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Abstract

The concise, enantioselective total syntheses of (+)-asperazine (1), (+)-iso-pestalazine A (2), and 

(+)-pestalazine A (3) have been achieved by the development of a late-stage C3–C8′ Friedel-Crafts 

union of polycyclic diketopiperazines. Our modular strategy enables the union of complex 

polycyclic diketopiperazines in virtually their final forms, thus providing rapid and highly 

convergent assembly at the challenging quaternary stereocenter of these dimeric alkaloids. The 

significance of this carbon–carbon bond formation can be gauged by the manifold constraints that 

were efficiently overcome, namely the substantial steric crowding at both reactive sites, the 

nucleophilic addition of C8′ over N1′ to the C3 carbocation, and the multitude of reactivity posed 

by the use of complex diketopiperazine fragments in the coupling event. The success of the 

indoline π-nucleophile that evolved through our studies is notable given the paucity of competing 

reaction pathways observed in the presence of the highly reactive C3 carbocation generated. This 

first total synthesis of (+)-pestalazine A also allowed us to revise the molecular structure for this 

natural alkaloid.

The hexahydropyrroloindoles comprise a structurally and biologically fascinating class of 

alkaloid natural products.1 The dimeric diketopiperazine incarnations of these metabolites 

are replete with the sort of molecular complexity that regularly nourishes the advancement 

of new synthetic methodologies.2 Undeniably, the greatest obstacle for researchers seeking 

to gain efficient access to these structures has been the stereocontrolled introduction of the 

quaternary stereocenter and the carbon–carbon bond at the heart of these alkaloids. (+)-

Asperazine (1)3 and its more recently isolated congener (+)-pestalazine A4 present an 

exemplary challenge for chemical synthesis by possessing heterodimeric diketopiperazines 

with a unique quaternary C3sp3–C8′sp2 juncture (Figure 1). While outstanding advances have 

been achieved in the synthesis of C3-aryl pyrroloindolines,5,6,7 Overman’s elegant synthesis 

of (+)-asperazine (1),8 predicated on early introduction of the C3-quaternary stereocenter by 

an intramolecular Heck reaction9 followed by formation of the diketopiperazines, stands as 

the only solution to alkaloid (+)-1. Our highly convergent synthesis of the C3–C7′ fused (+)-
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naseseazine alkaloids (Figure 1),10 prompted us to investigate the possibility of a 

complementary Friedel-Crafts based approach11 to alkaloids (+)-1–2, involving late-stage 

directed union of complex diketopiperazines, to secure the challenging C3sp3–C8′sp2 

linkage.12 Herein, we report the development and implementation of this ambitious strategy 

to the highly expedient synthesis of (+)-asperazine (1), and the first total synthesis (+)-iso-

pestalazine A (2) and (+)-pestalazine A (3). The culmination of our study was the revision 

and subsequent synthesis of the corrected structure of (+)-pestalazine A (3).

In recent years, various innovative methodologies have been formulated to address the 

synthesis of C3sp3–C3′sp3,13,14,15,16 C3sp3–N1′17 and C3sp3–arene5–9,11,12 bound 

pyrroloindolines. Our group has a long-standing interest in developing mild, versatile 

chemistries that can rapidly generate these complex, acutely sterically-congested C3 

linkages in stereo- and regioselective fashion.2c While many of the existing approaches to 

C3-aryl pyrroloindolines rely on alkylation of oxindoles,6 or rearrangement 

chemistry,7b,d,f,g,k alternative methodologies have also been reported.7a,e,h–j Since our first 

report on diazene directed fragment assembly as a viable strategy for C3 arylation,16a,b 

much progress has also been made in the synthesis of C3-diazenyl pyrroloindolines.18 

Recent advances in transition metal-catalyzed coupling methodologies have also provided 

exciting opportunities for the development of new routes to C3-aryl pyr-roloindolines.5,19 

