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Abstract

Objective. Ketamine is a widely used drug with clinical and research applications, and also
known to be used as a recreational drug. Ketamine produces conspicuous changes in the
electrocorticographic (ECoG) signals observed both in humans and rodents. In rodents,
the intracranial ECoG displays a High-Frequency Oscillation (HFO) which power is mod-
ulated non-linearly by ketamine dose. Despite the widespread use of ketamine there is
no model description of the relationship between the pharmacokinetic-pharmacodynamics
(PK-PD) of ketamine and the observed HFO power. Approach. In the present study, we
developed a PK-PD model based on estimated ketamine concentration, its known phar-
macological actions, and observed ECoG effects. The main pharmacological action of
ketamine is antagonism of the NMDA receptor (NMDAR), which in rodents is accompa-
nied by a high-frequency oscillation (HFO) observed in the ECoG. At high doses, however,
ketamine also acts at non-NMDAR sites, produces loss of consciousness, and the transient
disappearance of the HFO. We propose a two-compartment PK model that represents the
concentration of ketamine, and a PD model based in opposing effects of the NMDAR
and non-NMDAR actions on the HFO power. Main results. We recorded ECoG from the
cortex of rats after two doses of ketamine, and extracted the HFO power from the ECoG
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spectrograms. We fit the PK-PD model to the time course of the HFO power, and showed
that the model reproduces the dose-dependent profile of the HFO power. The model pro-
vides good fits even in the presence of high variability in HFO power across animals. As
expected, the model does not provide good fits to the HFO power after dosing the pure
NMDAR antagonist MK-801. Significance. Our study provides a simple model to relate
the observed electrophysiological effects of ketamine to its actions at the molecular level
at different concentrations. This will improve the study of ketamine and rodent models of
schizophrenia to better understand the wide and divergent range of effects that ketamine
has.

1 Introduction

Ketamine is an important therapeutic drug. It has antinociceptive actions [1] and is widely
used clinically as an analgesic [2], as an anesthetic adjuvant [3], and more recently as an
antidepressant in chronic depression treatment [4]. For many years in basic research,
ketamine has been the principal pharmacological model to study schizophrenia [5]. In
addition, there is a long-standing interest in studying how ketamine alters arousal, cog-
nitive and physiological states because of its popular use as a recreational drug [6]. The
main pharmacological action of ketamine is antagonism of the NMDA receptor (NM-
DAR) [7,8], but it is also known to act at non-NMDAR sites, including: HCN1 receptors,
5HT2A serotonergic receptors, D2 dopamine receptors, M1-M3 muscarinic receptors, and
opiate receptors [9–13]. While most of the physiological effects of ketamine can be at-
tributed to NMDAR antagonism, the actions of ketamine at HCN1 receptors are thought
to contribute to its anesthetic properties [9, 14].

In rodents, the administration of low doses of ketamine produces hyperactivity. This
behavioral effect manifests itself as rapid locomotion, excessive grooming, and tail chas-
ing [15]. The amount of hyperactivity correlates with the power of local field poten-
tial recordings in the 130–160 Hz frequency range, known as High-Frequency Oscillation
(HFO) [15,16]. The HFO becomes highly coherent in the basal ganglia motor circuit dur-
ing ketamine-induced hyperactivity [17]. Therefore, the HFO power seems to be related
to the behavioral state of the animal. However, the HFO power is non-linearly modu-
lated by the concentration of ketamine. The HFO power decreases shortly after ketamine
dosing in a dose dependent manner [17], and it disappears shortly after an anesthetic
dose of ketamine [15]. Given the importance of ketamine in clinical and basic research, a
pharmacodynamic (PD) model linking the pharmacokinetics (PK) of ketamine with HFO
power will prove helpful to objectively monitor ketamine effects in rodents and humans.
However, such PK-PD model does not exist yet.

We developed a PK-PD model to relate the NMDAR and non-NMDAR effects of ke-
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tamine to the time course of the HFO power observed in the rodent electrocorticogram
(ECoG). Several other NMDAR antagonists also produce the HFO, providing evidence
for the direct relationship between HFO and NMDAR antagonism [18–20]. The model
is based on the difference interaction between NMDAR and non-NMDAR actions of ke-
tamine; the non-NMDAR actions take precedence at higher ketamine concentrations and
account for the non-linear relationship between HFO power and ketamine concentration.
We tested the model by fitting it to the time course of the HFO power recorded from the
cortex of freely moving rats. We tested the concentration dependence of the HFO power
by dosing the animals with a low and a high dose of ketamine. We also ensured that
the HFO is due to NMDAR antagonism by recording ECoG after injections of MK-801,
a selective NMDAR antagonist. The non-linear dependence of HFO power on ketamine
concentration is well described by the proposed difference PK-PD model across multiple
animals and ketamine doses.

2 Theory

2.1 PK and PD models:

We assume that ketamine concentration in the brain follows a two-compartment PK model
with first-order elimination, similar to models described before for other anesthetics [21–
23]. The compartments are an ancillary compartment, Ca(t), and a brain compartment
Cb(t). The latest represents the estimated time course of ketamine concentration in the
brain. The temporal dynamics of the two compartments are governed by the differential
equation:

dC(t)

dt
= AC(t) + u(t) (1)

where C(t) = [Ca(t), Cb(t)] is the state vector and A is the matrix of rate constants,

A =

[
−(kel + kab) kba

kab −kba

]
(2)

where kab governs the transfer rate from the ancillary compartment to the brain compart-
ment, and kba governs the transfer rate in the opposite direction. The rate constant kel
governs the elimination rate from the ancillary compartment. The input to the compart-
mental model is denoted u, and corresponds to

u(t) =

[
I(t)
0

]
(3)

where I(t) defines the injection of the drug into the system. Because in our study ke-
tamine is administered as a single bolus injection, we model I(t) as a Dirac delta function.
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Next, we defined a non-monotonic PD model, that provides the non-linear relationship
between PK and the time course of HFO power. To achieve this, first we propose that the
HFO power due solely to NMDAR antagonism can be described by an Emax monotonic
function of the Hill-type [24]:

ENMDAR =
EmaxC

N
b

ECN
50,+ + CN

b

(4)

where ENMDAR is the effect that depends purely on NMDAR actions, Emax is the maxi-
mum drug effect, N is the Hill coefficient that determines the shape of the concentration-
effect curve, and EC50,+ is the concentration at half-maximal effect (figure 1B, continuous
red line) for the NMDAR actions of ketamine. The subscript + means that NMDAR an-
tagonism has a positive effect on the HFO power. The assumption of a Hill-type curve
is supported by in vitro studies, where it has been shown that binding of ketamine and
MK-801 to the NMDAR follows a curve of the Hill-type [10].

