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Composite fermion duality for half-filled multicomponent Landau levels
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We study the interplay of particle-hole symmetry and fermion-vortex duality in multicomponent half-filled
Landau levels, such as quantum Hall gallium arsenide bilayers and graphene. For the ν = 1/2+1/2 bilayer,
we show that particle-hole-symmetric interlayer Cooper pairing of composite fermions leads to precisely the
same phase as the electron exciton condensate realized in experiments. This equivalence is easily understood
by applying the recent Dirac fermion formulation of ν = 1/2 to two components. It can also be described
by Halperin-Lee-Read composite fermions undergoing interlayer px+ipy pairing. A renormalization group
analysis showing strong instability to interlayer pairing at large separation d → ∞ demonstrates that two initially
decoupled composite Fermi liquids can be smoothly tuned into the conventional bilayer exciton condensate
without encountering a phase transition. We also discuss multicomponent systems relevant to graphene, derive
related phases including a Z2 gauge theory with spin-half visons, and argue for symmetry-enforced gaplessness
under full SU(Nf ) flavor symmetry when the number of components Nf is even.
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I. INTRODUCTION

In the last year, we have learnt of remarkable connections
between some seemingly distinct topics in quantum many body
physics. Quantum Hall systems of two-dimensional electrons
in a half-filled Landau level have been related to correlated
surface states of three-dimensional topological insulators. The
latter have in turn been related to three-dimensional quantum
spin liquid phases of insulating magnets. These connections
have lead to a wealth of new insights and progress in all these
research areas.

On one end, it was conjectured by Son [1] that a simple way
to reconcile the classic Halperin-Lee-Read theory [2] (HLR) of
the compressible state that forms in a half-filled Landau level
with particle-hole symmetry is by imagining that the composite
fermion is a Dirac particle on which particle-hole conjugation
acts effectively as a time-reversal operation. On the other
end, progress in understanding three-dimensional time reversal
symmetric quantum spin liquids lead to the discovery of a
duality [3–5] between the theory of a single Dirac cone (in
2 + 1 dimensions) and a different Dirac theory where the Dirac
fermions are coupled to a dynamical U(1) gauge field. Both
theories arise at the surface of the same bulk three-dimensional
topological insulator (TI). The duality interchanges the role of
time reversal symmetry [U(1) � T ] and an antiunitary charge
conjugation [U(1) × CT ]. This duality is a generalization
of the particle-vortex duality, familiar in interacting bosonic
2 + 1-D systems, to fermions. This fermion-fermion duality
clarifies a number of previously poorly understood issues on
the physics of symmetry enriched topological orders realized at
the surface of fermionic topological insulators. Many aspects
of the duality have since been further elaborated [6–13], and
sharpened.

In the quantum Hall context, the existence of such a dual de-
scription gives a theoretical basis to Son’s proposed description
of the half-filled Landau level. The Dirac composite fermions
are simply understood as the dual fermions that arise in one
side of the duality. An intuitive physical picture of the Dirac
composite fermion can also be developed as a a charge neutral

composite of two 2π vortices bound to the electron carrying a
finite dipole moment [6]. The Dirac composite fermion theory
finds further support in numerical calculations [14], and makes
predictions for experiments [1,15,16] that might distinguish it
from the HLR theory. For further recent work on composite
fermi liquids, see Refs. [17–21].

Building on these developments, in this paper, we will
revisit the physics of multicomponent quantum Hall systems.
These have been much studied over the years starting from
work on bilayer quantum Hall systems and continuing to
current work on graphene and related systems. We will pay
special attention to the role of particle-hole symmetry when
it is present. Much of our focus will be on bilayer electronic
quantum Hall systems at a total filling ν = 1/2 + 1/2. If the
interlayer tunneling can be ignored, and for small interlayer
separation, the system is in the celebrated exciton condensate
phase [22,23].1 We will develop a new description of this
state starting from a “parent” compressible phase in which
each layer has formed a composite fermi liquid. Along the
way we will understand the action of particle-hole symmetry
on the exciton condensate phase. It has been known for a
long time that the fundamental vortex defects around which
the condensate order parameter winds by 2π carry fractional
electric charge of 1/2 [25]. We will demonstrate that there
exist vortex defects around which the order parameter winds
by 4π which are charge neutral fermions, and moreover are
Kramers doublets under the particle-hole symmetry. These
neutral vortices are, as we show, the closest incarnation of the
composite fermion itself in the exciton condensate phase.

Our treatment sheds new light on the old question of the
fate of the quantum Hall bilayer at ν = 1/2 + 1/2 as the
interlayer separation d is varied. What happens to the exciton
condensate (known to be stable at small d) as d is increased?
At d = ∞, the two layers will be decoupled. Each layer is

1In addition to gallium arsenide bilayers, recent evidence indicates
the realization of this state in graphene double layers [24].
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then expected to form a compressible composite Fermi liquid.
As d is decreased from ∞, it has long been recognized [26]
that interlayer Coulomb interactions will lead to a pairing of
the composite fermions. We will review this argument in a
modern renormalization group framework (in Sec. II B below).
The symmetry of the pairing channel is not determined by
these calculations. There are important hints of a connection
between the exciton condensate and composite fermion pairing
in previous work. In particular, we have obtained key guidance
from previous numerical work [27,28] that indicated that
interlayer composite fermion pairing in a px + ipy channel is
energetically preferred. Remarkably, we find that this px + ipy

interlayer paired state is in the same phase as the exciton
condensate that appears at small d. Thus we are lead to a
possible route for the evolution from small to large d, which
is simply that the exciton condensate is the ground state for
all finite d. However, we show that there will be some striking
differences in some nonuniversal properties as d is increased.
We will see that at small d the core energy for any vortex
will be of order e2/lB (where lB is the magnetic length). On
the other hand, the pairing energy scale � for the composite
fermions will go to zero as d goes to ∞. In terms of the
exciton condensate, we show that this implies that the core
energy of the 4π vortex, which turns out to be controlled by
∼�, is parametrically smaller than the core energy of the 2π

vortex. This unusual phenomenon possibly can be detected in
numerics/experiments in the future at moderately large d. We
caution that the precise pairing symmetry of the composite
fermions in the large-d limit is hardly a settled issue. Indeed a
very recent Eliashberg calculation [29] found that a px − ipy

channel is energetically favored in apparent disagreement with
the numerical results in Refs. [27,28]. Additionally, other
studies have advocated for alternative phases to the exciton
condensate beyond some critical d [30–35]. We will not
attempt to wade into this issue here. Though the pairing
instability is itself a universal feature of the large-d limit, it
is likely that the pairing channel is sensitive to short distance
physics. Our work is thus a demonstration that there need be
no phase transition between the small and large-d limits in
some path in Hamiltonian space.

It is interesting to contemplate phases other than the exciton
condensate that might be stabilized in this bilayer system.
Indeed several such phases have already been proposed in
the literature. As part of this paper we will address a specific
related question. Is it possible to stabilize a gapped phase
that preserves all the symmetries of the ν = 1/2 + 1/2 bilayer
in the lowest Landau level? Following discussions [36] (see
also Ref. [37]) of similar questions at the surface of the
related 3d fermionic topological insulators with U(1) × CT ,
we will construct a simple example of such a phase with
a nontrivial topological order described by a deconfined Z4

gauge theory. We conjecture that this is the simplest such
symmetry preserving gapped state (i.e., with the minimum
number of topological quasiparticles). The Z4 topological
order has a 16-fold ground state degeneracy on a torus, and our
conjecture implies that this is the minimum degeneracy of any
symmetry preserving gapped state of the 1/2 + 1/2 quantum
Hall bilayer.

Additionally in this work, we will also explore the
cases of four- and eight-component half-filled Landau levels,

exploiting their equivalence to the surface of chiral topological
insulators (class AIII). In the presence of just the Coulomb
interaction, the Hamiltonian of an N -component Landau
level at half-filling will have SU(N ) symmetry in addition
to charge-conservation and particle-hole symmetries. For N

even and a generic particle-hole symmetric Hamiltonian, we
will provide a general argument for the impossibility of fully
gapped topological order that preserves all symmetries. If some
of the global SU(N ) symmetry is broken explicitly by the
Hamiltonian, such a gapped symmetric topological order may
be possible. We describe such topologically ordered states in
some of these cases, obtaining them by quantum disordering
broken symmetry states. This discussion essentially extends
that of Refs. [36,37]) by considering additional symmetries
besides the microscopic particle-hole and electron number
symmetries there described. One of our aims is to facili-
tate connections to realistic multicomponent systems, like
graphene, where additional symmetries of the Hamiltonian
might play an important role.

II. BILAYER QUANTUM HALL STATES AT ν = 1
2 + 1

2

Consider two quantum Hall layers each at filling ν = 1
2 with

no interlayer tunneling. This physical situation is realized in
spin-polarized gallium arsenide (GaAs) bilayers with negligi-
ble interlayer tunneling under a strong perpendicular magnetic
field [23]. This system can be described by a Hamiltonian
projected to a single Landau level in which electrons i and j

interact via two-body Coulomb potentials of the form:

Vij = V0(ri − rj ) + τ z
i τ z

j Vz(ri − rj ),

V0(ri − rj ) + Vz(ri − rj ) = e2

ε|ri − rj | ,

V0(ri − rj ) − Vz(ri − rj ) = e2

ε|dêz + ri − rj | ,

(1)

where d is the distance separating the layers, and τ are Pauli
matrices in the layer index space. There are a number of
global symmetries of this Hamiltonian that are important.
First, there are two U(1) symmetries—which we denote
U1(1) and U2(1)—associated with the conservation of the
numbers N1, N2 of electrons in the top and bottom layers
separately. In the limit when d = 0, the Hamiltonian is actually
SU(2) symmetric under rotations in layer space (known as
“pseudospin”). This is broken to U1(1) × U2(1) at nonzero d.
It will sometimes be convenient to consider the total charge
N+ = N1 + N2 and the “pseudospin” N− = N1 − N2.

Next, there is an antiunitary particle-hole symmetry—
denoted2 CT —which interchanges empty and full Landau
levels of the bilayer system. This symmetry has been largely
overlooked in previous studies of these systems. If we call
the deviation from half-filling of the density of each layer as
δρi ≡ ρi − B

4π
, then we have

CT δρi(CT )−1 = −δρi. (2)

2In the recent literature, the same symmetry has also variously been
denoted C or PH.
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Note that at d = ∞, the two layers are decoupled and we can
do a particle-hole transformation separately for each layer.
However, at nonzero d, only the common CT operation is a
symmetry.

Finally there is an interlayer exchange symmetry X, which
is unitary and simply exchanges the layer index. If we call
δρ± = δρ1 ± δρ2, then

CT δρ±(CT )−1 = −δρ±, (3)

Xδρ±X−1 = ±δρ±. (4)

It is useful to consider the symmetries of the interlayer
tunneling operator

Htunn = −
∑
a,b

c†a(t⊥ · τ )abcb, (5)

where a,b ∈ {1,2} are labels for the electron operators in
either layer, and t⊥ = t⊥(cos θ, sin θ,0) is a vector in “layer
space” with components only in the xy “pseudospin” plane.
This is invariant under a diagonal subgroup of U1(1) × U2(1)
(corresponding to conservation of the total charge N+). Under
CT , t⊥ → −t⊥. However, Htunn is invariant under a modified
antiunitary particle-hole operation ˜CT = CT U1(π

2 )U2(−π
2 ).

One can choose the action of layer exchange, X, as XcaX
−1 =

(̂t⊥ · τ )abcb, so that the tunneling remains invariant:
t⊥ → t⊥.

Bilayer quantum Hall systems of this sort have been studied
intensely over the years. In the d → 0 limit with full SU(2)
symmetry the ground state is a quantum Hall pseudospin
ferromagnet [38]. This ground state is realized for a large class
of repulsive interactions and it is indeed exactly given by a fully
polarized integer quantum Hall state because the SU(2) limit
is free of quantum fluctuations [39]. When d �= 0 but is small,
there is “easy-plane” anisotropy, and the pseudospin points
in the xy plane: this corresponds to an exciton condensate
with spontaneous interlayer coherence [25]. Therefore, at
small interlayer distances, the exciton condensate ground
state is expected to be well described by the mean field
tunneling Hamiltonian of Eq. (5).3 This exciton condensate
is a quantum Hall state and has σxy = 1 for the total charge
current. In the d → 0 limit, there are skyrmion defects in the
pseudospin ferromagnetic order which carry electrical charge
N+ = 1 [38]. For d �= 0, these split into two meron vortices,
which carry charge N+ = 1

2 [25]. As usual isolated vortices
cost logarithmically large energy.

In the limit d → ∞, each layer will form a compressible
composite fermi liquid state. How does the system evolve
from this limit to the exciton condensate that is obtained
in the opposite limit? One of our goals in this paper is
to address this question using the low-energy effective field
theory of the composite fermi liquid state. In Sec. II B below,

3The ground state with a definite and equal number of electrons in
each layer can be obtained by projecting the ground state of Eq. (5)
into such subspace. In this way, one obtains the 111 Halperin wave
function [25]. This implies that the Halperin wave function is invariant
under both CT and ˜CT symmetries.

we will review and bolster—within a modern renormalization
group framework—old arguments showing that in the large-d
limit the composite fermi liquids are unstable to interlayer
pairing of the composite fermions. The fate of the system
is determined by the specific pairing symmetry. We will
be guided by previous numerical studies of this problem
showing that the composite fermions of the two layers like
to form a “pair” condensate in the px + ipy channel as the
separation d is decreased [27,28]. Interestingly, we will show
the resultant paired state is smoothly connected to the exciton
condensate described above. We will show this both within the
framework of the Dirac composite fermion theory and the HLR
theory.

