmonic
transparency. Ourwork thus provides a solid understanding of the basic properties of 2Dplasmons (both for
classical and quantumnanophotonics) from the perspective of energy distribution, which is necessary for the
implementation of 2D-material-based optical devices with enhanced light–matter interaction, functionality,
and compact sizes.
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