The HFO power decreases during loss of righting reflex produced by anesthetic doses
of ketamine [15], a common measure of unconsciousness in rodents. We propose that the
disappearance of the HFO at higher doses of ketamine comes from non-NMDAR effects
antagonizing the NMDAR effects. We model the non-NMDAR effects of ketamine with
another Hill-type function (figure 1B, dashed red line):

EnNDMAR =
EmaxC

N
b

ECN
50,− + CN

b

(5)

where EnNDMAR is the non-NMDAR effect, and EC50,− is the EC50 concentration of
the non-NMDAR effect. The subscript − denotes that in our model the non-NMDAR
actions have an inhibitory effect on HFO power. Direct empirical evidence for using a
sigmoid to model the non-NMDAR effects comes from in vitro, slice and in vivo studies.
In vitro studies have shown that binding of ketamine to monoaminergic (dopamine D2 and
serotonin 5HT2A receptors follow sigmoid curves [10, 13]. Whole–cell recordings in mice
pre-frontal slices have also shown that inactivation of Ih currents by ketamine binding
to HCN1 receptors follows a dose-dependent sigmoid curve [9, 14]. Evidence obtained in
vivo has shown that the fraction of mice obtunded by ketamine follows a dose-dependent
sigmoid curve, and that such sigmoid is displaced to the right in HCN1 knockout mice [9].
These pieces of evidence provided support for our assumption of a sigmoid model for the
non-NMDAR actions of ketamine. Furthermore ketamine binding to D2, 5HT2A, and
HCN1 receptors occurs at higher concentrations of than those required to bind to the
NMDA receptor. In summary higher amounts of ketamine are required to produce anes-
thesia and ketamine binding to non-NMDA receptors occurs at higher concentrations.
Therefore we postulated that the non-NMDAR actions are responsible for HFO power
attenuation and disappearance and used a sigmoid curve to model the non-NMDAR ac-
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tions at higher concentration of ketamine.

Therefore the estimated effect of ketamine concentration on the HFO power, termed
HFO(Cb), is governed by the opposing effects that the non-NMDAR actions exert over
the NMDAR action. We assume these opposing influences as the difference between the
NMDAR and non-NMDAR actions, expressed as HFO(Cb) = ENDMAR−EnNDMAR, and
obtain:

HFO(Cb) =
EmaxC

N
b

ECN
50,+ + CN

b

− EmaxC
N
b

ECN
50,− + CN

b

= EmaxC
N
b

[
ECN

50,− − ECN
50,+

(ECN
50,− + CN

b )(ECN
50,+ + CN

b )

] (6)

where EC50,− ≥ EC50,+. This is a reasonable assumption because the affinity of ketamine
for the NMDAR receptor is greater that any of the non-NMDAR affinities [10].

This difference interaction between NMDAR and non-NMDAR effects of ketamine
(figure 1B) produces a non-monotonic PD function (figure 1C). This non-monotonic PD
function is key to account for the non-linear relationship between ketamine concentration
obtained from the PK model and the observed time course of HFO power. The com-
bination of the compartmental PK model (equation 1) and the difference PD function
(equation 6) produces the curve denoted as HFO(Cb, t) (figure 1D, upper right panel).
This is the estimated time course of the HFO power. Shortly after ketamine dosing,
when the drug concentration is rising in the brain, HFO(Cb, t) displays a peak (figure
1D, triangle). This is the point of maximum effect given by HFOmax. As ketamine con-
centration keeps on rising and reaches the maximum, the estimated HFO(Cb, t) displays
a dose-dependent trough (figure 1D, circle). The higher the concentration of ketamine in
the brain at the maximum point, the deeper the trough will be in HFO(Cb, t). Then,
ketamine concentration Cb starts to decay, and the trough is followed by a slow rise and
decay in HFO(Cb, t) (figure 1D, square).

3 Methods

3.1 Ethics Statement

All animal work has been conducted in accordance to federal, state, and local regulations,
and following NIH guidelines and standards. The protocol #0511-044-14 was approved
by the Institutional Animal Care and Use Committee at the Massachusetts Institute of
Technology.
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3.2 Animals and surgical procedures:

Six Sprague-Dawley rats (Charles River, Cambridge, MA), weighing between 400–600 g,
were used in all experiments. Rats were individually caged under a 12/12 light/dark cycle,
and kept in a humidity- and temperature-controlled room. Electrode implantation was
performed under continuous 2% isoflurane anesthesia. Buprenorphine i.p. (0.01 mg/kg)
was given as pre-emptive analgesic, and twice a day for two days after surgery for post-
surgical analgesia. When the surgical plane was achieved, eight craniotomies were made
in the following locations: 2.5 mm AP and ±1.2 mm ML, -1 mm AP and ±2 mm ML, -3.8
mm AP and ±2 mm ML, and -5.6 mm AP and ±2 mm ML (figure 2A). These locations
were chosen to sample simultaneously from several cortical sites. The electrodes were
made with two strands tungsten wire (12 µm, California Fine Wire, Grover Beach, CA).
The strands were twisted using an automated wire twister (Open-ephys, Cambridge, MA),
and held together by heating the insulation. One end of the electrodes was connected to
an Electrode Interface Board EIB HS-16 (Neuralynx, Bozeman, MT) using gold pins.
The other end of the electrodes was placed in contact with the dural surface through each
craniotomy, and held in place with dental cement (C&B Metabond, Parkell, Edgewood,
NY). Two additional craniotomies were made over the cerebellum, left and right of the
midline, to implant the reference and ground screws (figure 2A).