One outcome of our analysis through the Dirac composite
fermions will be to elucidate the role of particle-hole symmetry
on the exciton condensate which does not seem to have
been discussed in the literature. The exciton condensate order
parameter may be taken to be precisely the eiθ in the interlayer
tunneling operator of Eq. (5). As described above when
it acquires an expectation value CT is broken but ˜CT is
preserved, and the question of how the latter symmetry acts on
the excitations is meaningful.

Composite fermion pairing channels other than the one
supported by the exact diagonalization work of Refs. [27,28]
are also in principle possible. These alternative pairing
channels will not preserve particle-hole symmetry. We will not
study these other states. For some prior work on an example
of such a state, see Ref. [40].

A. Equivalence between exciton condensate and interlayer
composite fermion paired state

We begin with two decoupled compressible composite
Fermi liquid phases that are obtained in the limit d → ∞.
Each such composite fermi liquid is described by an effective
theory of composite fermions forming a Fermi surface that
are coupled to a fluctuating U(1) gauge field. The precise
description is however different in the Dirac and HLR theories,
and so we will consider the two theories separately. We
will analyze an interlayer paired state that emerges out of
this parent compressible state. Numerical work indicates that
such a paired state—in the px + ipy , i.e., angular momentum
lz = 1 channel—is indeed energetically favored [27,28]. For
the discussion below, it is important right away to note
that the labeling of the angular momentum pairing channel
is different for the Dirac and HLR theories. The π Berry
phase at the Fermi surface in the Dirac theory implies that
angular momentum jz pairing of Dirac composite fermions is
equivalent to angular momentum lz = jz + 1 pairing of HLR
composite fermions. Therefore when we analyze the paired
state below, we will consider jz = 0 pairing in the Dirac
theory and, correspondingly, lz = 1 pairing in the HLR theory.
We will see explicitly that they lead to equivalent states. Of
course, the role of ˜CT symmetry is only manifest in the Dirac
theory.

1. Two-component dual Dirac picture

The decoupled Dirac composite fermi liquid is described
by two copies of the action proposed by Son [1], and takes the
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form4

L =
2∑

I=1

ψ̄I (i/∂ + /aI )ψI + 1

4π
AIdaI

+ 1

8π
AIdAI + · · · . (6)

Here, ψI , aI , and AI are the composite fermion field, the
internal u(1) gauge field, and the external probe gauge field
AI in layer I 5. The · · · contain nonuniversal terms including
Maxwell terms for aI and long-range Coulomb interactions
between the layers of the form 1/2

∫
drdr ′jI0(r)vII ′(r −

r ′)jI ′0(r ′). The particle-hole conjugation acts on each of the
Dirac composite fermions as a time reversal operation [1,5,6]:

(CT )ψI (CT )−1 = iσyψI ,

(CT )a0
I (CT )−1 = a0

I , (7)

(CT )ai
I (CT )−1 = −ai

I .

The layer exchange symmetry, X, can be taken to act simply
as XψIX

−1 = τ x
IJ ψJ , Xa

μ

I X−1 = τ x
IJ a

μ

J , where τ denotes
Pauli matrices acting on the layer indices I,J (summation
implied). There are two separate internal U(1) gauge symme-
tries which we denote u1(1),u2(1) [not to be confused with the
global U(1) symmetries associated with the physical charge
conservation of each layer]. It will sometimes be convenient
to define the symmetric and antisymmetric gauge fields a±

μ =
(a1μ ± a2μ)/2. Notice that the flux of the aIμ gauge fields has
the meaning of physical electron charge [1], and hence, we
will need to keep careful track of the correct quantization of
fluxes of the a± gauge fields when we work with them. The
corresponding gauge symmetries will be denoted u±(1), and
the gauge charges q±. Note that q± = q1 ± q2.

We consider jz = 0 pairing between the two species of
composite fermions with the special property that only the dual
u(1)+ is broken while the relative dual u(1)− is preserved. The
specific form of interlayer composite fermion pairing is

δL� = ig�ψσyτxψ − ig�∗ψ†σyτxψ
† + |(i∂μ + a1μ

+ a2μ)�|2 − u|�|2 − v

2
|�|4 + · · · .

(8)

Here, g controls the coupling of the fermions to the “Cooper-
pair” field �, and u,v control the shape of the “mexican-hat”

4As emphasized in Ref. [9], strictly speaking this theory should be
refined to properly take into account global restrictions coming from
quantization of coefficients of all Chern-Simons terms, including
those involving the external background U(1) gauge fields. Accord-
ingly, we should regard the above action as a short hand for the more
precise version described in Ref. [9]. For the purposes of the present
paper, this subtlety does not play a crucial role and it is sufficient to
work with the simpler action below. Using the more precise version
does not modify our conclusions.

5Our convention is as follows. A Chern-Simons term for gauge
fields α,β read as αdβ ≡ εμνσ αμ∂νβσ , xμ = (t,x), Aμ = (φ,A),
jμ = −δL/δAμ = (ρ,j), γ μ = (σy, − iσz,iσx). The corresponding
massless Dirac Hamiltonian only involves the real-symmetric pauli
matrices: H0 = ψ †(pxσx + pyσz)ψ .

potential dictating its condensation. Crucially, � has charge
q+ = −2 under the symmetric gauge field a+

μ = (a1μ + a2μ)/2
but it is neutral under the antisymmetric field a−

μ = (a1μ −
a2μ)/2. Under CT and X, � transforms as

(CT )�(CT )−1 = �, X�X−1 = �. (9)

Therefore this dual “superconductor” respects CT , X, and
the dual relative u(1)− gauge symmetry. Upon pairing, 〈�〉 �=
0, the Cooper-pair condensate will fully gap the gauge field
a+

μ via the Anderson-Higgs mechanism [41]. In terms of the
physical electrons, this means that this phase is an electrical
insulator. The flux of a+ will be quantized to integer multiples
of π . These correspond physically to electrical charges N+
that are quantized in units of 1

2 .
However, the neutrality of � under a− implies that this

gauge field is not subject to an Anderson-Higgs mechanism.
Additionally, the CT invariance of the pairing guarantees that
there will be no pairing-induced Chern-Simons term for a−

μ . As
a consequence this gauge field is gapless and can be described
at low energies by a pure Maxwell theory in two dimensions.

A Maxwell theory for the a−
μ gauge field coupled to the

external probe gauge fields via a Chern-Simons term, as
described in Eq. (6), corresponds to the dual description [42]
of an electronic exciton condensate, as argued by Wen and
Zee [43]. Therefore our paired state of composite fermions
is a condensate of interlayer excitons made out of the
electrons, and has a spontaneously broken U−(1) symmetry,
which is the subgroup of U1(1) × U2(1) associated with the
conservation of N− = N1 − N2. It is a priori conceivable,
however, that this state does not describe the same phase as the
conventional exciton condensate described by a 111 Halperin-
type wave-function, but could instead possesss distinct gapped
quasiparticles. We will show, however, that the excitations
of this paired state are in one-to-one correspondence with
the topological defects and quasiparticles of the conventional
exciton condensate [25].

The gapped excitations of the paired state consist of Bogoli-
ubov quasiparticles that descend from the composite fermions,
and topological defects (vortices) of the pair condensate. As is
commonly done for superconductors [44], it is convenient to
describe the Bogoliubov quasiparticles by stripping off their a+
charge by writing ψI = ei

φ+
2 εI (where the pair order parameter

� ∼ eiφ+ ). Though the fermions εI are neutral under a+, they
carry a− charges of q− = ±1. Further these symmetries allow
ε2 to mix with ε

†
1 (as is explicitly seen by writing out the pairing

term in terms of εI ). Thus we will simply write these as ε1 ∼ ε

and ε2 ∼ ε†.
The topological defects (vortices) of the superconducting

paired condensate have winding of the phase of the pair field by
2nπ , and associated quantized flux nπ of the internal gauge
field a+. As mentioned above, these correspond physically
to total electric charges N+ = n

2 . To avoid confusion we
emphasize that these are vortex defects of the pair field of
the composite fermion, and not the vortices of the physical
exciton condensate. To distinguish these two, we will label the
former n-defects and use the term vortices exclusively for the
latter.

As we explicitly show in Appendix A, the BdG equations
for these n-defects are formally equivalent to those of the
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Fu-Kane superconductor [45], except that zero modes at
odd-strength vortices correspond to full complex fermion zero
modes (two Majorana modes). As a consequence n-defects
with n odd possess a zero complex fermion mode and for n

even, they do not.
Consider first the 1-defect. This has a single complex

fermion zero mode, and consequently there are two such
defects which we label V±. V+ is obtained from V− by binding
an ε. This implies first that the q− charges of these two
1-defects must differ by 1. Further, under the layer exchange
symmetry X, ε → ε†, as described in Appendix A. This
in turn implies that X interchanges V+ with V−. Thus the
consistent assignment of charge under a−

μ for {V+,V−} is
q− = {−1/2,1/2}, respectively. Second, from the definition
of ε, it is clear that when taken around these 1-defects, there is
a phase of π , i.e, they are mutual semions. It follows that V+
and V− are themselves also mutual semions.

Next we turn to 2-defects. These can be obtained as
composites of the 1-defects, i.e., as B± = V 2

±,f † = V+V−.
The B± have q− = ±1, respectively, while f † has q− = 0.
Note that f † is a mutual semion with both V+ and with V−.
In contrast B± are local around V±. Since the layer exchange
swaps V+ and V−, it follows that f † maps onto itself under
layer exchange.6

n-defects with other values of n may be discussed similarly.
Let us now interpret these different excitations directly in
terms of the electrons. We already pointed out that n-defects
have electric charge N+ = n/2. Conversely a charge q−
under the gauge field a−

μ corresponds to vortices with 4πq−
winding for the physical order parameter of the exciton
condensate7. Consequently, the 1-defects V± carry physical
charge N+ = 1/2 and have vorticity ±2π for the exciton
order parameter. They thus correspond precisely to the vortex
and antivortex meron defects of the exciton condensate with
positive charge [25]. The 2-defects B± correspond to 4π

vortices of the exciton order parameter with total charge
N+ = 1.

More interesting are the two fermions f † and ε. As a 2-
defect f † has N+ = 1 but it has no vorticity. Recall further
that f † is a mutual semion with the basic meron defects V±.
These are exactly the same properties as the relic of the electron
in the exciton condensate. Specifically, we “neutralize” the A−
charge of the electrons in the top and bottom layers, c

†
1,c

†
2, by

writing them as c
†
1 = ei θ

2 f
†
1 ,c

†
2 = e−i θ

2 f
†
2 . Now in the exciton

condensate f
†
1 and f

†
2 can mix with each other and they count

as a single common excitation f † which has N+ = 1, and
which is a mutual semion around the basic 2π merons.

6It is interesting to discuss the self-statistics of these defects. To
do so, we imagine temporarily “turning off” the coupling to the
fluctuating a− field. Then V+,V− can both be taken to be bosons. The
B± are bosons while f † is a fermion. We can now formally introduce
fields with these statistics, and couple them to a− according to their
q− charges.

7A simple way to elucidate this connection is to imagine gauging
the external layer asymmetric probe gauge field A−

μ = (A1μ − A2μ)/2
and noting that in this case the exciton condensate vortices in which
the order parameter winds by 4πq− would trap flux 2πq− of this
gauge field.

The ε particle is a 0-defect, and hence has N+ = 0.
However, it carries q− = 1, and hence is a 4π vortex of the
exciton condensate. This electrically neutral 4π vortex can be
obtained directly in the exciton condensate by binding a charge
1/2 meron V+ to a charge −1/2 meron denoted by V̄−. V̄− is
the antiparticle of V−, carrying q− = 1/2 and and hence 2π

vorticity of the exciton condensate order parameter. V+ can
be obtained from V̄− by binding with f †. As f † is a mutual
semion with both V+ and V̄−, it follows that V+ and V̄− are
themselves mutual semions. It is natural then that their bound
state ε is a fermion.

This is exactly the same excitation structure as the usual
exciton condensate. Thus, as promised, we learn that jz = 0
interlayer pairing of Dirac composite fermions leads to a state
that is smoothly connected to the usual exciton condensate.
Further as we explain below we readily infer how the particle-
hole symmetry acts on the exciton condensate which, to our
knowledge, has not been discussed in the literature before.

We first recall that the relevant symmetry that is unbroken
by the exciton condensate is the ˜CT = CT U1(π

2 )U2(−π
2 )

introduced above. The f † particle is obtained from the electron
by stripping off it’s U−(1) charge. Thus it transforms as

˜CT f † ˜CT −1 = f. (10)

We know that the phase θ of the exciton condensate is invariant
under ˜CT , and hence the vorticity is left invariant by ˜CT but
their physical charge N+, if any, will change sign. The merons
V+ and V̄− are thus interchanged by ˜CT . Since they are mutual
semions, their bound state—which is just ε—will be a Kramers
doublet under ˜CT . This also follows very directly from the
Dirac composite fermion picture. As we have emphasized ε

is simply the remnant of the composite fermion (which is a
Kramers doublet under ˜CT ) in the interlayer paired state.