The Overman group’s Heck cyclization based strategy has proven especially successful in 

this arena,8,9 providing enantiomerically enriched C3-aryl oxindoles that paved the way for 

their landmark syntheses of C3-aryl pyrroloindoline alkaloids including (+)-asperazine (1), 

which was accomplished in 22 steps and 1.0% overall yield.8

Our group has sought a different inroad into these heterodimers, based on a maximally 

convergent late-stage C3–arene coupling of advanced diketopiperazine intermediates. This 

tactic draws inspiration from biogenetic hypotheses on the origins of these natural 

products,20,21 but unlike the oxidative radical dimerizations,7i we found ionic unification 

pathways22 could better dictate regiocontrol at the C3–aryl juncture.12 Specifically, we 

developed a mild Friedel–Crafts-based method for the stereo- and regioselective addition of 

a wide range of nucleophiles to the C3 carbocation.23 Indolic interceptions at this benzylic 

cation, arising from mild silver activation of a bromide precursor, were instrumental in our 

expedient syntheses of the bionectins, gliocladins, and luteoalbusins.11 The ultimate 

demonstration of our late-stage heterodimerization paradigm came in our total syntheses of 

the C7′-linked (+)-naseseazines (i.e. 5 and 6, Figure 1).12 We now report our development of 

a powerful and enabling ortho-indoline-based Friedel-Crafts strategy that has led to a highly 

convergent, concise, regio- and stereocontrolled total synthesis of (+)-asperazine (1), (+)-iso-

pestalazine A (2) and (+)-pestalazine A (3). This amplifies our group’s repertoire of 

heterodimerization modes to now include late-stage C3sp3–C8′sp2 bond formation. A key 

feature of our routes to these targets is a newly-developed regioselective reductive ring-

opening reaction, which allowed the transposition of a more π-nucleophilic and 

regioselective indoline onto the eventual indole moiety, whilst simultaneously thwarting N1′ 

and C2′ nucleophilic attack.

As well as its initial discovery in minute quantities from a Caribbean sponge-derived culture 

of Aspergillus niger, (+)-asperazine (1) was also isolated in 2008 alongside (+)-pestalazine 
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A (3) and the C3sp3–N1′ linked (+)-pestalazine B (4b, Figure 1) from the plant pathogenic 

fungus Pestalotiopsis theae.4 Interestingly, in a second exploration of extracts from 

Aspergillus niger, the N1′-linked isomer of (+)-asperazine (1), and congener of (+)-

pestalazine B (4b), (–)-asperazine A (4a) was also unearthed.24 Accordingly, considerations 

of the interrelated biogenetic origins of these alkaloids added further impetus to our desire 

for a synthesis (Scheme 1) that espoused late-stage, convergent assembly. Such a route 

would endow us with the utmost flexibility in rapidly accessing C3–C8′-bound structural 

variants of these fascinating natural products for future studies.

In our synthesis of the naseseazine alkaloids (Figure 1) the desired C3–arene connectivity 

was secured by deployment of an N1-protected C3-substituted indole (–)-8 (Scheme 1) that 

garnered π-nucleophilicity at its C6′/C7′ positions.12 Exclusive C7′ Friedel–Crafts 

regioselection for product (–)-11 was ensured by use of trifluoroborate (–)-9, whose anionic 

directing group could facilitate tight ion pairing with the C3-derived cation from bromide 

(+)-10 (Scheme 1).12,25 Our initial retrosynthetic outlook (Scheme 2) for heterodimers (+)-1 
and (+)-2 strived to achieve the same levels of regiocontrol by employing a C8′-

trifluoroborate 12, which could intercept tetracyclic carbocation 13. Bromide 15 would stem 

from diastereoselective bromocyclization of indole 16, procurable in decagram quantities 

from amino acid condensations of L-tryptophan. Our newly developed one pot protocol for 

the boronation of L-tryptophans also prompted us to consider C8′-boroindole derivatives 12 
and 14.26

The pronounced challenges that met our plan to switch from C7′ to C8′ indole for C3 

addition were borne out by our initial studies into directing π-nucleophilicity to this position. 