3.3 Drugs:

Stock solutions of ketamine and MK-801 (Sigma-Aldrich, Natick, MA) were prepared by
dissolving the drugs in sterile phosphate buffer saline (PBS, Boston BioProducts, Ash-
land, MA) under sterile conditions. Ketamine stock concentration was 200 mg/mL, and
MK-801 stock concentration was 1 mg/mL. The stock solutions were diluted as needed
under sterile conditions, on the same day that the injection was performed. Two doses
of ketamine (30 and 80 mg/kg), and two doses of MK-801 (0.05 and 0.1 mg/kg) were
injected i.p., in a volume of 1 mL/kg. The doses were chosen based on previous liter-
ature [17, 25, 26]. An injection of sterile PBS was used as a handling control. The five
injections (two doses of ketamine, two doses of MK-801, and one PBS injection) were
delivered to each animal in random order (figure 2B).

3.4 Behavioral testing and data acquisition:

For the electrophysiological recordings, the animals were placed in a custom-made circular
recording chamber (35 cm diameter x 34 cm height) at least seven days after surgery. The
ECoG was recorded at a sampling frequency of 2,713 Hz using a DigitalLynx system and
Cheetah recording software (Neuralynx, Bozeman, MT). The ECoG signals were band-
pass filtered between 0.1 Hz and 500 Hz, and referenced to the cerebellar skull screw. The
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animals were habituated to the recording setup for two days before the first injection.
Video was recorded continuously through all of the experiments, for posterior assessment
of behavioral events such as movements, duration of injection procedure, and loss and
recovery of the righting reflex. A baseline period of 30 minutes was recorded before the
injection of each drug. The loss of righting reflex (LORR), a common measure of loss
of consciousness for rodents [27], was tested every 30 seconds after the injection of the
highest dose of ketamine (80 mg/kg), by quickly placing the rat in the supine position.
Complete LORR was declared if the rat was not able to return to normal standing posi-
tion within 30 seconds [28]. After LORR was declared, the rats were left in the supine
position until they spontaneously recovered the righting reflex.

3.5 Signal processing and analysis:

The signals were pre-processed by removing linear trends and 60 Hz pick-up. After these
pre-processing steps, the signals were downsampled to a sampling frequency of 1356 Hz.
Spectrograms were computed between 100 and 200 Hz, in epochs of 10 seconds with 25%
overlap, at a resolution of 0.4 Hz. All spectrograms were standardized to a period of
10 minutes of awake baseline. This period was identified based on video recordings and
wide-band spectral features [29]. Ketamine and MK-801 are know to distribute unevenly
across the brain [30,31] which may influence the observed instantaneous HFO power [17]
and frequency [19]. Therefore, before computing the HFO power, median spectrograms
for each rat and treatment were obtained from all recording sites. The time course of the
HFO power was then computed as the integral over time of the median spectrogram, in
the 130–160 Hz frequency range. The HFO power was subsequently smoothed using a
robust lowess procedure with a window span of 28 seconds [32]. Before fitting the model,
the HFO power was standardized between 0 and 1 by subtracting its minimum value, and
dividing by its maximum value. All signal processing was performed with MATLAB (The
Mathworks, Natick, MA) and the Chronux toolbox [33].

3.6 Statistics and modeling procedure:

The compartmental model (equations 1, 2, and 3) and the PD function (equation 6) were
fitted to the time course of the HFO power after the two doses of ketamine and the two
doses of MK-801. To estimate the PK-PD parameters, kab, kba, kel (equation 2), EC50,+,
EC50,−, HFOmax, and N (equation 6), the model was fitted using a nonlinear least-
squares method [34, 35]. During the fitting procedure, the quantity that was minimized
was the weighted sum of squares of the error (wSSE) defined by:

wSSE =
∑

w · (HFO(Cb, t)−HFO)2 (7)
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where the weighting function, w, placed most of the weight of the fit on the first two-thirds
of the complete recording session. The weighting function, w, was defined as:

w = 1− t12

(n− n/3)12 + t12
(8)

where t is the vector of timestamps in seconds, and n is the duration of the recording
session in samples. The fitting procedure was implemented in MATLAB. Ten repetitions
of the fitting procedure were carried out for the HFO power recorded from each rat at
each dose, using initial conditions that were randomly generated .

The quality of each fit was assessed using the adjusted coefficient of determination R2:

R2 = 1− wSSE

wSST
(9)

where wSST is the weighted total sum of squares, defined by

wSST =
∑

w ·
(
HFO −HFO

)2
(10)

where HFO is the mean of the observed HFO power. The fit with the maximum R2,
chosen from the ten repetitions of the fitting procedure for each rat and each dose, was
considered as the best fit.

To compare the rate constants, kab, kba, and kel, obtained from our model with the
constants from published PK data, we applied the same procedure as described earlier.
We fitted equations 1, 2 and 3 to the published PK data was obtained from Palenicek et
al. [36], and it was extracted using the software PlotDigitizer v2.6.6. The rate constants
reported in the text were selected by using the higher R2 criteria. Confidence intervals
for the mean were obtained by using a non-parametric bootstrap procedure.