The ˜CT transformation of other excitations can now
readily be worked out. We have described ˜CT in the exciton
condensate using its construction from the Dirac composite
fermion theory. In Appendix C we give an alternate derivation
of the ˜CT properties of this phase by constructing it directly
in terms of electrons. The lattice of quasiparticles and the
symmetry action is summarized in Fig. 1.

We describe explicit wave functions for the vortices in
further detail in Appendix B. It is interesting to note that
configurations with only one vortex in the order parameter,
of arbitrary vorticity, can be realized by having different
magnetic field strengths for external magnetic fields acting
on each of the two-components of interest, for example, in the
sphere the exciton condensate ground state is realized at flux
quanta N1

φ = N2
φ = 2N1 − 1 = 2N2 − 1, with N1,2 = N/2,

and a vortex of vorticity v can be realized by setting instead
N1

φ = 2N1 − 1 + v, N2
φ = 2N1 − 1 with N1,2 = N/2, this can

allow numerical studies of these vortices and verify their
Kramers structure explicitly.

Let us comment on the issue of confinement. The vortices
will, as usual, have logarithmic energy cost due to the phase
winding of the order parameter. A weak interlayer tunneling
term, if present explicitly in the Hamiltonian, will pin the
order parameter phase, and will lead to linear confinement of
the vortices.
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FIG. 1. Quasiparticle lattice of the exciton condensate. The
horizontal axis is the dual q− charge which is in one-to-one
correspondence with the winding of the physical exciton order
parameter, which is 4πq−. The blue dots designate the meron
excitations. The vertical axis is the dual flux under a+ in units of
π which is in one-to-one correspondence with the physical charge
N+ = n/2. All quasiparticles can be constructed as bound states of
elementary merons V+ and V−. Layer exchange symmetry X acts
as a mirror operation for the horizontal axis, (q− → −q−, n → n),
and the particle-hole symmetry ˜CT , acts as a mirror operation for the
vertical axis, (q− → q−, n → −n).

2. Halperin-Lee-Read picture

In this section, we consider the same paired state within the
Halperin-Lee-Read (HLR) description. As already mentioned
in HLR, a pairing channel with orbital angular momentum
channel lz corresponds to a spin-orbital coupled total angular
momentum channel jz = lz − 1 in Dirac picture [1]. Thus
we study lz = 1, or px + ipy , in HLR picture.8 This is
also a pseudospin triplet channel with N− = N1 − N2 = 0.
Trial wave functions with this pairing symmetry have been
shown to display large overlaps with ground states in exact
diagonalization studies in the regime of intermediate layer
separations d � lB [27,28].

We consider a slightly modified version of the original
Halperin-Lee-Read theory based on a parton construction
instead of conventional flux binding (see, e.g., Ref. [46]).
Parton constructions have the formal advantage of making it
easier to keep track of the normalization of the unit charges of
the emergent gauge fields, simplifying the task of deriving
a properly quantized K-matrix theory.9 The Lagrangian

8More precisely, the weak-paring phase of lz = 1 channel in HLR
picture corresponds to jz = 0 pairing in the Dirac picture.

9In this parton construction, the physical electron operator in layer
I is the product of a boson and fermion: c

†
I = ψ

†
I b

†
I . The fermion

carries charge −1 under an emergent gauge field aI , and the boson
carries charge +1. Additionally, the boson carries the full physical

describing this theory is

L =
2∑

I=1

ψ
†
I

(
i∂t + aI0 − (p + aI )2

2m∗

)
ψI

− 1

2π
αIdαI − 1

2π
(a + A)I dαI + · · · , (11)

where αI is the field dual to the boson current, conventionally
used in the Chern-Simons description of the Laughlin state.
Upon pairing the composite fermions form a “superconductor.”
The theory that ensues can be viewed as the gluing of a two-
dimensional superconductor to the Laughlin theory of bosons
described by the Lagrangian in the second line of Eq. (11). We
willl proceed by first describing the superconductor, and, later
on, we will glue it back together with the Laughlin bosons.
The superconductor is made from paired two-component non-
relativistic fermions in a px + ipy , N− = 0 layer pseudospin
triplet channel, coupled to two internal gauge fields: a1,2.
Such pairing can be formally induced by adding the following
Lagrangian to Eq. (11):

δL� = g�ψτx(px − ipy)ψ + g�∗ψ†τx(px + ipy)ψ†

+ |(i∂μ + a1μ + a2μ)�|2 − u|�|2 − v

2
|�|4 + · · · .

(12)

After the pairing we can describe the superconductor as
a product of a neutral sector and a charged sector under
a+

μ = (a1μ + a2μ)/2. The neutral sector corresponds to a
familiar paired state in two dimensions: superfluid He-III in
its A phase with spin triplet Sz = 0 pairing, where the analog
of the spin of the Helium atoms here is the layer pseudospin
degree of freedom. In modern language this corresponds to
νKitaev = 2 in the Kitaev classification [47]. Such topological
order can be described by a Chern-Simons theory with level
4. Additionally, the quasiparticles in the neutral sector carry
charges under the a−

μ = (a1μ − a2μ)/2 gauge field. In analogy
with the Dirac case, the BdG equation describing the vortices
of this px + ipy superfluid is formally equivalent to two
copies of the spinless px + ipy superfluid studied by Read
and Green [48], so that the zero modes correspond to complex
fermion modes (two Majorana modes). Therefore we can write
the corresponding Chern-Simons theory for the gauge fields
describing the superconductor as

Lsc = 1

π
β−dβ− + 1

2π
β−d(a1 − a2) + 1

2π
β+d(a1 + a2).

(13)

Let us describe the meaning of the different charges under
the several gauge fields. A charge l− ∈ Z under the gauge
field β− labels the different quasiparticles of the neutral sector.
We denote the quasiparticles corresponding to the labels l− =
{2,1,0, − 1} as {μ,v,1,v̄}, respectively. Label μ is a fermion,

charge under the external probe field AI and forms a Laughlin state
at νI = 1/2. The composite fermions ψI do not experience a net
magnetic field and hence they form a Fermi sea type state and are
chosen as Galilean fermions in HLR. The gauge field αI in Eq. (11)
is the dual to the boson current of bI .
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v̄ is a vortex with its complex fermion zero mode empty,
and v is the corresponding vortex with its zero mode filled.
Since the layer exchange symmetry X is also manifest in the
HLR formulation, we can use the same argument employed
in the Dirac case to infer the charge assignment for these
vortices under a−

μ . Therefore l− also determines the charge
q− = −l−/2 under a−

μ . This is the physical origin of the mutual
Chern-Simons term between β− and a−

μ in Eq. (13).
The charge l+ ∈ Z under β+ labels the vortices of the

charged sector, and the mutual Chern-Simons term between
β+ and a+

μ encodes the fact that Abrikosov vortices trap
flux. β+ is the dual field to the Cooper-pair current and the
Chern-Simons term is familiar from the standard boson-vortex
duality [42]. We need to impose a further restriction on the
allowed quasiparticles of this superconductor: the odd strength
vortices in the charged sector have to appear in combination
only with {v,v̄}, and the even strength appear only with {1,μ},
namely, only quasiparticles satisfying (l− + l+)/2 ∈ Z are
allowed. This can be easily accomplished by a change of
basis in the lattice of allowed charges of β+/−, which can
be implemented by redefining

β1 = β+ + β−, β2 = β+ − β−, (14)

and demanding that the corresponding charges l1/2 = (l+ ±
l−)/2 be integers. We are now in a position to glue back this
superconductor to the Laughlin bosons appearing in Eq. (11).
This can be accomplished by noting that the a1,2 fields appear
linearly in the Chern-Simons action, so, one can integrate them
out to obtain at low energies a constraint between the internal
gauge fields of the superconductor and the Laughlin bosonic
fields. The constraint that follows is simply: βI = αI , for I =
{1,2}. Then the Chern-Simons part of the Lagrangian of our
topological field theory can be written in the form of a K-
matrix theory:

L = 1

4π
αT Kdα − 1

2π
AT dα + · · · ,

K = −
(

1 1
1 1

)
, α =

(
α1

α2

)
, A =

(
A1

A2

)
,

(15)

which is the conventional Chern-Simons theory describing the
111 Halperin state [43].

Let us close this section by contrasting the HLR and Dirac
pictures of the exciton condensate as an interlayer paired state
of composite fermions. In the HLR picture the existence of a
gapless mode for the a− gauge field can be viewed as the result
of a cancelation of two self-Chern-Simons terms of apparent
different origin: a “background” Chern-Simons term arising
from the flux binding and a Chern-Simons term induced by the
specific px + ipy pairing channel under consideration. Notice
that the cancellation occurs for this specific pairing channel,
and would not occur if instead we had paired the composite
fermions in the px − ipy channel, in which case a net self
Chern-Simons term for a− would remain endowing the gauge
field with a gap and hence not leading to a broken symmetry
state in the physical electron degrees of freedom. Such px −
ipy pairing had been considered in Ref [40] and was shown
to lead to a (3,3,−1) Halperin type state, which is clearly
topologically distinct from the exciton condensate.

The px + ipy channel in HLR corresponds in the Dirac
picture to a pairing channel which manifestly respects the
particle-hole symmetry of the bare electrons, because, such
symmetry is implemented as a time reversal operation on the
composite fermions. Given that the exciton condensate retains
the ˜CT symmetry, the Dirac picture thus gives a simple route
to reach it through composite fermion pairing in a way which
manifestly preserves this symmetry.

3. Equivalence from explicit wave-functions and connection to
previous numerical studies

Previous studies have found that trial paired states of the
type considered here have large overlaps with the exact ground
state at intermediate interlayer distances d � l [27,28]. In this
section, we show a way to rewrite a trial paired wave function
in a form that shows its exciton condensate correlations more
explicitly. We begin by noting that in the symmetric gauge
the canonical wave-function describing the exciton condensate
can be written as a Halperin wave function of the form

�111 =
∏
i<j

(zi − zj )
∏
i<j

(wi − wj )
∏
i,j

(zi − wj ), (16)

where we have written a wave function with a definite number
of particles, N/2, in layer 1 (2) with coordinates zi (wi) and we
have omitted the ubiquitous exponential factors of the Lowest
Landau level. On the other hand a trial wave function for the
interlayer paired state can be motivated to be

�pair =
∏

i,j |zi − wj |m∏
i<j |zi − zj |n|wi − wj |n

× det

[
1

z̄i − w̄j

] ∏
i<j

(zi − zj )2
∏
i<j

(wi − wj )2,

(17)

where a projection into the lowest Landau level is implicit.
The first product of factors that involves only the absolute
values of interparticle distance is intended to be a variational
factor that controls the probability amplitudes but not the
phases of the wave function, we leave n and m as arbitrary
parameters at this point. The prefactor det [ 1

z̄i−w̄j
] describes a

px + ipy BCS wave function for layer pseudospin triplet with
N− = 0, and the Laughlin bosonic Jastrow factors describe the
correlation-hole associated with intra-layer two-flux binding.
The factor

∏
i,j |zi − wj |m also regularizes the probability of

the wave-function as wj → zi . Now, by making use of the
Cauchy identity:

det

[
1

z̄i − w̄j

]
= 1∏

i,j (z̄i − w̄j )

∏
i<j

(z̄i − z̄j )
∏
i<j

(w̄j − w̄i),

(18)

we can obtain the following expression for the paired wave
function (up to an overall sign):

�pair =
∏

i<j |zi − zj |2−n|wi − wj |2−n∏
i,j |zi − wj |2−m

�111. (19)

The above relation shows that if we view a particle z1 as an
“impurity” moving in a many-body sea of vortexlike objects
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described by zi’s and wj ’s, it acquires the same phases in
both wave functions when moving around those vortices, and
the difference is only the probability amplitude with which
it approaches the cores of those vortices, and also in the
probability with which vortex cores approach each other. Such
factors are nonuniversal and are dictated by the specific choice
of wave function we made. It is nontrivial to elucidate the
effect of the lowest Landau level projection on these wave
functions, but this rewriting is further strong evidence that
the two wave functions are specific realizations of the same
underlying phase of matter.

Apart from the numerical studies described in Refs. [27,28],
which have been essential in motivating us to focus on
the px + ipy interlayer channel, other numerical studies
had previously encountered interesting persistent aspects of
exciton condensation physics to large interlayer distance,
which contained important hints of the physics we have
discussed. In particular, Ref. [49] found numerical evidence of
the persistence of the linearly dispersing Goldstone mode up
to large interlayer distance. We also note that other numerical
studies have advocated the possibility of the disappearance of
the exciton condensate at interlayer distances beyond a critical
value [31–34]. In particular, one simple yet nontrivial test that
any particle-hole symmetric state must satisfy is that the shift
in the sphere must beS = 1 [1]. Reference [27] argued that this
shift persists to intermediate distances. Other studies [33,34]
have countered this by arguing for the possibility of a phase
transition at which the shift changes. We hope that our work
motivates further numerical studies that attempt to settle the
nature of the ground state at intermediate interlayer distances.

B. Pairing instability

It is of course an energetic question whether any composite
fermion pairing at all occurs at large d, and if so in which
channel. Here we address the following question. In the limit of
very large-d, is the state with two decoupled composite fermi
liquids stable to the weak interlayer Coulomb interaction?
Previously, this was addressed by Ref. [26]. Here, we revisit
this issue within the framework of modern renormalization
group treatments of such questions [50]. We will see that
arbitrary weak interlayer Coulomb interactions causes a
pairing instability. This calculation, however, cannot determine
the specific pairing channel.