From the outset, unlike the naseseazines, the unfeasibility of using N1-protected indoles for 

C8′-directed Friedel-Crafts coupling presented added complications.27 Notably, attempts at 

Miyaura boronation of N1-protected 8-bromotryptophans failed to provide the 

corresponding C8-boronotryptophan.28 Conversely, N1-functionalization post-C8 

boronation of tryptophans proved equally ineffective. With facile access to trifluoroborate 

(+)-17a on a multigram scale from the pinacol precursor,26 we were able to explore Friedel-

Crafts conditions for its reaction with bromide (+)-18a. This bromide was itself readily 

attained in one step through bromocyclization of the corresponding diketopiperazine (vide 

infra) in a manner akin to our previous synthetic campaigns.11,12,14 Thus, by employing 

silver(I) hexafluoroantimonate in conjunction with 18-crown-6 and 2,6-di-tert-butyl-4-

methylpyridine (DTBMP),29 we were able to obtain 6% yield of the desired product, C8′-

linked indole (+)-19a, but this was compounded by the presence of the C7′- and C2′-linked 

regioisomers in similar quantities (Scheme 3).29,30 We next considered blocking these two 

undesired positions by introducing reductively removable substituents,11a in the form of 6-

bromo-2-chloroindole (+)-17b.29 The reaction of trifluoroborate (+)-17b with bromide 

(+)-18a gave fewer side products, with 22% yield of adduct (+)-19b.31 This low yield of the 

desired C8′-linked indole indicated that the underlying problem of poor π-nucleophilicity at 

C8′ had persisted despite the use of a directing trifluoroborate.12,25c In spite of this, dimer 

(+)-19 could be carried forward (Scheme 3) to (+)-asperazine (1) via indoline (+)-20.29 

Importantly, this unoptimized first-generation synthesis allowed us to establish the critical 

heterodimeric C8′–C3 bond.29 The parity of our data with that of Overman’s previous 
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synthesis8 also retrospectively confirmed the regio- and stereochemical outcome of our first 

generation solution for securing the quaternary stereocenter and the challenging C3sp3–

C8′sp2 bond.

These observations set the foundation for our development of a second generation C3–C8′ 

coupling strategy focused on enhancing C8′ reactivity and thereby suppress formation of 

regioisomeric and oligomeric side products. Central to this new approach was the utility of a 

reversible cyclization of tryptophan-derived diketopiperazines. Since tryptophan-derived 

diketopiperazines are known to cyclize reversibly in acid to their tetracyclic forms,32 our 

concerns could be addressed by temporarily locking this equilibrium at bis-indoline 21 
(Scheme 4). From a retrosynthetic perspective, this would allow us to harness the superior π-

nucleophilicity of an aniline moiety for Friedel–Crafts chemistry and simultaneously remove 

C2′ nucleophilicity. The subsequent unlocking of bis-indoline 21 could be achieved post-

C8′–C3 bond formation, by C3′ ionization–reduction of alcohol 22. This alcohol would act 

as a stable surrogate of dimer 21, and originate from ortho Friedel–Crafts coupling of 

indoline 23 to C3-bromide 24. In order to maximize the propensity for C8′ addition of 

indoline 23, it was crucial from consideration of steric as well as electronic factors, to forego 

any form of N1 protection. Critical to our plan’s success was the notion that the N1 position 

of tetracycle 23 would be too sterically encumbered to itself add efficiently to the C3 

electrophile.33 Again, both Friedel–Crafts components 23 and 24 could be fashioned via 

halocyclization of the necessary indolic diketopiperazines 16, thus preserving the 

expediency of our previous route.