In order to assess whether the instantaneous power of the HFO induced by MK-801 is
also has a triphasic shape, we fitted the PK-PD model to it and compared the R2 values
obtained to those obtained by the fit to the ketamine-induced HFO. Because in non-linear
fits the R2 values can sometimes be greater than one, we standardized all the R2 values
to the maximum R2 value obtained from the ten repetitions of the fit for each rat. The
R2 values were compared using repeated measures ANOVA test across all subjects. All
statistical procedures were carried out using SPSS (IBM, Armonk, NY) or MATLAB (The
Mathworks, Natick, MA).
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4 Results

4.1 Behavioral differences after dosing of NMDAR antagonists.

The drugs were administered in a randomized design. A total of five injections were
performed in each rat (n = 6). Injections of both NMDAR antagonists, ketamine and
MK-801, produced hyperactivity and stereotyped behaviors in all rats, as has been pre-
viously described [37]. However, only a 80 mg/kg dose of ketamine produced LORR.
The mean LORR onset was 3.5 ± 0.94 min (mean ± SEM), and a had mean duration of
61.11 ± 14.24 min. These results demonstrate that the chosen high dose of ketamine was
enough to produce loss consciousness, and therefore, will provide a useful contrast to the
low ketamine dose (30 mg/kg) to test our hypothesis that the HFO power is non-linearly
modulated by ketamine concentration.

4.2 The HFO as an effect of NMDAR antagonism.

The HFO produced by both NMDAR antagonists has small amplitude, but can be ob-
served in the raw trace (figure 2C). The HFO becomes more evident after band-pass
filtering between 130–160 Hz (figure 2D). The HFO was observed in all the subjects (n
= 6) in all the cortical regions recorded (8 locations per subject) and after both doses of
either ketamine or MK-801 (figure 3A–E). Only the injection of 0.05 mg/kg of MK-801
did not produced the HFO in the most posterior electrodes. These regional lack of effect
was only observed in a subset of the animals (2/6). The HFO was not observed after the
injection of PBS, although power in the wide frequency band between 130–160 Hz was
occasionally observed due to movement artifacts (figure 3A). These results suggests that
the HFO is reproducible across rats after dosing of either NMDAR antagonist.

The HFO produced by NMDAR antagonists appeared in the frequency band between
130–160 Hz. It constitutes a well defined spectral peak (figure 2E) with an average fre-
quency of 143.33 ± 0.51 Hz. A Kruskal-Wallis ANOVA yielded no evidence of the HFO
average frequency differing between ketamine or MK-801 dosing (ket30 = 144.75 ± 1.24
Hz; ket80 = 140.95 ± 1.85 Hz; mk005 = 142.78 ± 1.64 Hz; mk01 = 144.83 ± 0.91 Hz;
χ2
3,20 = 2.92, p = 0.40) (figure 2F). These results suggest that the nature of the HFO is

the same after dosing of either NMDAR antagonists.

4.3 Time course of HFO power after ketamine dosing.

The time course of HFO power observed after dosing of MK-801 displays a single, slow
rise and decay (figure 3E and D, and figure 4A and B). The brief period of higher power
right after the injection is likely due to the movement artifacts that resulted from the
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injection procedure. However, the time course of HFO power after ketamine dosing is
characteristically different from the time course of HFO power after MK-801 dosing. The
time course of HFO power displayed a triphasic profile.

The first phase of the time course of HFO power was characterized by a initial peak in
HFO power profile. This peak typically occurred within the first three minutes after the
injection (figure 3C, and 4A and B), as shown in previous reports [17]. The peak HFO
power during this phase was taken as the maximum value during the first three minutes
after dosing. When testing for differences in peak HFO power during this first phase,
the power observed after the injection of 30 (2.76 ± 0.28) and 80 (2.64 ± 0.21) mg/kg
of ketamine was significantly greater than the power after the injection of PBS (1.22 ±
0.07). The power after the injection of MK-801 was not significantly greater than PBS
during this period (mk005 = 1.36 ± 0.13; mk01 = 1.52 ± 0.10. χ2

4,25 = 21.76, p ≪ 0.001,
Tukey’s HSD post-hoc test) (figure 4C).

The second phase of the time course of HFO power consisted of a power trough. This
trough was transient after the lower ketamine dose (30 mg/kg) (figure 4A), and more
sustained after the higher ketamine dose (figure 4B). The duration of this power trough
was qualitatively coincident with LORR. To assess whether the power trough reached the
control (PBS) power levels, we tested for differences in minimum power during the first
six minutes after dosing of either NMDAR antagonists or PBS. The minimum power here
was taken as the minimum power value during the first six minutes. A Kruskal-Wallis
ANOVA yielded no evidence of differences in power after dosing any of the NMDAR an-
tagonists or PBS (PBS = 0.73 ± 0.06; ket30 = 1.35 ± 0.22; ket80 = 0.95±0.20; mk005
= 0.72±0.06; mk01 = 0.93±0.12. χ2

4,25 = 6.16, p = 0.1872, Tukey’s HSD post-hoc test).

The third phase of the time course of HFO power consisted of a slow increase and
posterior decrease. This third phase had a shorter duration after the low dose (figure 3A)
compared to its duration after the higher dose (figure 4B). This is likely due to the longer
time ketamine remains in the brain subsequent to when a higher dose is administered. The
observed differences in time course of the HFO power cannot be attributed to difference
in handling during injection of the drugs and PBS. The mean duration of the injection
procedure was 34.88 ± 0.99 seconds, from the moment the animals were removed from
the recording chamber until they were returned. A two-way ANOVA yielded no evidence
of a difference between the duration of injection across the different treatments (F4,20 =
0.37, p = 0.83), or subjects (F5,20 = 0.78, p = 0.57).