The composite Fermi liquid bilayer is unstable to interlayer
pairing through a mechanism dependent on the asymmetric
gauge field a−. First, in contrast to the long-ranged Coulomb
kernel of the total-charge gauge field a+, the asymmetric a−
gauge field couples to imbalances of the layer charges, and so
its Lagrangian has a shorter-ranged kernel, associated with the
dipole coupling between regions of local charge imbalance.
Therefore a− loses the fluctuation-stabilizing effects of the
long-ranged Coulomb interaction, instead fluctuating quite
freely and providing non-Fermi-liquid behavior. Second,
composite fermions on the two layers couple to a− with
opposite charges, resulting in Amperian attraction rather than
repulsion, and hence a strongly enhanced pairing.

To set up the renormalization computation, let us study
these two ingredients in more detail. First we observe the
propagator for each of the two different combinations of gauge

fields, which is set by the microscopic interactions between
electrons. Because of flux attachment, in either the HLR
or Dirac pictures, the electron Coulomb interaction Eq. (1)
can be rewritten as a long-range interaction between fluxes
of the gauge field. The a+, a− gauge field self-interactions
are

La =
∑
I,J

(∇×aI )[ri]
e2/ε√

(1−δIJ )d2 + (ri − rj )2
(∇×aJ )[rj ]

= (∇×a+)[ri]
4e2

ε|ri − rj | (∇×a+)[rj ]

+ (∇×a−)[ri]2fd [ri − rj ]
e2

ε
(∇×a−)[rj ] (20)

fd [r] ≡ 1

|r| − 1√
d2 + r2

→ d2

2

1

|r|3 . (21)

The long-range 1/r Coulomb interaction can stabilize the
gauge field against strong fluctuations, allowing the composite
fermions to be preserved as long-lived quasiparticles with
a sharp Fermi surface, albeit with corrections expected for
a marginal Fermi liquid. However, here only a+ enjoys a
long-ranged Coulomb interaction; in contrast, a− couples to
electric dipoles rather than electric charges, and therefore
exhibits a short ranged interaction, decaying as 1/r3 at large
distances.

Second, we may observe the form of the coupling between
the composite fermions of each layer and the two different
combinations of gauge fields. The coupling of the Fermi
surface to the gauge field can first be written as a sum over
decoupled patch actions, each describing a pair of opposite
(antipodal) patches of the Fermi surface. Let x be the axis
separating the patches, ie x̂ is normal to the two patches. The
Lagrangian for each such pair of antipodal patches, denoted
as η = ±, contains the following coupling between fermions
and gauge field:

Lc =
∑
η=±

2∑
I=1

ηvF ψ
†
Iη(−i∂x + aIx)ψIη (22)

=
∑
η=±

ηvF

[
2∑

I=1

ψ
†
Iη(−i∂x)ψIη + a+

x ψ
†
1ηψ1η + a+

x ψ
†
2ηψ2η

+ a−
x ψ

†
1ηψ1η − a−

x ψ
†
2ηψ2η

]
. (23)

Observe that the two layers couple with the same charge to
the symmetric gauge field, but with opposite charges to the
antisymmetric gauge field.

The renormalization group (RG) procedure can then be
performed following Ref. [50]. The full action is composed
of the Lagrangians La and Lc plus the remaining fermion
kinetic term Lf = ∑

η,I ψ
†
Iη(∂τ − vF ∂2

y /2K)ψIη with K the
Fermi surface curvature. La may be written for the patch
theory with renormalized couplings g̃ as La ∼ |q|(a+

x )2/g̃+ +
q2(a−

x )2/g̃−. Here g̃−, associated with the bare |q|3 inter-
layer interaction, captures the analytic q2 term, which is
automatically generated by |q|3 and is more relevant; its
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UV value is g̃− ≈ lB/d. The resulting a+ and a− static
gauge field propagators have the form D+(0,q) ∼ g̃+/|q| and
D−(0,q) ∼ g̃−/q2. (See Ref. [50] for intermediate-energy
constants; α̃ there is g̃ here.) The effective couplings g̃±
between the fermions and the a± gauge fields are found to
obey the following RG flow equations:

dg̃+

d�
= −(g̃+)2, (24)

dg̃−

d�
= 1

2
g̃− − (g̃−)2. (25)

The coupling g̃ is proportional to the square of the gauge
charge, so g̃± � 0, and g̃+ flows to zero logarithmically,
controlled by the long-range Coulomb interactions. In contrast,
the coupling to the strongly-fluctuating mode a− flows to a
finite value g̃−

∗ = 1/2.
Now we may consider the flow of the four-fermion BCS

scattering vertex V , which couples different patches of the
fermi surfaces. The BCS four-fermion vertex V can be
decomposed into angular momentum pairing channels Vm;
each is found to show the same independent flow. Denote the
BCS pairing as V + for pairing between patches in the same
layer, and V − for pairing between patches in opposite layers.
The pairing RG flow equations are found to be

dV +

d�
= −(V +)2 + g̃+ + g̃−, (26)

dV −

d�
= −(V −)2 + g̃+ − g̃−. (27)

The first term in each line is the usual Fermi liquid result, while
the g̃ terms arise from the Amperian repulsion/attraction set
by the relative sign of the fermion charges under the gauge
field. Since the gauge coupling fixed point is at g̃+

∗ = 0 but
g̃−

∗ = 1/2, it is clear that the intralayer pairing V + flows to
repulsive interaction, while the inter-layer pairing V − flows to
attractive interactions, enforcing an instability to an interlayer
paired state at low temperature.

There are two things to note about this instability. First, the
RG flow does not determine the pairing form of the instability,
since all interlayer channels have the same diverging flow;
rather, the pairing channel of the strongest instability is
determined by short distance physics. Second, we note that
the short ranged 1/r3 bare form of the a− interaction leads
to uncontrolled non-Fermi-liquid physics. Indeed, the RG
procedure can be controlled [50] by a double expansion [51]
in the number of fermion species N and in the range ε of
the a− interaction written as 1/r1+ε . The temperature scale at
which the non-Fermi-liquid physics is expected to be seen is
here nominally of the same scale as the pairing instability gap,
even at large-N . However, the a− kernel can be modified by
hand to 1/r1+ε form, furnishing a control parameter ε; in the
small-ε regime where non-Fermi-liquid physics is controlled,
the pairing instability is unavoidable and preempts destruction
of the Fermi surface. This qualitative behavior may then be
expected to carry over to the present uncontrolled case, leading
to a pairing instability at any d. We also observe that while the
result for strong interlayer pairing instability is strictly robust
only within the double expansion, the intuition associated with

FIG. 2. Schematic of the pairing gap � as a function of interlayer
distance d . For large interlayer separations d > lB , the pairing gap
� (and the associated transition temperature) decrease rapidly as
� ∼ l2

B/d2. For small d , the gap � approaches the Coulomb scale
e2/lB . The gap � also sets the core energy of the 4π vortex; at large
d , even fairly-separated pairs of 4π vortices will be cheaper than their
2π counterparts.

the two necessary ingredients (opposite a− charges and strong
a− fluctuations) suggests that at ε ∼ N ∼ 1 the interlayer
pairing channel will still show a strong instability.

C. Some physical consequences

Let us now consider some of the physical properties
of the exciton condensate as d is decreased from ∞.
The existence of a weak coupling instability to pairing in
the d → ∞ limit discussed in the previous section, and the
numerical evidence for a ground state with large overlaps
with interlayer paired trial wave functions of the px + ipy

type [27,28], suggests the conjecture that the ground state
for a disorder-free quantum Hall bilayer does not undergo
a quantum phase transition at any finite d. It is possible,
therefore, that there is only a smooth crossover from large
to small d, though the nonuniversal physical properties could
change quite significantly. A close analogy exists with the
celebrated BCS-BEC crossover of fermions with an attractive
interaction. The large-d limit corresponds, in this analogy, to a
BCS-like state of the composite fermions, and the small-d limit
to the BEC state. There are, however, some striking differences
in the interpretation of some of the phenomenology.

In the large-d limit, the pairing scale � (which also
sets the energy scale for the Berezinski-Kosterlitz-Thouless
transition out of the exciton condensate, TBKT ∼ �) will
be parametrically small in the ratio of the interlayer and
intralayer Coulomb interactions, d/lB where lB is the magnetic
length. Following the RG flow equations from the small UV
value g̃− ≈ lB/d at large d, one finds (in both the controlled
small-ε regime as well as in the physical regime) that the
resulting pairing gap � decreases with layer distance as
� ∼ (l2

B/d2)e2/lB . In contrast, in the limit of very small d,
the interlayer and intralayer Coulomb energy scales approach
each other, and � ∼ TBKT ∼ e2/lB . This behavior of � is
shown schematically in Fig. 2.

This has a very interesting consequence. Consider the
large-d limit. The composite fermion pairing scale � may
be taken to be the energy gap of the ε particle within a
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mean-field description which ignores the coupling to a−.
However, this particle has the physical interpretation of being
a neutral 4π vortex in the exciton condensate. The gap �

is properly then viewed as the core energy of this vortex.
The energy cost associated with the coupling to the a− is the
usual logarithmic energy associated with the phase winding
of the exciton condensate order parameter. The coefficient
of this logarithm is proportional to the phase stiffness; since
we are interested in its partially renormalized value at the
intermediate scale R associated with the vortex pair distance
(see below), we may approximate it by its T = 0 value even
at temperatures nearly as high as the transition temperature.
The T = 0 stiffness can be estimated in mean field [25] to be
e2/16

√
2πlB at d = 0, decreasing at larger d as e2l2

B/8πd3.
What about the 2π vortices? In the large-d limit, these are
obtained as vortex defects (the 1-defects) of the composite
fermion pair order parameter. A standard argument shows that
they will have core energy set by the composite fermion Fermi
energy ∼e2/lB . Thus the core energy of the neutral 4π vortices
is much smaller than that of the 2π vortices in the large-d limit.
Of course as usual the phase winding energy is smaller, by a
factor of 4, for the 2π vortices.

As d decreases the core energy of the 4π vortex will
increase and at some point become comparable to that of the
2π vortex (Ce2/lB with some numerical coefficient C). If we
create vortex-antivortex pairs separated by a distance R, the
total energy is the sum of core and phase winding contributions.
For sufficiently large R at any d, 2π vortex-antivortex pairs
will be cheaper than their 4π counterparts. However, at large
d, there will be a range of R � lB where it will be cheaper
to create 4π vortex-antivortex pairs than 2π ones. In the
mean-field estimate, this scale R is exponentially large in d3,

R ≈ lB exp

[
Ce2/lB − �

(22 − 12)πρs

]
≈ lB exp

(
C̃

d3

l3
B

)
(28)

and can become effectively thermodynamically infinite at large
d. This may reveal itself near the finite temperature phase
transition, where the stiffness may be unusually renormalized
as a function of temperature, when d becomes sufficiently large
such that 4π vortex pairs become cheaper than the fundamental
2π vortices.

In particular, observe that at large d, there is a separation
of energy scales πρs � � � Ce2/lB between the stiffness,
the 4π vortex core energy and the 2π vortex core energy,
respectively. Thus the finite temperature transition into the ex-
citon condensate is expected to remain a continuous Kosterlitz-
Thouless transition. The transition will still be associated
with a discontinuity in the stiffness ρs at Tc, jumping from
ρs = 0 up to the diagonal line ρs = (2/π )T . Here, however,
as ρs continues to rise with decreasing temperature, there is
also expected to be a rounded singularity reaching up to the
diagonal line ρs = (8/π )T , associated with the pairs of 4π

vortices. This additional sharp rise in ρs should occur at T

quite close to Tc. If the length scale R above is increased
(say by increasing d) up to the finite size L of the mesoscopic
system, the 8/π jump would become fully singular, and would
occur precisely at Tc through a double-vortex continuous
Kosterlitz-Thouless transition.

These observations do not rely on the presence of particle-
hole symmetry. If this symmetry is present, as we argued,

the neutral 4π vortex will be a Kramers doublet. It will be
interesting to find a way to create and probe the associated
twofold degeneracy. Our discussion ignores the impact of
disorder in this phase. Numerical studies suggest that the
exciton condensate is stable against weak quenched disorder
and indicate the possibility of an intervening glassy phase
at finite disorder strength in which the exciton superfluidity
disappears but the system remains an insulator in the bulk
with a quantized Hall conductivity before the system turns
into a gapless state at stronger disorder [52].

III. SYMMETRY RESPECTING FULLY GAPPED Z4 STATE
AT ν = 1

2 + 1
2

Though the exciton condensate is potentially a stable phase
at any d, it is interesting to ask about other possible phases
that might also be stable at intermediate or large d. Of
particular interest to us here is the possibility of a gapped
phase which preserves all the symmetries of the Hamiltonian.
We will construct what we conjecture is the simplest example
of such a phase and show that it has topological order
described by a deconfined Z4 gauge theory. This state has
a 16-fold topological ground state degeneracy on a torus,
and our conjecture implies that this is the minimum possible
degeneracy if all the symmetries are preserved.