Knowledge from our prior synthetic campaigns pointed to conditions for C3 bromide 

ionization being milder in the presence of a carboxybenzyl over a sulfonyl N1 

substituent.11,12,14 The synthesis of the tetracyclic diketopiperazine intermediates therefore 

began with readily available Nα-Boc-N-Cbz-L-tryptophan methyl ester and its 

straightforward conversion to diketopiperazines (+)-26a and (+)-26b, via dipeptide self-

condensation in 80% and 83%, respectively.29 Initial attempts to obtain tetracyclic bromide 

(+)-18a via diastereoselective bromocyclization of indole11b,12 (+)-26a were hampered by 

poor solubility of these diketopiperazines in various organic solvents. Exposure of 

diketopiperazine (+)-26a to our standard procedure involving an equivalent of bromine in 

dichloromethane,12 benzene,11b or acetonitrile,11c,d gave the desired bromide (+)-18a in < 

30% yield.34 This yield was substantially improved by addition of two equivalents of boron 

trifluoride to a slurry of precursor (+)-26a in acetonitrile prior to bromonium ion formation. 

To this end, the use of N-bromosuccinimide in place of bromine was found to result in a 

superior endo/exo ratio, and we were able to synthesize the versatile bromides (+)-18a and 

(+)-18b on a gram scale in 63% and 66% yield, respectively. Scaling the conditions to 15 g 

of diketopiperazine (+)-26a afforded bromide (+)-18a in 59% yield (Scheme 5).

In order to induce ortho (C8) selectivity in the Friedel–Crafts coupling, the para position 

(C6) on the eventual nucleophile 23 (Scheme 4) was temporarily blocked.11a After screening 

various Lewis and Brønsted acids in combination with N-chlorosuccinimide, the inclusion of 

trifluoroacetic acid35 for bromide (+)-18a, or titanium(IV) tetrachloride in the case of 

bromide (+)-18b, led to 94% and 90% yield, respectively, of the corresponding C6-

chlorinated tetracycles (+)-27a and (+)-27b (Scheme 5). We were pleased to note that the 
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presence of this C6-chlorine had no deleterious effect on silver(I)-promoted C3 bromide 

ionization, as shown by the rapid conversion of indolines (+)-27a and (+)-27b to hydrates 

(+)-28a and (+)-28b in respective yields of 96% and 93%. Their conversion to silyl ethers 

(+)-29a and (+)-29b on multigram scale was then followed by efficient and mild palladium-

catalyzed carboxybenzyl removal,36 with no sign of dehalogenation,12 providing the desired 

indolines (+)-30a and (+)-30b (Scheme 5). The C3-hydroxyl could function as a stable 

placeholder, effectively locking in the cyclotryptamine substructure during the Lewis acid-

promoted Friedel-Crafts step, later to be ionized and reduced under Brønsted acidic 

conditions.

Having firmly established the route to our designed nucleophilic and electrophilic Friedel-

Crafts components (Scheme 5) for both alkaloid targets, now accessible in multigram 

quantities, we were well positioned to explore the key fragment-coupling step. Initial forays 

involving exposure of bromide (+)-18a to silver(I) hexafluoroantimonate, in the presence of 

indoline (+)-30a in nitroethane, led to 5–10% yield of C3–C8′-coupled product. Importantly, 

we were pleased to observe virtually no N1′-linked heterodimeric products. However, as 

before, mixtures of side products, largely attributable to competing para-directed 

oligomerizations of precursor (+)-18a, were still observed. Gratifyingly, replacement of 

tetracycle (+)-18a with its 6-chlorinated counterpart (+)-27a resulted in excellent mass 

balance, with the undesirable oligomerizations being mostly suppressed. Under our optimal 

silver(I) activation conditions,29 the desired heterodimeric indoline (+)-31a was isolated in 

41% yield, along with 24% of recovered starting material (+)-30a, and 30% of alcohol 

(+)-28a (Scheme 6), stemming from bromide (+)-27a.