To account for the possibility that the first power peak is a result of movement and
handling artifacts caused by the animal’s reaction to the injection procedure, we mea-
sured the difference between the power peak and the power trough for each rat at each
condition. The mean ± s.e.m. values in each group are: PBS = 0.41±0.05; ket30 = 1.33
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± 0.14; ket80 = 1.65 ± 0.24; mk005 = 0.61 ± 0.12; mk01 = 0.55 ± 0.04. If the HFO
power peak is merely a handling artifact, there should be no differences in this quantity
across treatments. A Kruskal-Wallis ANOVA yields strong evidence of difference across
the groups (χ2

4,25 = 19.75, p = 0.001). A post-hoc pairwise comparisons yields strong
evidence that the peak-trough power difference after dosing of 30 mg/kg and 80 mg/kg
of ketamine are larger than the peak-trough power difference after dosing of PBS and
0.05 mg/kg of MK-801 (pPBS−ket30 = 0.002; pPBS−ket80 = 0.001; pket30−mk005 = 0.006;
pket80−mk005 = 0.002. Tukey’s HSD post-hoc test). The same test yields weak evidence of
difference between 80 mg/kg of ketamine and 0.1 mg/kg of MK-801 in the peak-trough
power difference (pket80−mk01 = 0.022. Tukey’s HSD post-hoc test ). However, there is no
significant difference between 30 mg/kg of ketamine and 0.1 mg/kg of MK-801 (pket30−mk01

= 0.053).

These results suggest that while the HFO that is produced by the selective NMDAR
antagonist, MK-801, constitutes a continuous effect of NMDAR antagonism, the HFO af-
ter ketamine was discontinued for a period of time in a dose dependent manner. However,
we have not completely ruled out the possibility that MK-801, at the higher dose, does in
fact produce a triphasic-shaped HFO instantaneous power. As described in the next two
sections, we further test for this possibility by fitting the model to the HFO power time
course after dosing each of the non-NMDAR antagonists.

4.4 The PK-PD model fits well the HFO time course after ke-
tamine dosing

The previous results show that the HFO power constitutes an appropriate surrogate for
ketamine effects. We then tested the proposed PK-PD model on the time course of HFO
power obtained from each individual rat, after each dose of ketamine. While each in-
dividual HFO power displayed the triphasic profile observed in the average (figure 4),
the actual time course was variable across animals (figure 5B and 6B, green lines). Ten
repetitions of the fitting procedure were run for each rat and ketamine dose, and the fit
with the maximum R2 was chosen for each animal (figure 5A and 6A). The extent of
convergence was variable, but the parameters of the PK-PD model with the maximum
R2 provided good fits for both the lower (Table 1) and the higher ketamine doses (Table
2). The estimated fit with these parameters can be seen in figure 5B and figure 6B (red
line). The maximum values of R2 obtained after the injection of 30 mg/kg were above 0.5
for all animals (0.74 ± 0.04) (Table 1). The model was robust to the movement artifacts,
even when they were present during the main time course of HFO (figure 5B, rat 6). The
maximum values of R2 for the fits to the higher ketamine dose (80 mg/kg) are all above
0.5 (0.81 ± 0.05). The model again displays robustness to movement artifacts, which in
this case typically occurred after the recovery of righting reflex (figure 6B, rat 2). The
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R2 values were not different between ketamine doses (Mann-Whitney test, U = 34, p =
0.48, ), providing evidence that the quality of the fit was the same for both low and high
ketamine doses.

In order to compare the rate values obtained from the model with known PK data
for ketamine in the brain, we applied the PK fitting procedure (equations 1, 2 and 3)
to the published PK data from Palenicek et al [36]. This data set corresponds to brain
concentration of ketamine after the i.p. injection of 30 mg/kg of ketamine in rats. As
done previously, we chose the rates obtained from the fit with the highest R2 value (0.93)
out of 10 repetitions of the fitting procedure. The rate value obtained for kel = 0.0786
min−1, and is within the range of rates values obtained from the fits to the HFO power in
the 6 rats (table 1). Furthermore, it lies within the 95% confidence intervals (CI) of the
mean (µ = 0.0415 min−1, CI = [0.0211 min−1 0.1172 min−1]). The rate value obtained
for kab = 0.0985 min−1, which is also within the range of rates values obtained from the
fits to the HFO power in the six rats (table 1). This rate value is also within the 95% CI
of the mean (µ = 0.1809 min−1, CI = [0.0921 min−1 0.2496 min−1]). However, the value
obtained for the rate kba = 0.0787 min−1 was not within the range of values obtained from
fit to the HFO (table 1). The rates to fit the HFO power were obtained by jointly fitting
the PK and PD models, and the discrepancy could be due to the NMDAR antagonism
that some ketamine metabolites have.

4.5 The PK-PD model does not fit well the HFO time course
after MK-801 dosing

The assumptions of the proposed PK-PD model imply that a clean NMDAR antagonists
should not produce triphasic HFO power. However, figure 2A and B show that there is a
rise in HFO power after MK-801 and PBS injection. We have attributed this to movement
and handling artifacts introduced in the electrophysiological recordings. While the peak-
trough power differences confirmed this assumption for most of the groups, the statistical
analysis, in section 4.3, did not provide evidence of a difference in the peak-trough power
between the lower dose of ketamine and the higher dose of MK-801. In order to further
test that MK-801 does not produce a triphasic HFO, we applied the fitting procedure
under the same conditions to the HFO time course after dosing of both doses of MK-801.
A repeated measures ANOVA over the corrected R2 values between the lower dose of ke-
tamine (0.75 ± 0.05), the lower dose of MK-801 (0.27 ± 0.05), the high dose of ketamine
(0.79 ± 0.03) and the high dose of MK-801 (0.40 ± 0.04) yields strong evidence of the R2

values obtained for MK-801 are lower than those obtained for ketamine (F(3,36) = 37.47,
p ≪ 0.001). The post-hoc test yields strong evidence that the R2 values obtained from
fits to low and high dose of ketamine are higher than those obtained from low and high
dose of MK-801 (all p-values ≪ 0.001, Tukey’s HSD test). The post-hoc test also yields
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strong evidence that the R2 values obtained from low and high ketamine and from low
and high dose of MK-801 are not significantly different (pket30−ket80 = 0.89, pmk005−mk01

= 0.14, Figure 7).