This state has, to our knowledge, not been previously
described within the quantum Hall literature but it is closely
connected to the gapless exciton condensate state we just
described and also to the interlayer coherent composite Fermi
liquid (ICCFL) state proposed in Ref. [53]. We are interested
in obtaining a fully gapped topologically ordered phase,
therefore, we wish to gap out the a−

μ photon, which is the
linearly dispersing Goldstone mode viewed from the electron
exciton condensate perspective. To achieve this while keeping
the microscopic symmetries of the bare fermions we proceed
by condensing a field that carries charge under a−

μ
10. In other

words, in addition to the composite fermion cooper pair, we
condense a dual exciton bosonic field, φ = φx + iφy , made
from a composite fermion particle-hole pair, which can be
done by adding the following Lagrangian to Eq. (6) or Eq. (11):

δLφ = gφψ̄γ0(τxφx + τyφy)ψ + |(i∂μ + a1μ − a2μ)φ|2

− s|φ|2 − r

2
|φ|4 + · · · , (29)

where gφ,s,r are parameters controlling the coupling of φ

to the fermions and its condensation. Under the particle-hole
(CT ) and layer-exhange (X) symmetries, φ transforms as

(CT )φ(CT )−1 = φ, XφX−1 = φ∗. (30)

Therefore the condensation respects CT . Since φ carries
charge 2 under a−

μ its condensation gaps the fluctuations of
a−

μ via the Anderson-Higgs mechanism [41]. The interaction
between a−

μ charges becomes short-ranged and they become
fully deconfined. The charge under a−

μ in the exciton con-
densate picture implies that φ is an 8π vortex of the order

10In the present work, we describe the low-energy theory of the
resulting phase without focusing on the specific microscopics that
might make it energetically favorable.
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parameter. Therefore this transition can also be viewed as
a form of vortex condensation in a superfluid analogous to
that occurring in the superconductor at the surface of a two-
component AIII topological insulator described in Ref. [36]. In
the resulting phase, the fundamental vortex of the condensate
of φ that traps π flux of the a−

μ gauge field at its core
also becomes deconfined. This quasiparticle is charge neutral
N+ = 0 under the external symmetric probe gauge field A+

μ ,
and has fractional layer-charge-imbalance charge N− = 1/2
under A−

μ = (A1μ − A2μ)/2. In the reminder of this section,
we will describe the properties of this phase both within the
Dirac and HLR pictures.

A. Z4 ordered state from Dirac picture

We start from the dual description of the exciton condensate
in the Dirac picture described in Sec. II A 1. We induce
a phase transition starting from a parent exciton condensate
by condensing an 8π vortex of the exciton order parameter
which can be viewed as a pair of composite fermions φ ∼ ε2.
This object carries charge q− = 2 under the a−

μ field, and
has no physical charge (i.e., it carries no flux under the a+

μ

field). This dual exciton condensate field, φ, must not be
confused with the physical exciton order parameter which has
disappeared in the present phase since the long-range order is
destroyed by vortex condensation. The condensation allows for
vortex-like topological defects of the dual exciton condensate,
φ, to become stable quasiparticles. These new defects can be
labeled by an integer m. Around an m-defect the pair field φ

has a phase winding of 2mπ , and an associated quantized flux
mπ of the internal gauge field a−. As mentioned before, this
flux corresponds physically to a total layer charge imbalance of
N− = m/2. Let us denote the elementary m = ±1-defects β

and β̄, respectively. β̄ is the antiparticle of β and both objects
have bosonic self and mutual statistics. The β vortex does
not carry nontrivial zero modes, and hence its transformation
properties under layer exchange X and particle-hole CT
symmetries follows simply from the fact that the a− flux is
odd under either of these transformations and that the vorticity
of φ is also odd under these transformations [which follows
from Eq. (30)]:

CT β CT −1 → β̄, XβX−1 → β̄. (31)

In this phase, we have relics of the meron quasiparticles
which we will denote by the same labels as in the exciton
condensate {V+,V−,V̄+,V̄−}. Importantly, in the present phase
the relics of the merons become fully deconfined finite energy
excitations because their charge under the a− field is screened
by the φ condensate. However, in spite of their a− charge
being screened, they still experience a long-range statistical
Aharonov-Bohm-type interaction with the vortices carrying
a− flux, namely, with the β defects described in the previous
paragraph, much like in the case of quasiparticles in supercon-
ductors. Consider for example V+. Since this excitation carried
q− = 1/2 under a− in the exciton condensate, this implies
there is a phase of π/2 when it completes a full braid around
β. Both of these quasiparticles have bosonic self-statistics and
therefore they behave like the anyons of Z4 gauge theory. As
we will see, any other excitation can be expressed as a bound
state of these two quasiparticles modulo local excitations,

therefore the present state has indeed the topological order
of Z4 gauge theory.

Let us denote the physical electron quasiparticles in the top
and bottom layers by {c†1,c†2}, respectively. c

†
a carries physical

charges N+ = 1 and N− = (−1)a+1. The quasiparticles β4

and V 4
+ can be viewed as local bosons, indeed, β4 ∼ c

†
1c2,

and V 4
+ ∼ c

†
1c

†
2. Therefore, for purposes of describing the

quasiparticles, it will suffice to keep track of the electron
operator only in one layer since c

†
2 ∼ β4c

†
1. The electron is

local with respect to all excitations, and since β̄ has bosonic
self-statistics, it follows that β̄2c

†
1 is a fermion. This fermion

has a global physical charge N+ = 1, but has no layer charge
imbalance, N− = 0. Additionally, β̄2c

†
1 acquires a phase of

−1 when it completes a full braid around the V+ meron,
meaning that they have mutual semionic statistics. Therefore
this quasiparticle is the relic of the Bogoliubov-like fermion
of the exciton condensate, f †, described in Sec. II A 1. We
will keep the same label for this quasiparticle in the Z4 state,
namely we call f † = β̄2c

†
1.

The identification f † = β̄2c
†
1 allows to identify all the

relics of the exciton condensate quasiparticles in the present
order because they can be constructed as bound states of
{V+,V̄+,f †,f }. The relic of the meron with the same physical
charge but with opposite vorticity of V+, labeled V−, can be
obtained as V− = f †V̄+ = β̄2V̄+c

†
1. The relic of the composite

fermion particle ε can be obtained as ε = V+V̄− = β2V 2
+c1,

which can be seen to be a fermion (β2V 2
+ has bosonic

self-statistics) and carries no physical charges N+ = N− = 0.
From this identification, we can specify how V+ transforms
under CT and X:

CT V+CT −1 → V̄− = V+β2c1,
(32)

X V+X−1 → V− = V̄+β̄2c
†
1.

Notice that the since V+ and V̄− are swapped under CT
and they are mutual semions, it follows that ε = V+V̄− is a
Kramers fermion. This is consistent with the assignment in
the exciton condensate ˜CT 2 = −1, since ˜CT 2 = CT 2 for any
quasiparticle that has no layer charge imbalance N− = 0.

A consequence of the antiunitary nature of CT symmetry is
that the super-selection sectors related by this symmetry must
have topological spins, which are complex conjugates of each
other. Z4 topological order contains only fermions, bosons,
semions and antisemions. Then, this rule implies that fermions
map into fermions, bosons into bosons, but the semions must be
mapped into antisemions. Table I lists the topological spins and
the transformation rules of representative semions belonging
to the four distinct semion sectors of Z4 order. It is noteworthy
that X exchanges topological sectors of the semions but leaves
the topological spin invariant by binding a physical electron.
On the other hand, CT leaves the topological sectors invariant,
but binds a physical electron to the semions changing them
into antisemions and vice versa. From this, one can infer that
the action of CT is to fill a single physical fermion zero mode,
and, therefore it follows that CT 2 is well defined on these
semions and can be taken to be CT 2 = 1.
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TABLE I. Topological spins of representative quasiparticles of
the four distinct semion superselection sectors of Z4 order in quantum
Hall bilayers. Transformation rules under layer exchange X and
particle-hole symmetry CT , and their total charge N+ = N1 + N2 and
layer charge difference N− = N1 − N2 are also listed. The electron
operators in the two layers are related by c

†
2 ∼ β4c

†
1.

V+β V+β̄ V̄+β̄ V̄+β

θ −i i −i i

X V̄+βc
†
2 V̄+β̄c

†
1 V+β̄c2 V+βc1

CT V+βc1 V+β̄c2 V̄+β̄c
†
1 V̄+βc

†
2

N+ 1/2 1/2 −1/2 −1/2
N− 1/2 −1/2 −1/2 1/2

B. Z4 ordered state from HLR picture

A K-matrix theory for this phase can be obtained following
a similar reasoning as in Sec. II A 2. In this case we begin by
striping-off the neutral sector entirely from its a−

μ charges, by
introducing a field, β−, which is dual to the φ boson current and
enforcing the corresponding Meissner effect for the vortices of
such condensate, in exactly the same fashion as we did for the
Cooper pair field in the charged sector of the superconductor.
Therefore, instead of Eq. (13), in the present case we write11

Lsc = 1

π
β0dβ0 + 1

2π
β−d(a1 − a2)

+ 1

2π
β+d(a1 + a2), (33)

where now a charge l0 ∈ Z mod(4) under the gauge field β0

labels the different quasiparticles of the fully neutral sector,
so that the labels l0 = {2,1,0, − 1} correspond to {μ,v,1,v̄},
respectively, which have the meaning of a complex fermion
(μ) and vortices with a zero mode filled or empty (v,v̄)
as discussed in Sec. II A 2. On the other hand, a charge
l± ∈ Z, under β± labels the two kind of vortices of the
� and φ condensates, respectively, that trap flux πl± of
a±

μ , respectively. Additionally, vortices of the neutral sector
need to be glued to odd strength vortices of either of the
charged sectors and the {1,μ} particles need to be glued
to even strength vortices of the charged sectors. Namely,
only quasiparticles in the sublattice (l0 + l− + l+)/2 ∈ Z are
physical. To implement this constraint, we redefine gauge
fields of the dual superconductor as β ′

0 = β0 + β−, β ′
1 =

β+ + β−, β ′
2 = −β+ + β−, and enforce that the charges under

these new gauge fields be integers. Upon integrating out the

11Another way to arrive at this Lagrangian is by writing the HLR
composite fermion as the product of a fully neutral fermion μ and
bosons dI , which carry the aI charge: ψ

†
I = μ d

†
I . μ and dI carry

unit charges under an internal Z2 gauge field [44]. For px + ipy

pairing the μ fermion forms a U(1)4 topological order, corresponding
νKitaev=2 in Kitaev’s classification [47]. Both bosons condense, 〈dI 〉 �=
0, and vortices of these condensates carry unit charges under fields
βI , which are dual to the dI currents. The gluing condition is that the
neutral vortices must be accompanied by odd-strength π vortices of
both boson condensates. This leads to the topological superconductor
action of Eq. (13) with the identification β± = β1 ± β2.

a1,2 fields that glue the superconductor to the bosonic Laughlin
sector one obtains β ′

1,2 = α1,2. The resulting K matrix is 3 × 3
and after a basis change implemented by

W = −
⎛⎝1 0 0

1 0 1
2 1 1

⎞⎠, (34)

with W ∈ SL(3,Z), one obtains the following Chern-Simons
theory:

L = 1

4π
αT Kdα − 1

2π
A+tT+dα − 1

2π
A−tT−dα + · · · ,

K =
⎛⎝0 4 0

4 0 0
0 0 −1

⎞⎠, t+ =
⎛⎝ 2

0
−1

⎞⎠, t− =
⎛⎝ 0

2
−1

⎞⎠. (35)

Therefore this state is fully gapped and has the topological
order of Z4 lattice gauge theory glued to a chiral integer
quantum Hall state. This state is exactly the same described
in the previous section within the Dirac theory. In fact,
the following is the correspondence between the labels of
quasiparticles:

V+ ↔
⎛⎝1

0
0

⎞⎠, β ↔
⎛⎝0

1
0

⎞⎠, c
†
1 ↔

⎛⎝0
0
1

⎞⎠. (36)

Additionally, within the HLR formulation it is possible to
find out the transformation laws for the quasiparticle lattice
under the layer exchange symmetry X, since this symmetry
remains manifest. First, we note that vorticity of the φ and
� condensates are, respectively, odd and even under X,
which follows from Eq. (30) and the corresponding analog of
Eq. (9) for the HLR case. This implies that Xβ±X−1 = ±β±.
Additionally, the transformation property of the vortices of the
neutral sector under X dictates that their zero modes are filled
or emptied upon its action, leading to: XvX−1 → v̄. This rule
is implemented on the gauge fields as Xβ0X

−1 = −β0. Using
this rules, it is easy to find that the X symmetry acts on the K

matrix of Eq. (37) as

X : α → WXα, WT
X KWX = K, WX =

⎛⎝−1 −2 1
0 −1 0
0 −4 1

⎞⎠.

(37)

The rows of WX ∈ SL(3,Z) specify the transformation laws
of the quasiparticles that serve as basis for the topological order
listed in Eq. (36). It is reassuring to find that the transformation
rules are exactly the same as those described within the Dirac
picture in Eqs. (31) and (32). The discussion in this and the
preceding section illustrates that the Z4 topological order with
the anomalous particle-hole symmetry implementation that
can be realized at the surface of a two-component chiral AIII
topological insulator, as described in Ref. [36], can also be
realized in particle-hole symmetric two-component Landau
levels.