Notably, treatment of recovered alcohol (+)-28a with thionyl bromide regenerated 

electrophile (+)-27a in near quantitative yields (Scheme 5), meaning both Friedel-Crafts 

partners (+)-30a and (+)-27a could be recycled to produce more of bis-indoline (+)-31a. The 

degree of molecular complexity and congested nature of the quaternary C3–C8′ bond being 

rapidly formed in a single step, under mild conditions, make this Friedel-Crafts reaction 

(Scheme 6) an exciting prospect for future applications in related natural and designed 

complex molecule syntheses. Two-dimensional NMR analysis provided decisive HMBC and 

NOESY correlations in support of our structural assignment of bis-indoline (+)-31a (Scheme 

6). Nonetheless, our ability to swiftly convert this dimer to alkaloid (+)-1 offered 

confirmation of the C3–C8′ dimeric linkage. We had originally envisaged relying on the N1 

protection of dimer (+)-31a as a means for ensuring selective reopening of only the N1′ free 

indoline to the desired indole moiety. However, desilylation of ether (+)-31a proved 

ineffective with all but nucleophilic fluorides, which caused minor amounts of 

epimerization.37 We eventually found that by first performing a combined hydrogenolysis 

and bis-dehalogenation on substrate (+)-31a to provide silyl ether (+)-32a in 79% yield 

(Scheme 6), the ensuing silyl cleavage could proceed without incident. To this end, 

treatment of dimer (+)-32a with tris(dimethylamino)sulfonium difluorotrimethylsilicate 

(TASF) provided alcohol (+)-33a in 90% yield.38

With intermediate (+)-33a in hand, we were able to investigate a range of conditions for the 

penultimate tandem C3′ reduction–ring opening step to arrive at alkaloid (+)-1 (Scheme 6). 
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After examining various conditions, the highest yield of (+)-asperazine (1, 67%, Scheme 6) 

was attained by a combination of triethylsilane with methanesulfonic acid. Based on our 

previous thiolation studies for the syntheses of epipolythiodiketopiperazine 

alkaloids,11,14c–d, trifluoroacetic acid was originally chosen for C3′ ionization. However, 

when utilizing triethylsilane in conjunction with this acid, only a modest yield (40%) of (+)-

asperazine (1) could be isolated, despite complete consumption of alcohol (+)-33a after 24 

h. Though we reasoned that a substantial Thorpe–Ingold constraint should inhibit acid-

catalyzed opening of the southern tetracycle, the recovery of water-soluble diketopiperazine 

side products from this experiment led us to infer that such a destructive pathway was 

enhanced by prolonged exposure to acid, as well as silane reduction of the indole moiety.39 

This conclusion was corroborated when substitution with methanesulfonic acid led to shorter 

reaction times and the improved yield of (+)-asperazine (1, Scheme 6). We were pleased to 

observe that all spectroscopic data for (+)-asperazine (1), along with its optical rotation, 

were in complete accord29 with that of Overman’s synthetic (+)-asperazine,8 and the 

isolated metabolite.3

Having successfully employed this modular strategy to our highly convergent synthesis of 

(+)-asperazine (1), the stage was now set for us to tackle the first total synthesis of (+)-

pestalazine A (2). We began by replacing indoline (+)-30a with its D-leucine counterpart 

(+)-30b, and under the same silver-mediated conditions to ionize bromide (+)-27a, obtained 

the corresponding heterodimer (+)-31b in 48% yield.29 The improved yield in this reaction 

we attributed to the higher reaction concentrations attained using substrate (+)-30b, which 

was more soluble in nitroethane than indoline (+)-30a. The subjection of bis-chlorinated 

dimer (+)-31b to hydrodehalogenation provided silyl ether (+)-32b in 84% yield. The 

ensuing desilylation with tetrabutylammonium fluoride also proceeded without incident to 

furnish alcohol (+)-33b in 91% yield. Exposure of this intermediate to our optimal 

reduction–ring opening protocol, namely methanesulfonic acid and triethylsilane, delivered 

indole (+)-2 in 73% yield (Scheme 6).