5 Discussion

Our study provides a PK-PD model to relate the NMDAR and non-NMDAR effects of
ketamine to the time course of HFO power observed in the rodent ECoG (figure 1 and
equation 6). The model is based on the difference interaction between NMDAR and non-
NMDAR effects of ketamine. To test the model, we continuously recorded HFO from
the cortical surface of freely moving rats (figure 3A and C), after injections of ketamine
and MK-801. We showed that the HFO frequency after ketamine dosing it is not differ-
ent from the HFO frequency after MK-801 dosing (figure 3E and F). However, the HFO
power produced by ketamine differs in its time course from the HFO power produced by
MK-801 (figures 3 and 4). We showed that the estimated PK-PD model (equation 6) fits
well the time course of ketamine-induced HFO power, for both low and high ketamine
doses (figures 5 and 6), while it does not produce a good fit to the MK-801-induced HFO
power, at any of the doses tested.

5.1 Rationale behind the PK model:

Three-compartment models are typically used for i.p. pharmacokinetic studies [38]. How-
ever, there is evidence that ketamine may be actively transported into the brain, because
studies that have simultaneously measured ketamine concentration in plasma and brain
found that the brain concentration was higher than the plasma concentration at every
time measured [36,38]. Passive diffusion of the drug across compartments will not realis-
tically describe the measured concentrations of ketamine in the plasma and in the brain.
We have chosen a minimal two-compartmental model in which the ancillary compartment
could be considered as the merger between the peritoneal space and the central compart-
ment. We demonstrated that this model could account for the observed time course of
the HFO power across two different ketamine doses. The values of the rate constants
have not been published, and therefore we cannot directly compare the values obtained
by fitting our model. However, we have fitted the proposed PK model to published data
for ketamine concentration in the rat brain [36], and found that the values of two of the
rate constants (kel and kab) are consistent with the values obtained by fitting the complete
PK-PD model to the HFO instantaneous power.



14

5.2 Rationale behind PD model:

The HFO power is not linearly related to the ketamine brain concentration (figure 4).
Rather, the HFO power shows a dose-dependent decrease in power shortly after ketamine
dosing, which results in a curve that has a fast rise and decay, followed by a second,
slower rise and decay (figure 3). We reasoned a non-monotonic PD model could account
for the observed HFO power time course. We built the PD model based on two monotonic
Hill-type sigmoids. The NMDAR sigmoid (figure 1B, continuous line) accounts for the
time course of HFO power due to the non-NMDAR actions. The key insight is that the
non-NMDAR actions can be represented by a second sigmoid (figure 1B, dashed line).
The non-monotonic HFO response results from the difference between the two sigmoids
(figure 1C).

The PD model hinges on the assumption that the disappearance of the HFO is due
to the non-NMDAR actions of ketamine, and that this effect gives rise to the triphasic
HFO shape. If this is true, then a pure NMDAR antagonist, such as MK-801, should not
produce a triphasic HFO. However, the data presented in figures 4A and B suggest that
MK-801 could also have a short, single peak followed by trough, giving rise to a triphasic
shape. However, when fitting the PK-PD model to the HFO time course induced by
MK-801, we found that the quality of the fits are consistently worst than those obtained
for ketamine (figure 7). These results further support for our hypothesis for the non-
NMDAR actions of ketamine are responsible for the HFO disappearance, and therefore
for the proposed PD model.

It is not yet clear which of the non-NMDAR actions of ketamine accounts for HFO
disappearance. The HFO was first identified in the nucleus accumbens [15], but local
injections of dopamine D1 and D2 antagonists in the nucleus accumbens do not affect the
HFO power [39]. It is possible that the attenuation in HFO power could be due to the
actions of ketamine on HCN1 receptors. Ketamine inhibits HCN1-mediated Ih currents
at an EC50 of 15 µM [9] while it blocks NMDAR channels at EC50 of 9 µM [7]. The fact
that the HFO disappears at anesthetic concentrations of ketamine [15] suggests that the
higher dose necessary to produces loss of consciousness and to inhibit HCN1-mediated
currents could also be related to the attenuation in HFO power.

5.3 The HFO as a surrogate for NMDAR actions:

Part of the challenge of creating PK-PD models lies in finding appropriate surrogate effect
for both the PK and PD aspects of the drug. An appropriate surrogate effect should be
objective, reproducible, continuous, and relevant to the pharmacological actions of the
drug.
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Electrophysiological measures are objective and can be considered reproducible and
continuous for drugs with actions in the central nervous system [40]. In particular, we
have shown here that the HFO is continuous (figures 3 and 4), and reproducible (figure
2C, E and F). Other studies have also used different ECoG measures to develop PK-PD
models in rodents [41] and humans [42].

The relationship between HFO and NMDAR antagonism has also been previously es-
tablished [15, 20, 43]. We have used a specific NMDAR antagonist, MK-801, to further
establish that the HFO power due to specific NMDAR antagonism is dose-dependent, and
that exhibits a single raise and decay over time in the absence of other pharmacological
actions. Therefore, the HFO relates directly to the main pharmacological action of ke-
tamine, and fulfills the criteria for an appropriate PK-PD surrogate effect.

5.4 Possible effects of ketamine metabolites:

Norketamine, the primary metabolite of ketamine, is an NMDAR antagonist [44] with
analgesic and anesthetic properties [45–47] that is known to cross the blood-brain barrier
in rats [36,38]. It is possible that norketamine will have a favorable effect on the strength
of the HFO instantaneous power, given norketamine’s actions as an NMDAR antagonist.
However, to our knowledge, there is no study assessing the electrophysiological effects of
norketamine.