It is interesting to note that if, starting from the layer
decoupled limit, we had considered only dual composite
fermion exciton condensation without pairing, namely, 〈φ〉 �=
0 and 〈�〉 = 0, we would induce an spontaneous compos-
ite fermion tunneling term that splits the two composite
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FIG. 3. Schematic summary of the different two-component
phases discussed in the main text. Starting from two composite
fermion fermi seas coupled to two gauge fields (upper left) one
obtains the conventional electron exciton condensate (lower left) via a
particle-hole symmetric interlayer composite fermion pairing which
higgses the layer symmetric a+

μ gauge field, but leaves the layer
asymmetric gauge field, a−

μ , gapless. Alternatively, one can induce an
interlayer coherent composite fermion fermi liquid (ICCFL in upper
right panel) via composite fermion exciton condensation, higgsing
a−

μ instead of a+
μ . If both condensations coexist one obtains a fully

gapped particle-hole symmetric state with the topological order of Z4

lattice gauge theory (bottom right).

fermion fermi seas, which taking 〈φ〉 ∈ R would correspond
to symmetric and antisymmetric coherent superposition of
composite fermions in the two layers. Therefore this phase
would correspond to the particle-hole symmetric version of
the ICCFL state proposed in Ref. [53]. An important new
qualitative feature that the Dirac nature of the composite
fermion brings into this phase is that the tunneling term does
not change the Berry phase of neither of the composite fermion
surfaces, therefore both the symmetric and antisymmetric
composite fermion fermi surfaces would have a Berry phase of
π in such state. Figure 3 summarizes the close relation between
all these two-component particle-hole symmetric phases we
have considered so far.

IV. MULTICOMPONENT PARTICLE-HOLE SYMMETRIC
LANDAU LEVELS

In this section we will describe some interesting possible
states in half-filled particle-hole symmetric Landau levels with
four and eight components. Potential platforms with these
many components are monolayer and bilayer graphene. First
note that just as in a single component system, a general
N -component Landau level at half-filling can be fruitfully
obtained in a microscopic system of N massless Dirac fermions
in a magnetic field. The Landau-level particle-hole symmetry
is then obtained as an exact microscopic symmetry but the
price to pay is that the microscopic system lives at the surface
of a suitable three-dimensional topological insulator. Since
the physical situation is very similar to the single component

case we will not elaborate on it here. However, there is
one detail we will need to address. We are interested in
N -component Landau-level systems with (at least) U(1) × CT
symmetry. Obtaining these through a microscopic Dirac theory
then requires us to think about massless Dirac systems also
with (at least) U(1) × CT symmetry. For an N -component
Dirac fermion with only this symmetry, it is known [36,37]
that there is no anomaly only if N = 0(mod 8). Thus the
Landau-level particle-hole symmetry is anomalous for generic
N but not if N = 8n. For instance, at N = 8, this means
that the particle-hole symmetric Landau level can in principle
be obtained in a strictly two-dimensional microscopic model.
This situation changes once other symmetries are included as
we discuss below.

If the interaction Hamiltonian is just a density-density
repulsion (such as Coulomb) then an N -component Landau
level has SU(N ) symmetry. The full symmetry of the half-filled
N -component Landau level [including charge U(1]) is then
U(N ) × CT . With this higher symmetry we can again realize
the Landau level in a microscopic system of Dirac fermions.
Now we argue below that this Dirac fermion system is
anomalous for all N and not just when N �= 0(mod 8). Thus
the physics of the SU(N ) symmetric N -component Landau
level at any N gets related to the physics of the surface
of a three-dimensional fermionic topological insulator with
U(N ) × CT symmetry.

Much of the literature on such N -component Landau
levels with SU(N ) symmetry has focused on a quantum hall
ferromagnets. While this is certainly a very natural state
for the Coulomb Hamiltonian, it is interesting conceptually
to consider other states that preserve some or all of the
symmetries of the Hamiltonian. We first prove that for N

even, a topologically ordered gapped state that preserves all
the symmetries is not possible. A symmetric gapped state may
be possible if the SU(N ) symmetry is either spontaneously
broken or explicitly broken by the Hamiltonian to a smaller
symmetry subgroup.12 We illustrate this with some specific
examples for N = 4 and N = 8.

Our discussion of symmetric gapped states will use the
perspective of quantum disordering a superfluid. In this
approach, one views a Mott insulating phase of interest as
descending from a superconductor13 where the global U(1)
symmetry is restored via vortex condensation [44]. This
approach has been very fruitful for understanding symmetry
protected topological order at the surface of topological
insulators [54], and in particular it provides a simple route
to understand the classification of the phases of the symmetry
class AIII in the presence of strong interactions [36]. The
discussion in this section follows closely that of Sec. V of
Ref. [36] where the analysis assumed only a global U(1)
symmetry and the antiunitary particle-hole CT . Here, we

12In the graphene examples, residual terms that break the SU(4)
symmetry are always present but are small compared to the leading
long-range Coulomb interactions that respect SU(4).

13We view the system of interest as having an ungauged probe
electromagnetic field, but we can gauge the probe fields as a technical
device to facilitate the elucidation of the statistics of the several
quasiparticles.
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consider enlarged symmetries that are relevant to specific
physical realizations.

A. U(2N f ) × CT symmetry enforced gaplessness at ν = N f

Let us consider an even number of Landau levels, 2Nf ,
at half-filling, ν = Nf , or, equivalently, the surface of an
AIII topological insulator with 2Nf massless Dirac cones,
and restrict to the situation where there is U(2Nf ) × CT
symmetry. We first argue that this is anomalous for any Nf .
It suffices to show that the anomaly exists for massless Dirac
fermions in zero background magnetic field (as the field does
not change the symmetry). For such Dirac fermions, consider
the monopole operator14 associated with threading 2π flux
of a background gauge-field A that couples to the global
U(1) current. It is convenient to think of the Dirac theory as
living at the interface between some 3d material and vacuum.
Then the flux threading can be viewed as a process where
a magnetic monopole from the outside vacuum tunnels into
the material on the other side. The structure of this monopole
operator in the Dirac theory is well-known [55]. For instance
if the spatial surface on which the Dirac theory lives is the
surface of a sphere, a monopole configuration has 2Nf zero
modes. Charge neutrality is achieved when Nf of these are
filled with fermions. It is easy to see that the monopole
operator is bosonic and transforms under the rank-Nf fully
antisymmetric representation of the SU(2Nf ) subgroup. In
particular, these operators transform nontrivially under the
center Z2Nf

of SU(2Nf ). On the other hand, local operators
that are charge neutral are built up as composites of the
electron operator and will always transform trivially under
this Z2Nf

subgroup. As usual the nontrivial transformation of
the monopole insertion in the surface Dirac theory is allowed
if the bulk 3D material has the same nontrivial transformation
for the bulk monopole. It follows that the bulk is a nontrivial
topological insulator for any 2Nf . Thus, as promised, in
the presence of additional global SU(2Nf ) symmetry, the
particle-hole symmetric Landau level cannot be realized in
any strictly 2d system.

We will now argue that it is impossible to construct a
gapped phase that respects the full symmetry. The cornerstone
of the argument is the observation that there exist no projective
representations for SU(2Nf ). This implies that any topological
order containing anyons (xI ) and the electron (c), {1,xI } ×
{1,c}, is such that the anyons can always be taken to be
SU(2Nf ) singlets. If an anyon has a nontrivial representation
of SU(2Nf ), one can always replace it with an anyon bound
to electrons such that the composite forms an SU(2Nf ) singlet
without changing the symmetry realization and topological
order. In addition, the action of U(1) × CT must be closed
within the topological sector.

Moreover, if the phase realizes symmetry in an anomalous
fashion, namely one that is not strictly allowed in a two-
dimensional system with on-site symmetry implementations,
then such an anomalous symmetry would have to be manifest
at low energies in the topological sector {1,xI }. Since the

14Strictly speaking, we are weakly gauging the global U(1) in
thinking of the flux insertion as an operator.

electric charge of any local SU(2Nf ) singlets is quantized in
units 2Nf , the minimal charge of a local operator constructed
from fusing the anyons {1,xI } must be an integer multiple of
2Nf . Moreover, since any local singlet is a bosonic operator,
the topological order {1,xI } can be viewed as arising from a
local bosonic singlet whose charge is some multiple of 2Nf .

Let us now discuss what kind of excitation a fundamental
monopole tunneling event would leave in such surface state.
The bare electron, with charge e, experiences a magnetic flux
quantum from a unit strength monopole in the bulk: �e = hc

e
.

A charge 2eNf boson, will therefore experience an enlarged
magnetic flux from the unit strength monopole in the bulk:
�b = 2Nf

hc
e

. Therefore the fundamental monopole of the
bare electron is effectively 2Nf monopoles for the boson. For
bosonic matter with U(1) × CT , the charge neutral monopoles
with even strength are always trivial bosons (CT 2 = 1)
regardless of whether the bosonic bulk has a nontrivial θ = 2π

term [56]. The monopole would therefore be a charge neutral
bosonic singlet transforming trivially under CT × U (2Nf ),
and so would be an excitation at the surface created by the
monopole tunneling event. However, we saw above that the
monopole transforms nontrivially under Z2Nf

. The assumption
that the surface admits a symmetric gapped phase has thus
produced a contradiction.

In Ref. [36], it was shown that for Nf = 4, namely, eight
Dirac cones, with only U(1) × CT symmetry it is possible to
construct a symmetric gapped state that has no topological
order. This implies that the gapless phase of eight Dirac cones
with only this symmetry can be deformed through a phase
transition at strong interactions into a trivial phase, equivalent
to the surface of a Nf = 0 trivial bulk insulator. The argument
given above shows that this is not possible in the presence of
the larger CT × U(2Nf ) symmetry, and therefore that such
symmetric 2Nf Dirac cones cannot be connected, without
breaking the symmetry, to the trivial state.

B. Four components at ν = 2

Though with full U(4) × CT symmetry, a symmetric
gapped state is not allowed, we will show below that if
the SU(4) flavor symmetry is reduced to SU(2) × SU(2),
preserving the overall U(1) × CT , then such a state is indeed
possible. The four component particle-hole symmetric Landau
level with these symmetries is still anomalous. Thus the
proposed state, which strictly speaking cannot be realized in a
2d system, can nevertheless be realized (with the symmetries
present with arbitrary precision) in the isolated Landau level.
We will then comment on the possible realization of such a
state in monolayer graphene.

1. Maximally symmetric eT mT state at ν = 2

The state we discuss has the topological order of a Z2

gauge theory but with an anomalous implementation of the
CT symmetry [36,57–59]. The Z2 gauge theory has three
nontrivial quasiparticles e,m,ε which are all mutual semions.
e,m are bosons while ε is a fermion. With only U(1) × CT
symmetry the proposed state has e and m both transforming as
Kramers doublets under CT . For this reason it has been dubbed
eT mT . In the context of the present paper this state will be
further ‘enriched’ by the extra SU(2) × SU(2) symmetry.
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Our strategy for constructing this state is similar to previous
papers [36,58]. We will begin with a state with four massless
Dirac fermions in zero magnetic field. We will break the global
U(1) symmetry by pairing them as follows:

δH = i�ψσyτyμyψ − i�∗ψ†σyτyμyψ
†, (38)

where σ and τ are Pauli matrices operating in the Dirac
cone flavors. Even though the U(1) symmetry is broken, this
superconductor respects the combination U(π/2) CT and the
SU(2)τ × SU(2)σ symmetry of the separate rotations of the τ

and σ Pauli matrices, since the pairing is singlet with respect
to either of those pseudospin flavors. We will then quantum
disorder the superconductor by proliferating vortices, thereby
restoring the broken U(1) symmetry. The elementary π vortex
will have zero modes and will be nontrivial and cannot be
proliferated while preserving the symmetry. Quantum disor-
dering the superconductor will require proliferating a higher
strength vortex which will lead to a gapped topologically
ordered state which inherits the anomalous symmetry of the
original massless Dirac theory. As a nonzero magnetic field
does not change the symmetry of the system, this topologically
ordered state will also be a possible state of the half-filled
four-component Landau level with the stated symmetries.

The zero modes in the vortex cores of this superconductor
can be investigated in a similar spirit to the case of several
Kitaev chains [60]. The fundamental π vortex contains four
zero Majorana modes. We can combine these four Majoranas
into two complex fermion zero modes. The local Hilbert
space associated with filling these modes has dimension 4.
Let us label these four states by the occupation numbers of
these complex modes |n1,n2〉, where n1,2 = {0,1}. One can
choose the complex zero modes such that the subspace with
a singly occupied mode, {|1,0〉,|0,1〉}, transforms as a spin
1/2 representation under the SU(2)τ transformations while
transforming as trivial singlets under the SU(2)σ . Then one
finds that the complementary subspace, {|0,0〉,|1,1〉}, would
form a spin 1/2 representation of SU(2)σ while transforming
as trivial singlets under SU(2)τ . In other words, one can
show that the zero mode Hilbert space decomposes into a
(1/2,0) ⊕ (0,1/2) representation of SU(2)τ × SU(2)σ . This
implies that the π vortex is forced to carry nontrivial quantum
numbers of these symmetries.

However, by combining two of these π vortices one can
construct a state that is an SU(2)τ × SU(2)σ singlet and
hence transforms trivially under all the symmetries that remain
present in the superconductor state. As a consequence, such
2π vortex would behave as a trivial boson that can be
condensed to restore the U(1) symmetry, and consequently
the CT , resulting in an insulating phase with the topological
order of Z2 gauge theory [44] enriched by a large symmetry:
U(1) × CT × SU(2)τ × SU(2)σ .15

Several nontrivial deconfined quasiparticles are present in
this insulator. There will be a neutral fermion (spinon), which
is the remnant of the Bogoliubov fermion, and we label ε, a
boson (chargon) labeled h, and two remnants of the π vortex

15Formally, the symmetry group is the one written above mod Z2
2,

which avoids double counting of the (−1) elements.

