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Genomes of two filamentous benthic cyanobacteria were obtained from cocultures obtained from two freshwater lakes. The cul-
tures were obtained by first growing cyanobacterial trichome on solid medium, followed by subculturing in freshwater media.
Subsequent shotgun sequencing, de novo assembly, and genomic binning yielded almost complete genomes of Oscillatoriales
USR 001 and Nostoc sp. MBR 210.
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Benthic cyanobacteria inhabit the bottom of a diverse range of
bodies of water, including lakes, wetlands, estuaries, and

oceans, forming benthic mats in these environments (1). Under
favorable conditions, they can proliferate rapidly and synthesize
undesirable secondary metabolites, including toxins and odors
(2). However, they are less studied compared to planktonic cya-
nobacteria even though they are able to cause similar ecological
and water quality impacts on affected waters (3). Two filamentous
benthic cyanobacteria isolated from tropical freshwater lakes in
Singapore were identified as Oscillatoriales USR 001 and Nostoc sp.
MBR 210, based on morphological traits (4). Here, we present
additional genomic information about these isolates, which is im-
portant for functional annotation, pathways analysis, compara-
tive genomics and for better understanding of their roles in bloom
formation.

The two filamentous cyanobacteria were acquired through an
agar culturing method (5). Briefly, lake sediment samples were
streaked across agar plates enriched with McBride Listeria agar
(MLA) medium (6). The agar plates were incubated (25°C, light
intensity: 25 �mol/m2s) until green filaments appeared; then in-
dividual filaments were aseptically cut, transferred, and cultivated
in sterile MLA media for 2 weeks. The genomic DNA extraction,
Illumina HiSeq 2000 sequencing, and read quality controls were
conducted following a method described previously (7). Subse-
quently, the two metagenomes were de novo assembled separately
into scaffolds using CLC Genomics Workbench version 8. Contigs
belonging to Cyanobacteria in each metagenome were separated
from those of heterotrophic bacteria using MetaBAT (8), follow-
ing which genome completeness and sequence contaminants were
determined using CheckM (9), and the lack of a sequence contam-
inant was confirmed using a BLAST-based approach (10). The
two genomes were annotated using RAST (11) and NCBI PGAP
(http://www.ncbi.nlm.nih.gov/genome/annotation_prok).

Genomes of the two cyanobacteria have GC contents of 41%

and completeness of 99%, assessed using checkM by comparing
579 to 583 reference marker genes in 79 to 82 lineage-specific
reference genomes. The draft genome for Oscillatoriales USR 001
comprises 5.9 Mbp contained in 96 scaffolds, while Nostoc sp.
MBR 210 has a genome size of 6.9 Mbp contained in 36 scaffolds.
The 16S rRNA of Nostoc sp. MBR 210 (1,482 bp) is 99% identical
to that of Nostoc piscinale CENA21 (CP012036.1), whereas the 16S
rRNA of Oscillatoriales USR 001 (1,492 bp) is 98% identical to
three members of the family Oscillatoriales: Kamptonema animale
(EF654087.1), Phormidium animale CCAP (HF678514.1), and
Oscillatoria lutea (KM019965.1). Further comparison between the
genome of Oscillatoriales USR 001 with all reference genomes of
the three genera currently available in the NCBI and JGI IMG
databases (12) revealed a two-way average nucleotide identity of
�90%, precluding the classification of USR 001 to the genus level.
As members of these two organisms are known to be potential
toxin (microcystin and anatoxin) and odor (geosmin and
2-methylisoborneol) producers, we used antiSMASH version
3.0.5 (13) and BLASTp to search for potential gene- or gene clus-
ter– encoding secondary metabolites, to which no toxin and off-
flavor-producing gene (as above) was identified in both genomes.
Both genomes carry genes for photosynthesis and CO2 and nitro-
gen fixation (e.g., carboxysome and nitrogenase, respectively) and
a limited number of genes encoding sugar utilization (e.g., beta-
galactosidase in USR 001; alpha-mannosidase for mannose utili-
zation in MBR 210), suggesting their potential roles as photohet-
erotrophic nitrogen fixers.

Accession number(s). These whole-genome shotgun proj-
ects have been deposited in DDBJ/ENA/GenBank under the
accession numbers MBRE00000000 (Oscillatoriales USR 001)
and MBRD00000000 (Nostoc sp. MBR 210). The versions de-
scribed in this paper are the first versions, MBRE01000000 and
MBRD01000000.
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