Furthermore, the pharmacokinetics of norketamine in the rodent brain have not yet
been elucidated. Two studies have addressed the joint pharmacokinetics of ketamine and
norketamine in rats [36, 38]. Both studies agreed that the norketamine’s concentration
in the rat’s plasma is higher and that it has a longer half-life than ketamine. However,
their results differ regarding norketamine’s concentration in the brain. One study re-
ported that norketamine has a higher peak concentration than that of ketamine, but
has a similar half-life [36]. The other study reported that norketamine has a lower peak
concentration, but has a longer half-life than ketamine [38]. These discrepancies make it
difficult to hypothesize the role that norketamine could play in our model. For example,
if norketamine lasts longer in the brain than ketamine, it could extend the duration of
the HFO. However, if only the peak concentration of norketamine is higher, its HFO-
promoting effects could be attenuated by the non-NMDAR actions of ketamine, which
is a central point of our model. Further experiments should be conducted to clarify the
relationship between the HFO power, norketamine, and the role it could play in our model.
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5.5 Origin of the HFO:

The origin of the HFO has not been established. The HFO has been recorded in the cor-
tex [20], motor circuits of the basal ganglia [17], nucleus accumbens [15], and hippocam-
pus [48]. Narrow band oscillations such as the HFO are unlikely to be an artifact [29].
It has been proposed that the HFO originates from monopolar sources in the nucleus
accumbens [43]. However, it is unknown if the HFO passively propagates to cortex and
the other areas where has been recorded [17]. Regardless of its origin, the HFO power
correlates with hyperactivity [15], and our findings and those from previous studies sug-
gest that it results from both competitive and non-competitive NMDAR antagonism [20].

5.6 Relationship to previous work:

We have applied the concept of difference interaction to different pharmacological actions
within the same drug. The same concept has been used to model opposing interactions
between different drugs. For example, interactions between cholinergic agonists and an-
tagonists drugs in clinical trials of Alzheimer therapies [49], and studies of the different
effects of the components of a racemic mixture of ketamine. The same study also showed
that the PK of the individual stereoisomers was not different from the PK of the racemic
mixture. These results simplify the analysis of the PK-PD properties of ketamine racemic
mixture, which is the form commonly used in the clinic and in research, and the one we
have used in this study.

5.7 Future directions:

The HFO has been shown to be directly related to hyperactivity [15], and therefore, the
proposed model could also be used to analyze behavior in animal models [37]. Another
application could be to study the PK-PD properties of other drugs with several pharma-
cological actions that might become relevant at different concentrations, such as several
psychiatric drugs.

While the proposed PK-PD model works well for two doses of ketamine and a variety
of HFO time courses across individuals, the model did not accurately reproduce the HFO
power after the low dose of ketamine in one of the subjects (figure 5B, rat 4). In this
case, the time course of HFO power is much shorter than the other cases. This kind
of variability is expected after i.p. injections. Handling the animal to deliver the i.p.
injection also introduces wide-band artifacts that can leak power into the initial phase of
the HFO (figure 4A, B and C). This poses a fitting problem, because the HFO does not
always start from zero power, a requirement from the PD equation. Both issues could be
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addressed by delivering ketamine through intravenous injections.

5.8 Conclusions:

We have postulated and tested a model that can explain the time course of the HFO power
based on the PK-PD properties of ketamine. At low doses, ketamine has a wide range
of uses such as analgesic, antidepressive, model for schizophrenia, and drug of abuse. At
higher doses, ketamine can be used for safe induction of loss of consciousness, because it
does not depress respiratory function [50]. By incorporating the different pharmacologi-
cal actions of ketamine into a single PK-PD model, and establishing the HFO as a good
surrogate effect for the main pharmacological action of ketamine, our study suggests that
this wide range of effects could be brought about by different pharmacological actions of
ketamine, that are relevant at different drug concentrations. Tracking the HFO could be
useful in other experimental settings in rodents to study the wide and divergent range of
effects that ketamine has.

Acknowledgments:

This work has been supported by the National Institute of Health Pioneer Award DP1-
OD003646 to Emery N. Brown; the Career Award at the Scientific Interface from the
Burroughs-Wellcome Fund to ShiNung Ching; the National Institute of Health Grant
5R01MH061976 to Matthew A. Wilson, and the National Institute of Health New Inno-
vator Award DP2-OD006454 to Patrick L. Purdon.

References
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Figure 1. Schematics of PK-PD model and its relationship to HFO instantaneous
power. (A) Two-dimensional compartment model, consisting of an ancillary compartment
(Ca(t)) and the brain compartment (Cb(t)). The input is u(t) and the rate constants are kab,
kba, and kel. (B) Individual PD curves representing the NMDAR (continuous line) and
non-NMDAR (dashed line) actions of ketamine. (C) Non-monotonic PD model resulting from
the difference between the NMDAR and non-NMDAR PD curves in (B). (D) Combining the
PK (lower left panel) and PD (upper left panel) models produces the estimate for the time
course of the HFO power, HFO(Cb, t) (upper right panel). The three symbols connected by
dashed lines exemplify the relationship between the PK model, the PD model, and the
estimated curve HFO(Cb, t) at three different points in time.
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Figure 2. Experiment design, raw ECoG traces, and HFO frequency (A) Placement
of recording, reference and ground electrodes in the rat skull (A: anterior; P: posterior; M:
middle; L: lateral). (B) Experiment design: Thirty minutes of baseline (white area) were
recorded before dosing, and then 3–4 hours after dosing (green colored area). One week of
washout period was allowed between the five treatments: PBS; 30 mg/kg and 80 mg/kg of
ketamine; 0.05 and 0.1 mg/kg of MK-801. The rats (n = 6) received the five treatments
(colored boxes) in randomized order. (C) Example of raw ECoG traces, recorded during
baseline (black), and one hour after dosing 80 mg/kg of ketamine (green) or 0.1 mg/kg of
MK-801 (red) injection. (D) Same traces from (C), band–pass filtered between 130-160 Hz.
The arrows point to periods with HFO. (E) Example spectrum a single frontal electrode after
injection of 0.1 mg/kg of MK-801. The HFO constitutes a well defined spectral peak. The
HFO frequency was considered as the frequency at peak power. (F) HFO frequency values
across averaged across electrodes for every individual rat and treatment. No significant
differences are observed (Kruskal-Wallis ANOVA p = 0.40).