(visons) labeled {m,e}. The visons {m,e} are bosons. m can be
chosen as descending from the vortex states in which all the
complex zero modes are half-filled {|1,0〉,|0,1〉} and hence it
carries pseudospins sτ = 1/2 and sσ = 0. e can be chosen as
descending from the vortex states {|0,0〉,|1,1〉} and hence it
carries pseudospins sτ = 0 and sσ = 1/2. It follows that the
spinon, ε = e × m, carries a fundamental representation of
SU(2)τ × SU(2)σ with sτ = 1/2 and sσ = 1/2. The chargon
h will be a trivial object under these symmetries as it is
essentially a descendant of half a cooper pair and the cooper
pair field is a singlet under these symmetries. However, h

will carry physical charge N+ = 1 (same as the physical
electron) under the restored U(1) charge conservation. The
physical electron is therefore c = h × ε. This state has also
been discussed in Ref. [61] in a different context.

This state implements the U(1) × CT in an anomalous
fashion in which the e and m particles are charge neutral
Kramers bosons CT 2 = −1 as can be seen following similar
arguments to Ref. [36]. The state in question is therefore an
SU(2) × SU(2) invariant version of the eT mT state previously
considered in the literature [36,54,57–59]. Additionally, this
state has an interesting discrete symmetry that exchanges
the e and the m particles. Consider the following sym-
metry operation that exchanges the τ and μ pseudospin
flavors:

ψ → �ψ, � ≡ 1

2

3∑
ν=0

τνσν,

(39)
� = �T = �†, �2 = 1, �τμσν� = τνσμ.

The last property of � implies that the pairing δH from
Eq. (41) respects this symmetry. This symmetry acts by
exchanging the τ and σ quantum numbers, and, hence, it
exchanges the e and m particles. Even though we know of no
specific potentially realistic physical system possessing all the
symmetries we considered here, this phase is a good starting
point from which lower symmetry incarnations of the eT mT

phase can be conveniently understood.

2. Monolayer graphene

The zeroth Landau level of graphene is four-fold degenerate
and the problem of interacting electrons projected onto this
Landau level can be viewed at low energies as a theory
of the surface of AIII topological insulator with four Dirac
cones in the strong magnetic field limit, as the system we
just described. A good model Hamiltonian for graphene in
this limit includes the long-ranged Coulomb interaction, two
types of short-ranged interactions that account for lattice scale
interactions [62,63]:

V coul
ij = e2

ε|ri − rj | ,

V latt
ij = (

gzτ
z
i τ z

j + g⊥
(
τ x
i τ x

j + τ
y

i τ
y

j

))
δ(2)(ri − rj ),

(40)

and the Zeeman coupling. Here, τ denote Pauli matrices in
valley space, and gz and g⊥ are parameters characterizing the
strength of valley-dependent interactions. From these terms,

085135-15



SODEMANN, KIMCHI, WANG, AND SENTHIL PHYSICAL REVIEW B 95, 085135 (2017)

the Coulomb interaction is by far the most dominant. The
projected Hamiltonian with only Coulomb interaction has
SU(4) symmetry in addition to U(1) × CT . It is believed that
the short-ranged interactions are typically stronger than the
Zeeman term by roughly an order of magnitude [62–67]. These
terms break the SU(4) symmetry into SU(2)spin × (U(1) �

X)valley, where X here denotes a discrete Z2 valley exchange
symmetry analogous to the layer exchange considered in
Sec. II. Importantly, these interactions preserve the antiunitary
particle-hole symmetry CT . On the other hand, the Zeeman
term breaks the internal spin-valley symmetries further down
to U(1)spin × (U (1) � Z2)valley, and, more crucially, it destroys
the antiunitary particle-hole symmetry CT .

Therefore, in order to view the interacting Hamiltonian of
graphene as a special limit of a topological insulator surface,
one needs to neglect the Zeeman term. In this context, it is
possible that the eT mT symmetry enriched topological order
arises in graphene at neutrality. This state will be a version of
that described in Sec. IV B 1 with its symmetry properly re-
duced to U(1) × CT × SU(2)spin × (U(1) � X)valley. We note
that a weak breaking of CT symmetry, such as that expected
from Zeeman, will split the excited states whose degeneracy
relies on their Kramers nature underCT , however, since eT mT

is a gapped phase its ground state will be only weakly modified
under small CT breaking terms.

There exist strong numerical evidence supporting that the
ground states of the projected Coulomb plus short-ranged
interactions Hamiltonian are quantum Hall ferromagnets [63].
Experiments have found that upon increasing the Zeeman term
via in-plane magnetic fields a relatively smooth transition,
during which the bulk charge gap remains open, into a state
consistent with a ferromagnetic order occurs [64]. From the
candidate quantum Hall ferromagnets, the one that appears
most consistent with this picture is the antiferromagnet.
However, considering the fact that Landau level mixing is
expected to be strong in graphene [68] and its effects on the
energetics of quantum Hall ferromagnets have not been well
explored, it appears reasonable not to rule out the possibility
that they could stabilize exotic states such as the eT mT .
Experimentally, an eT mT state would look like a trivial
integer quantum Hall state from the point of view of charge
transport, but it would be nontrivial in the neutral sectors.
This makes challenging detecting the eT mT state in graphene,
but also ruling it out on experimental grounds. The transition
from the eT mT into conventional quantum Hall ferromagnets
would be driven by the condensation of one nontrivial bosons.
For example, upon increasing the Zeeman term one expects
that the boson carrying the spin 1/2, e.g., the e particle,
would condense and hence drive a confinement transition for
the m, ε and h particles, while breaking the spin rotation
symmetry resulting in a trivial integer quantum Hall state with
ferromagnetic ordering.

C. Eight components at ν = 4

We now briefly consider eight-component Landau levels,
which at half-filling do not have anomalous implementation
of U(1) × CT but have anomalous implementation of U(8) ×
CT . We will study the possibility that the anomaly disappears
for some subgroup of U(8) that is bigger than just the U(1).

1. Highly symmetric gapped state with no topological order

We will show that if the symmetry is U(1) × CT but with
SU(8) reduced to SU(2) × SU(2) × O(2) then a symmetric
gapped state with no topological order is possible. This
implies that the eight-component Landau level with these
symmetries is not anomalous and hence can be obtained
microscopically in a strictly 2d system. Following the strategy
of the previous section, we start with eight massless Dirac
fermions and consider a superconductor described by the
following pairing [36]:

δH = i�ψσyτyμyν0ψ − i�∗ψ†σyτyμyν0ψ
†, (41)

where ν are Pauli matrices in an additional pseudospin flavor.
Notice that this pairing term is not compatible with a full
SU(2) symmetry on the ν pseudospin, and it is important
that the flavor symmetry on the ν index is only O(2).16 It
is easy to see that the fundamental π vortex can be taken to
have a trivial gapped core. Thus this vortex can be condensed
and we obtain the promised symmetric gapped state without
topological order. This state preserves a large symmetry group,
including, notably, the antiunitary particle-hole symmetry CT ,
and is a possible state in an 8-component Landau level with
this symmetry. Notice that any fermion bilinear that selects a
unique integer quantum Hall state would necessarily break
the particle-hole symmetry as it would gap the surface of
the topological insulator, and in this sense this state cannot
be described by a simple mean-field Hartree-Fock state. In
addition to this continuous symmetries we would also have
the discrete set of permutations between the two SU(2) flavors,
in analogy to the � symmetry featured in Eq. (39). Since the
state in question is a fully gapped insulator, explicit terms in
the Hamiltonian which weakly break any of the symmetries
are expected to lead only to small adiabatic changes of the
ground state.

2. Bilayer graphene

AB-stacked bilayer graphene has a special electronic
dispersion which renders its zero Landau level eight-fold
degenerate [69,70]. In addition to spin-valley degeneracy, this
zero Landau level contains degenerate cyclotron orbitals n = 0
and 1. Because these orbitals have different form factors even
the projected Coulomb interaction into the zero Landau level
has no symmetry operations rotating between the n = 0 and 1
orbitals and simply has an SU(4) spin-valley symmetry.

A more subtle issue is the particle-hole symmetry in the zero
Landau level of bilayer graphene17. Experiments have found
particle-hole asymmetric sequences of fractional quantum Hall
states [71]. Several authors have incorrectly assumed that
the symmetry is broken by the Coulomb interaction itself
projected into the zero Landau level, because of the different
form factors of the degenerate n = 0 and 1 orbitals. In fact,
as pointed out in Refs. [72], there is a nontrivial Coulomb

16This remaining symmetry can be viewed as the U(1) subgroup
generated by ψ † → ei θ

2 νy ψ † and the Z2 symmetry of exchange of ν

flavors ψ † → νxψ
†.

17Particle-hole symmetry is understood to map states at filling ν to
states at −ν, where ν is the filling measured from neutrality.
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interactions with the negative energy sea of occupied states
in bilayer graphene that is needed to properly account for the
particle-hole symmetry [73,74]. A likely explanation behind
the particle-hole asymmetry observed in the experiments of
Ref. [71] are intrinsic and sample-specific terms that break the
particle-hole symmetry [74–78].

The special kind of particle-hole symmetry that we need
in order to view the zero Landau level of bilayer graphene as
the surface of an AIII topological insulator with eight Dirac
cones is still even more restrictive. In addition to neglecting
these terms that break the lattice particle-hole symmetry, we
need to neglect any single-particle term that tends to select a
trivial integer quantum Hall state at neutrality. Therefore, just
as in the case of monolayer graphene, we need to neglect the
Zeeman term and the interlayer bias. The interlayer bias is an
experimentally tunable parameter, so, it can always be tuned to
zero, while neglecting the Zeeman term is an approximation.

The valley-dependent lattice scale interactions will also be
present in bilayer graphene and assuming they have zero range
they will have the same form as those in Eq. (40) describing
monolayer graphene [79]. In this limit, the symmetry of the
Hamiltonian of neutral bilayer graphene would be U(1) ×
CT × SU(2)spin × (U(1) � X)valley, just as in the monolayer.
In order to realize the CT -symmetric state described in
Sec. IV C 1, we additionally need that the CT symmetry
is not broken spontaneously. To our knowledge, there is
no exact diagonalization or density-matrix-renormalization-
group study of the full eightfold degenerate zero Landau
level including explicitly the n = 0 and 1 orbitals that would
explore in an unbiased manner which type of ground state
the Coulomb interactions would choose. Experimentally, there
is clear evidence for a gapped ground state at neutrality in
bilayer graphene [80,81], and this state is consistent again with
an antiferromagnetic quantum Hall ferromagnet state [79].
However, again we would like to emphasize that given the lack
of complete numerical studies in bilayer graphene it is not ruled
out that this state could be a descendant of the particle-hole
invariant highly symmetric phase described in Sec. IV C 1.

V. SUMMARY AND DISCUSSION

We have shown that the familiar exciton condensate
experimentally realized in GaAs quantum Hall bilayers can
be alternatively viewed as an interlayer paired state of
composite fermions in a special channel that preserves
particle-hole symmetry. This identification is a new application
of the fermionic particle-vortex duality. The quantum Hall
bilayer at ν = 1/2 + 1/2 is an insulator with respect to the
symmetric layer charge but a superfluid with respect to the
layer charge imbalance. We showed that alternately it can be
viewed as a superconductor with respect to the symmetric
composite fermion density but an insulator with respect to
the composite fermion layer density imbalance, i.e., as an
interlayer paired composite fermion state. We showed that such
a dual description of the phase can be understood either from
the Dirac or HLR pictures, although only the former allows for
the particle-hole symmetry to be manifest. Further, we showed
that elementary meron vortices of the exciton condensate serve
as a basis out of which all other gapped quasiparticles can be
obtained as bound states. Out of these defects there exists a

4π vortex that is charge neutral and has a Kramers structure
under the antiunitary particle-hole symmetry that survives
in the exciton condensate, denoted ˜CT . This particle is the
closest incarnation of the composite fermion itself, since it is
simply the Bogoliubov fermion resulting from the interlayer
composite fermion pairing. In this sense the exciton condensate
offers us a rather unexpected window into the physics of the
half-filled Landau level itself.

Determining the exact ground state of the ideal quantum
Hall bilayer (the problem of Coulomb interacting electrons
projected to the lowest Landau level with negligible interlayer
tunneling) is a difficult problem at arbitrary interlayer dis-
tances. However, numerical studies suggest that the ground
state at intermediate distance can be described by a paired
state which has precisely the pairing channel considered
here [27,28]. As has been previously pointed out [26], and
as we have argued employing an RG analysis, there exist a
weak coupling instability to interlayer Cooper pairing in the
limit of infinite layer separation. This suggests the natural
conjecture that perhaps the ground state of the ideal quantum
Hall bilayer never encounters a quantum phase transition as a
function of interlayer distance and has a smooth crossover from
a BEC-like limit at small distances to a BCS-like limit at larger
inter-layer distance. However, as mentioned in Introduction, a
very recent Eliashberg calculation of the pairing symmetry in
the large-d limit [29] finds a pairing channel different from the
previous numerical work. Further numerical studies of realistic
quantum hall bilayers is clearly called for.