Our completion of this synthesis allowed for conclusive comparisons to be made between 

the structural data of alkaloid (+)-2 and the isolation data originally reported by Che and 

coworkers for natural (+)-pestalazine A.4 The 1H and 13C NMR signals corresponding to the 

positions around the indole and indoline portions of our molecule were in excellent 

agreement with the isolation report (< 0.5 ppm difference between 13C NMR signals),29 

thereby confirming the crucial C3–C8′ connectivity. However, the same could not be said of 

several key 1H signals corresponding to the diketopiperazine moieties, which differed 

markedly from the values in the isolation report, specifically the C11 (3.3729 vs. 4.684 ppm), 

C15 (4.1029 vs. 3.254 ppm), C11′ (4.1629 vs. 3.464 ppm) and C15′ (3.0329 vs. 3.804 ppm) 

positions (Scheme 6). Furthermore, indole (+)-2, which we now came to regard as (+)-iso-

pestalazine A, exhibited an optical rotation of +99° (c 0.17, MeOH),29 as compared to Che’s 

value of +203° (c 0.10, MeOH)4 for natural (+)-pestalazine A.

This propitious discovery would thus provide the ideal platform to demonstrate the power of 

our modular Friedel–Crafts approach to C3–C8′ coupling. Without any change to our 
synthetic route, we pursued an alternative structural isomer of dimer (+)-2, in which the 
northern and southern diketopiperazines were inverted (Figure 1). We believed this reversal 
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of top and bottom monomers to be highly plausible given that (+)-pestalazine A would be 

expected to share a similar biogenetic origin to (+)-pestalazine B (4b), which had undergone 

structural revision during its synthesis.17g Our hypothesis was further substantiated by the 

more recent discovery of (+)-asperazine (1) along with its N1′-linked isomer (–)-asperazine 

A (4a).24 The facility with which we could simply switch the top and bottom monomers in 

our key Friedel-Crafts step (Scheme 7) proved decisive in enabling us to rapidly elucidate 

the structure that validated the data from the metabolite’s isolation report.

With the necessary Friedel–Crafts components, indoline (+)-30a and bromide (+)-27b, 

already in hand (Scheme 5), we were able to direct the union of these tetracycles in 

formation of dimer (+)-31c in 32% yield (Scheme 7). In this case, we only deviated from our 

established conditions by including dichloromethane as co-solvent during fragment 

assembly. This allowed us to work at higher reaction concentrations while maintaining the 

optimal reactivity that nitroethane had consistently provided. The recovered starting material 

(+)-30a and the side product alcohol (+)-28b could be recycled, the latter by its conversion 

back to bromide (+)-27b in 98% yield by subjection to thionyl bromide and 2,6-di-tert-
butyl-4-methylpyridine (Scheme 5).29 Next, concomitant carboxybenzyl hydrogenolysis and 

bis-dechlorination of dimeric substrate (+)-31c, followed by desilylation of ether (+)-32c, 

proceeded in 69% and 91% yield, respectively (Scheme 7). The final reduction and ring-

opening of alcohol (+)-33c furnished indole (+)-3 in 71% yield. To our delight, all 

spectroscopic data for molecule (+)-3 were in excellent agreement with those from Che’s 

isolation report of (+)-pestalazine A,4 thereby confirming (+)-3 as the correct structure. 

Furthermore, the optical rotation for (+)-3 was +211° (c 0.13, MeOH)29 which was in good 

agreement with the reported value for the natural isolate.4

In summary, we completed expedient and unified total syntheses of (+)-asperazine (1), (+)-

iso-pestalazine (2), and (+)-pestalazine A (3), in eleven steps from commercially available 

N-Boc-L-tryptophan methyl ester, and respective overall yields of 6.8%, 8.0% and 4.8%. 