25

130

160

130

160

130

160

130

160

A

F

0 30 60 90 120

 time after dosing (min)

F
re

q.
 (

H
z)

0 15 30 45 60 75 90

 time after dosing (min)

P
ow

er
 (

dB
)

0

7

ket30

mk005

pbs ket80

mk01

130

160

150

F
re

q.
 (

H
z)

F
re

q.
 (

H
z)

0 15 30 45 60 75 90

0 15 30 45 60 75 90

C

E

B

D

LORR

140

160
pbs ket30 ket80 mk005 mk01

4 min

Figure 3. Example spectrograms after dosing of NMDAR antagonists. (A–E)
Spectrograms averaged over all recording sites in a single rat. Dosing was performed at t = 0
(vertical line). Each spectrogram shows 10 minutes of baseline, and either 90 or 150 minutes
after dosing of: (A) PBS; (B) 80 mg/kg of ketamine; (C) 30 mg/kg of ketamine; (D) 0.1 mg/kg
of MK-801, and (E) 0.05 mg/kg of MK-801. The horizontal black line in (B) shows the
duration of LORR. (F) Enlargement of the first 4 minutes of the spectrograms, showing the
presence of a prominent HFO peak after the injection of both doses of ketamine. This peak is
absent after the injections of PBS or MK-801.
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Figure 4. The time course of HFO power after ketamine injection shows a
triphasic curve. (A) Time course of power in the 130–160 Hz band ( mean ± SEM ) after
dosing of PBS (lavender), 0.05 mg/kg of MK-801 (brown), and 30 mg/kg of ketamine (light
blue). All curves were standardized relative to baseline. (B) Time course of power in the
130–160 Hz band after injections of PBS (lavender), 0.1 mg/kg of MK-801 (red), and 80
mg/kg of ketamine (green). The grey horizontal line corresponds to the mean duration of
LORR after the injection of 80 mg/kg of ketamine. (C) Enlargement of the first ten minutes of
the curves shown in (B), showing the initial peak in HFO power observed after ketamine
dosing. (D) Peak power of the HFO is significantly different than PBS after only after
ketamine dosing (Kruskal-Wallis ANOVA p ≪ 0.001). (E) The power at the trough of the
HFO power is not different from PBS (Kruskal-Wallis ANOVA p = 0.19). (F) The difference
between peak and trough HFO power is significantly different from PBS only after ketamine
dosing (Kruskal-Wallis ANOVA p = 0.002). Color code in D–F same as in A and B.
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Figure 5. Coefficient of determination (R2) and model fits for the low dose of
ketamine. (A) Sorted R2 values obtained from each of the 10 repetitions of the fitting
procedure, in each of the 6 rats, after dosing of 30 mg/kg of ketamine. The maximum R2 is
shown in dark grey at the end of the series. (B) The plots show the time course of each
individual HFO power (light grey, n = 6), standardized between 0 and 1. Superimposed is the
fit HFO(Cb, t) (dark grey) with the maximum R2 value.
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Figure 6. Coefficient of determination (R2) and model fits for the high dose of
ketamine. (A) Sorted R2 values obtained from each of the 10 repetitions of the fitting
procedure, in each of the 6 rats, after dosing of 80 mg/kg of ketamine. The maximum R2 is
shown in dark grey at the end of the series. (B) The plots show the time course of each
individual HFO power (light grey, n = 6), standardized between 0 and 1. Superimposed is the
fit HFO(Cb, t) (dark grey) with the maximum R2 value.
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Figure 7. Comparison of R2 values obtained from fits to HFO instantaneous power
induced by ketamine and MK-801. Boxplots of the R2 values (n = 60) obtained from the
10 repetitions of the fitting procedure in each of the 6 rats after dosing of 30 mg/kg of
ketamine, 80 mg/kg of ketamine, 0.05 mg/kg of MK-801, and 0.1 mg/kg of MK-801. The
horizontal line in the boxplots is the median, and the box covers the interquartile range. The
whiskers are set to cover 99.3% of the data if this were normally distributed. The R2 values
obtained from the fit of 30 and 80 mg/kg of ketamine are significantly higher than those after
dosing 0.05 and 0.1 mg/kg of MK-801 (p ≪ 0.001). The R2 values are not different between
the fits to ketamine (p = 0.89) or between the fits to MK-801 (p = 0.14).
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Tables

Table 1. Parameters of the PK-PD for the best fits after the injection of the lower
dose of ketamine (30 mg/kg)

Subject kab kba kel EC50,+ EC50,− HFOmax N R2

rat 1 0.05166 0.5647 0.007713 0.06513 0.06855 0.8058 8.898 0.77
rat 2 0.2285 0.3831 0.1189 0.02956 0.03554 0.8669 1.197 0.89
rat 3 0.2967 0.3775 0.02706 0.2372 0.2395 0.8024 5.065 0.78
rat 4 0.2836 4.891 0.03203 0.1456 0.1636 0.6561 0.9966 0.66
rat 5 0.2025 1.186 0.01385 0.1198 0.1202 0.7150 4.795 0.63
rat 6 0.02269 0.2911 0.04921 0.02079 0.03121 0.8463 2.555 0.67

kab, kba and kel are in min−1. EC50,+, EC50,−, HFOmax, N and R2 are adimensional.
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Table 2. Parameters of the PK-PD model for the best fits after the injection of
the higher dose of ketamine (80 mg/kg)

Subject kab kba kel EC50,+ EC50,− HFOmax N R2

rat 1 0.2460 0.4332 0.01403 0.09624 0.1173 0.7376 3.367 0.91
rat 2 0.3117 0.5756 0.007089 0.2236 0.2358 0.7224 11.04 0.65
rat 3 0.4804 1.045 0.01916 0.09759 0.1038 0.7491 3.768 0.81
rat 4 0.2851 1.2345 0.007344 0.1323 0.1323 0.8153 7.485 0.93
rat 5 1.6509 0.3672 0.05443 0.3221 0.3614 0.8221 5.467 0.94
rat 6 0.007622 0.9248 0.01713 0.001241 0.006267 0.5355 8.5790 0.61

kab, kba and kel are in min−1. EC50,+, EC50,−, HFOmax, N and R2 are adimensional.