We also describe a potential alternative ground state for a
quantum Hall bilayer which can be thought of as a quantum
disordered version of the exciton condensate. This state is
fully gapped and preserves all the microscopic symmetries. It
is likely the minimal state with these properties and has the
topological order of a Z4 gauge theory with an anomalous
implementation of particle-hole symmetry. In this state, the
merons are liberated from their logarithmic energy cost and
become fully deconfined quasiparticles. This exotic phase
additonally features the presence of a fractional exciton
quasiparticle which is essentially a quarter of the familiar
interlayer electron-hole pair. It is for future studies to determine
if suitable perturbations could realistically bring such a phase
into experimental realization.

Finally we studied some aspects of half-filled Landau
levels of systems with N = 4 or N = 8 component fermions.
If these Landau levels have full SU(N ) symmetry [so that
the full symmetry including particle-hole is U(N ) × CT ],
then the symmetry realization is anomalous. We showed the
impossibility of symmetry preserving gapped ground states
in such a system. Thus if the symmetries are preserved, then
the ground state must be a gapless liquid. Alternately, the
symmetry may be spontaneously broken as in the familiar
quantum Hall ferromagnet. If the microscopic symmetry is
smaller, then a symmetry preserving gapped state may be
possible. We illustrated this with some examples for N = 4
and N = 8. We did not however attempt to understand the
microscopic situations that will facilitate the appearance of
such states, and this is an interesting target for future work.

Note added. For complementary work on multicomponent
half-filled quantum Hall systems, developed in parallel to ours
by Potter, Wang, Metlitski, and Vishwanath, see Ref. [82].
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APPENDIX A: DUAL VORTICES OF THE ELECTRON
EXCITON CONDENSATE IN DIRAC PICTURE

The mean-field BdG Hamiltonian for the vortices in the
neutral sector of the superconductor of composite fermions
described in Sec. II A 1 reads as

HBdG = ψ†(pxσx + pyσz − μ)ψ

+ �(r)∗

2
iψ†τxσyψ

† + H.c., (A1)

where ψ carries indices 1,2 denoting layer in addition to Dirac
pseudospin indices. Let us define a BdG destruction operator
as follows:

ϕ =
(

ψ1

iσyψ
†
2

)
, (A2)

allowing to write the BdG equation as follows:

HBdG = ϕ†
(

p · σ − μ �(r)∗
�(r) −p · σ + μ

)
ϕ. (A3)

This BdG equation is formally identical to that of the Fu-Kane
superconductor [45], however, we have not “doubled-counted”
particles and holes since ϕ destroys particles in layer 1 and
holes in layer 2. As a consequence every eigenmode of the
BdG problem (with positive, negative, or zero energy) can
be interpreted as a conventional complex fermion mode (two
Majorana modes). In a vortex of vorticity n, the paring field
has the form �(r) = �(r)einθ . It follows that the odd-strength
vortices of � have one complex zero mode.

Notice that ϕ† carries a definite charge of −1 under the a−
μ

gauge field. Therefore all the vortex states can be uniquely
labeled with a−

μ charge. Additionally, the BdG Hamiltonian is
invariant under the layer exchange symmetry:

XψX−1 = τxψ, XϕX−1 = ϕ†τxiσy. (A4)

The a−
μ charge, q̂− ≡ ∫

d2r ψ†τzψ , is odd under X:
Xq̂−X−1 = −q̂−. Because X acts as a particle-hole on ϕ,
we conclude that the fundamental vortex with the complex
zero mode empty, V−, must have a charge q− = 1/2, whereas
the vortex with the zero mode filled, V+, must have a charge
q− = −1/2.

APPENDIX B: MICROSCOPIC WAVE FUNCTIONS FOR
EXCITON ORDER PARAMETER VORTICES

Vortices of the exciton condensate are well studied in the
quantum Hall literature. One approach is to start from the

SO(3) symmetric ν = 1 quantum Hall ferromagnet described
by a nonlinear sigma model and consider its XY limit [25]. In
this model one can infer the fractional charge of the merons
(XY vortices) starting from the relation [38]:

N+ = − 1

4π

∫
d2r t̂ ·

(
∂̂t
∂x

× ∂̂t
∂y

)
, (B1)

where t̂ is the unit-vector order parameter of the ferromagnet.
For a vortex with an order parameter winding of 2πw (w ∈ Z),
since t̂z(∞) = 0, one gets that it carries a half-integer quantized
charge N+ = −wt̂z(0)/2, where t̂z(0) = ±1 is the orientation
of the order parameter at the vortex core.

In this section, we will provide alternative explicit micro-
scopic description for the exciton condensate order parameter
vortices that allows to understand various properties in a
straightforward way. These wave functions can be thought
as the ones corresponding to the limit of smallest possible
vortex cores and are perhaps not energetically favorable when
the layer spacing is much smaller than the magnetic length, but
might be favorable when the layers are farther apart so that the
Coulomb capacitive energy penalizes severely the deviations
of the order parameter away from the XY plane shrinking the
vortex cores to small sizes. We emphasize, however, that our
primary interest concerning these wave functions is not their
energetics but rather their conceptual simplicity for illustrating
various universal properties.

We begin by writing a mean-field single-particle Hamilto-
nian for the electron exciton condensate projected to the lowest
Landau level:

HMF = P0(tx(r)τx + ty(r)τy)P0, (B2)

where τ are Pauli matrices acting in the layer index and P0

is a projector into the lowest Landau level. The Hamiltonian
contains no kinetic energy but only coupling to the spatially
dependent XY order parameter tx,y(r). Consider now the
configuration for a circularly symmetric vortex centered at the
origin: tx(r) + ity(r) = t(r)eiwθ , with (r,θ ) polar coordinates
for r, and w ∈ Z. Recall that in the symmetric gauge the
single-particle wave functions in the lowest Landau level take
the form

φm(r,θ ) = rmeimθ

√
2m+1πm!lm+1

e
− r2

4l2 , m = 0,1,2, . . . . (B3)

For w > 0, it is then easy to verify that the following are
non-zero-energy eigenstates of the mean-field Hamiltonian:

ψms(r,θ ) = 1√
2

(
φm(r,θ )

sφm+w(r,θ )

)
, s = ±1, m = 0,1,2, . . . ,

(B4)

where the components of the column vector correspond to top
and bottom layers. The mean-field energy of these modes is

Ems = s

∫ ∞

0

e−xxm+ w
2 t(r = l

√
2x)

2
√

m!(m + w)!
dx, (B5)

where Em,− < 0. In addition there are w complex fermion
zero-energy modes:

ψm0(r,θ ) =
(

0
φm+w(r,θ )

)
, m = −w, . . . , − 1. (B6)
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FIG. 4. Schematic representation of the many-body vortex states.
The dashed circles are electron states with orbital m and layer index
1,2. Figure (a) is the exciton ground state where electrons occupy
states with definite orbital in a superposition of both layers with equal
amplitude, which is represented by the half-circles joined by straight
line. (b) Meron vortex with charge N+ = −1/2 and vorticity w = 1.
(c) Meron vortex with charge N+ = 1/2 and vorticity w = 1, where
the zero mode of (b) is occupied by an electron depicted as a blue
ball. d) Meron vortex with charge N+ = −1/2 and vorticity w = −1,
obtained from a layer swap, X-operation, from (b). (e) The charge
neutral N+ = 0 and w = 2 vortex, which is obtained by filling one
of the zero modes and is a Kramers neutral fermion and the closest
incarnation of the Dirac composite in the exciton condensate. (f) A
particle-hole invariant charge neutral w = 4 vortex corresponding the
composite fermion particle-hole pair (exciton) whose condensation,
considered in Sec. III, drives the transition into the Z4 ordered state.
This vortex is obtained by filling the zero modes with two fermions
in a unique state analogous to the filling of 8 Majorana chains ends
by Fidkowski and Kitaev [60].

A similar structure is found for w < 0, in which case the zero
modes are localized in the top layer. Now, if we construct
the many-body vortex state by filling all the negative energy
eigenstates (s = −1, m ∈ Z), it is easy to verify that the vortex
core has a deficit of w/2 particles relative to the ground state
with no vortices (which corresponds to w = 0), and therefore
carries charge N+ = −w/2. Figure 4 illustrating the many-
body vortex state makes this transparent.

Various properties can be explicitly understood in terms
of these vortices. For example, the layer exchange symmetry
changes the vortex texture as

X : tx + ity → tx − ity, (B7)

therefore it leaves the physical charge N+ invariant, but
changes the vorticity w → −w. This is the same statement
of the fact that the a−

μ charge q− is odd under layer exchange
as described in Appendix A in the dual picture. Also the odd-n
strength vortices are forced to carry physical charge N+.

The closest incarnation of the composite fermion in the
dual picture is the Bogoliubov fermion ε. This object is charge
neutral, N+ = 0, but carries vorticity of the exciton order
parameter. As described in Sec. II A 1, we expect it to be

a vortex with 4π winding of the order parameter, hence we
choose w = 2. Such vortex has two-complex fermion zero
modes. When the two zero modes are empty this object
carries charge N+ = −1. Therefore the composite fermion
vortex is obtained by filling one of these two zero modes. The
microscopic particle-hole symmetry acts on the vortex texture
as

CT : tx + ity → −(tx + ity). (B8)

This symmetry is broken in the ground state as it reverses the
magnetization. However, the closely related operation ˜CT =
CT U1(π

2 )U2(−π
2 ) remains a particle-hole symmetry. We can

choose these symmetries to act on the electron operators as

CT camCT −1 = ic†am,
(B9)

U (φ)zcamU (φ)−1
z = (e−iφτz )abc

†
bm,

where c
†
am creates an electron in layer a = {1,2} and orbital

φm. One finds then that the action of ˜CT on the zero modes to
be

˜CT ψm0 ˜CT −1 = −ψ
†
m0. (B10)

This symmetry squares to ˜CT 2 = 1 acting on electron opera-
tors. If we denote |p1,p2〉 the many-body state corresponding
to the 4π vortex of the order parameter, with pi = {0,1}
denoting the occupation of the zero modes, we will have
that there are two charge neutral states, namely, {|1,0〉,|0,1〉}.
These two states are mapped into one another by ˜CT |1,0〉 =
|0,1〉, moreover, from the action of ˜CT on the zero modes
one concludes that it squares to ˜CT = −1 on the vortex
states {|1,0〉,|0,1〉}. Therefore this symmetry has a projective
representation on these vortices. This is the manifestation of
the Kramers structure of the composite fermion.

APPENDIX C: PARTICLE-HOLE SYMMETRY IN THE
EXCITON CONDENSATE: ALTERNATE VIEW

In this Appendix, we show how the ˜CT properties of the
exciton condensate can be obtained in an alternate point of
view through a construction directly in terms of electrons.
For nonrelativistic electrons, CT and ˜CT are symmetries only
when the Hamiltonian is projected to the lowest Landau level.
The associated large degeneracy of single-particle states makes
an analysis difficult. Here we will follow a different approach
analagous to that used in recent discussions of particle-hole
symmetry in single component systems. We will take our mi-
croscopic electron system to be two flavors of massless Dirac
electrons with CT symmetry. This is realized as the surface
state of a 3d chiral topological insulator (in class AIII but
with an additional U(1) symmetry corresponding to separate
conservation of both flavors of electrons). Specifically, the
Lagrangian is

L =
∑

I

χ̄I i /DAχI + Lint. (C1)

Here, χI are each two-component Dirac electrons, and I = 1,2
is the flavor index. A is a background gauge field, and /DA is
the Dirac operator. This is CT invariant if we let χI → iγ0χ

†
I ,

and change A0 → −A0,Ai → Ai .
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A nonzero magnetic field B does not break any symmetries,
and hence can be included. There will be two zero-energy
Landau levels, which will each be half-filled due to the CT
symmetry. Projecting to these levels, we get the ν = 1/2 + 1/2
quantum Hall bilayer with CT symmetry that we are interested
in.

Here we will study the exciton condensate phase in this
system in zero-B field. We will make the reasonable assump-
tion that this B = 0 exciton condensate is smoothly connected
to the one that obtains in the large-B limit. Indeed, we will
see that the excitation structure and symmetry properties are
identical to that in our earlier constructions.

The B = 0 exciton condensate we study will have a gap
to all fermion excitations. We characterize it by an order
parameter ∼eiθ . As usual this breaks CT but preserves ˜CT .
The most obvious excitation is the relic of the χ fermion
which is gapped. We strip off its N− charge, and call the
resulting fermion f . This will have N+ = 1. The condensate
will also have vortex excitations associated with 2πw winding
of θ , w ∈ Z. The f particle will have mutual π statistics

around all odd w vortices, and will be local around even w

vortices.
A 2π vortex in θ is readily seen to have a single complex

0 mode. Thus there are two such vortices that differ by the
addition of f . We call them V+ and V̄− (as we will shortly
identify them with objects denoted by the same symbols in the
dual construction described in the main text). Note that their
N+ charges must differ by 1. Further, ˜CT interchanges these
two vortices. Thus these vortices must have N+ = ±1/2. Note
also that they are mutual semions as they differ by the binding
of f , which is a mutual semion around either of them. These
are exactly the right properties of the V+ and V̄− as described
in the construction of Sec. II A 1.

Next consider 4π vortices. These harbor two complex zero
modes, and can be analysed by studying their various possible
fillings. It is simpler, however, to obtain them as composites
of the 2π vortex. The logic is now completely similar to our
earlier construction, and we will get an electrically neutral 4π

vortex ε that is Kramers under ˜CT , as well as the vortices B±,
which have N+ = 1.
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