Guided by our core ethos of retrobio-synthetic2c,40 analysis, we developed a mild, regio– 

and stereocontrolled, ortho-directed Friedel–Crafts reaction for the formation of the critical 

C3–C8′ dimeric linkage in these molecules. Our late-stage C3–C8′ heterodimerization 

approach to structures (+)-1, (+)-2 and (+)-3 benefits from its use of advanced 

diketopiperazine tetracycles as easily interconvertible Friedel–Crafts components. The 

successful implementation of this new and convergent synthetic strategy for these dimeric 

diketopiperazines required the application of the new tandem C3′ reduction–ring opening 

transformation for the selective late-stage unraveling of the tryptophan motif in these 

alkaloids. Additionally, the generality of our three-step protocol from Friedel-Crafts product 

(+)-31 to the final alkaloids was showcased by our ability to employ the same sequence with 

all three natural product targets. This paved the way for a modular, highly convergent 

strategy that allowed for a facile inversion of the tetracyclic fragments in (+)-iso-pestalazine 

(2) to (+)-pestalazine (3). The first total synthesis of (+)-pestalazine A (3) led to a revision of 

its structure from the originally reported polycyclic indole (+)-2. Our biogenetically inspired 

synthetic strategy to these fascinating alkaloids described here expands the range of 

heterodimeric diketopiperazines accessible by highly stereo- and regioselective late-stage 

complex fragment assembly.
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Figure 1. 
Representative heterodimeric diketopiperazines.
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Scheme 1. 
Concise Synthesis of the Naseseazines.
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Scheme 2. 
Initial Retrosynthetic Analysis of Alkaloids (+)-1 and (+)-2 based on C8-Boronated 

Tryptophan Synthesis.
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Scheme 3. 
First Generation Synthesis of (+)-Asperazine (1).a

aReagents and conditions: (a) AgSbF6 (2.0 equiv), DTBMP (2.2 equiv), 18-crown-6 (2.0 

equiv), EtNO2, 23 °C, 1 h. (b) (+)-19a, Pd/C (10%), H2, EtOAc, 7 h, 23 °C, 81%. (c) 

(+)-19b, Pd/C (10%), NH4HCOO, EtOH, 70 °C, 7 h, 37%. (d) TFA, CH2Cl2, 23 °C, 2 h; 

EDC·HCl, HOBt, Boc-D-Phe, 23 °C, 4 h. (e) TFA, CH2Cl2, 23 °C, 7 h; n-BuOH, 120 °C, 46 

h, 13% (over 2 steps).
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Scheme 4. 
Revised Retrosynthetic Analysis of Alkaloids (+)-1 and (+)-2.
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Scheme 5. 
Synthesis of Friedel-Crafts Components.a

aReagents and conditions: (a) NBS, BF3·OEt2, MeCN, 0 °C, 40 min; (b) (+)-27a: NCS, 

TFA, MeCN, 23 °C, 20 h; (c) (+)-27b: NCS, TiCl4, MeCN, 23 °C, 15 h; (d) AgSbF6, H2O, 

EtNO2, 23 °C, 2 h; (e) SOBr2, DTBMP, CH2Cl2, 0 °C, 40 min; (f) TBSOTf, 2,6-lutidine, 

CH2Cl2, 23 °C, 35 h; (g) Pd(OAc)2, Et3SiH, NEt3, CH2Cl2, 23 °C, 4 h.
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Scheme 6. 
Friedel-Crafts Reaction and Ring-Opening: Synthesis of (+)-Asperazine (1) and (+)-iso-
Pestalazine A (2).a

aReagents and conditions: (a) AgSbF6, DTBMP, EtNO2, 23 °C, 40 min; (b) Pd/C (10%), 

HCO2NH4, EtOH, 20 h, 70 °C; (c) TASF, DMF, 23 °C, 40 min; (d) TBAF, THF, 23 °C, 1 h; 

(e) MsOH, Et3SiH, CH2Cl2, 23 °C, 4 h.
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Scheme 7. 
Synthesis of (+)-Pestalazine A (3).a

aReagents and conditions: (a) AgSbF6, DTBMP, EtNO2/CH2Cl2 (3:1), 23 °C, 90 min; (b) 

Pd/C (10%), HCO2NH4, EtOH, 70 °C, 25 h; (c) TASF, DMF, 23 °C, 1 h; (d) MsOH, Et3SiH, 

CH2Cl2, 23 °C, 4 h.
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