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Resource theory is a widely applicable framework for analyzing the physical resources required for
given tasks, such as computation, communication, and energy extraction. In this Letter, we propose a
general scheme for analyzing resource theories based on resource destroying maps, which leave resource-
free states unchanged but erase the resource stored in all other states. We introduce a group of general
conditions that determine whether a quantum operation exhibits typical resource-free properties in relation
to a given resource destroying map. Our theory reveals fundamental connections among basic elements of
resource theories, in particular, free states, free operations, and resource measures. In particular, we define a
class of simple resource measures that can be calculated without optimization, and that are monotone
nonincreasing under operations that commute with the resource destroying map. We apply our theory to the
resources of coherence and quantum correlations (e.g., discord), two prominent features of nonclassicality.
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Introduction.—Resource theory originates from the obser-
vation that certain properties of physical systems become
valuable resources when the operations that can be performed
are restricted so that such properties are hard to create. A
prototypical example of such a property is quantum entangle-
ment [1,2], which becomes a key resource for many quantum
information processing tasks, when one is restricted to local
operations and classical communication (LOCC). The frame-
work of resource theory has been applied to various other
concepts in quantum information, such as purity [3], magic
states [4], and coherence [5,6], and to broader areas, such as
asymmetry [7] and thermodynamics [8].

Theories of different resources share a similar structure.
In general, quantum resource theories contain three basic
elements: free states, free (allowed) operations, and re-
source measures (monotones). These elements are closely
related to one another. For example, free operations should
not be able to create resource from free states, and resource
measures are expected to be monotone nonincreasing under
free operations. In recent years, considerable effort has
been devoted to developing a unified framework of
resource theories [9—11]. In particular, Ref. [9] studies
the general case where the set of free operations is maximal,
i.e., all (asymptotically) resource nongenerating operations
are allowed, and when the resource satisfies several
postulates (e.g., the set of free states is convex).

Some key aspects of resource theories are not addressed
by existing frameworks, however. For example, character-
izing a proper set of free operations is frequently a major
difficulty in establishing a resource theory, and we do not yet
have general principles and understandings for nonmaximal
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theories. Indeed, a successful resource theory is usually
specified by physical restrictions on the set of allowed
operations: LOCC and thermal operations [8,12,13] are
prominent examples. But such restrictions are often stronger
than merely nongenerating, and may lead to mathematical
difficulties in characterizing and calculating monotones.
Moreover, existing results do not apply to some resources,
such as discord, where the set of free states is nonconvex.

In this Letter, we introduce a simple but universally
applicable theory of resource-free properties of quantum
operations that addresses these issues. Our theory is based
on the notion of resource destroying maps: for a given
resource, a resource destroying map leaves free states
unchanged, but destroys the resource otherwise. Key
features of resource destroying maps are discussed. For
example, an immediate observation is that a resource
destroying map is not linear (thus cannot be represented
by a quantum channel) if the set of free states is nonconvex.
As will be seen, many important properties of our frame-
work sharply contrast linear resource destroying maps with
nonlinear ones. We demonstrate that the concept of
resource destroying maps helps unify and simplify the
analysis of resource theories, allowing us to determine
whether a quantum operation exhibits a group of funda-
mental resource-free properties, in addition to nongenerat-
ing. A basic result of our theory is that any contractive
distance between a state and its resource-free version is
monotone nonincreasing under all such operations. Finally,
we apply the framework of resource destroying maps to
coherence and discord. In particular, we find that the theory
of discord, which is poorly understood in terms of resource
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theory (largely due to its nonconvexity), can exhibit a
simple structure in this framework. Moreover, the analysis
of discord helps illustrate several peculiar properties of
nonlinear resource destroying maps.

Resource destroying maps.—Here we formally define
the notion of resource destroying maps, the key concept of
our theory. Let F be the set of free states for a certain theory.
For all input states p, a resource destroying map A satisfies
the following requirements: (i) resource destroying: if p€F,
A(p) € F; (ii) nonresource fixing: if p € F, A(p) = p. In
other words, a resource destroying map outputs a free state
if the input is not free, and leaves the input unchanged
otherwise. The resource destroying map characterizes the
resource-free space: F' consists precisely of the fixed points
of A. Resource destroying maps are idempotent due to (ii).
They are also surjections onto codomain F since every free
state is a preimage of itself. It is helpful to draw an analogy
between the structure of resource destruction and a fiber
bundle: 4 defines a bundle projection onto F. Call a nonfree
state a parent state of its image free state. Then each free
state defines a family consisting of corresponding parent
states (the fiber) and the free state itself.

Note that a resource destroying map does not have to be
completely positive or linear, and can be highly nonuni-
form. However, we are mostly interested in the physically
motivated maps, usually with simple descriptions that work
universally for all inputs. For example, the simplest case is
when the resource destroying map can be represented by a
quantum channel. However, it can be shown that A cannot
be linear (thus not a channel) when F is nonconvex. (See
Supplemental Material [14] for details.) In addition, for
theories of correlations among multiple parties, local
resource destroying maps cannot be a channel either.
Notably, entanglement breaking channels [24] do not
necessarily leave  separable (unentangled) states
unchanged, and so are not entanglement destroying maps.
Consider uncorrelated states: the channel that stabilizes all
local states can only be the identity, which does not destroy
resource. Necessary and sufficient conditions for the
existence of resource destroying channels are recently
investigated in Ref. [25].

For many theories, a simple resource destroying map is
easy to identify. For example, complete dephasing in the
preferred basis is an obvious coherence destroying map; Haar
(uniform) twirling over the group G is a G-asymmetry
destroying map [26]. For discord-type quantum correlations,
the resource destroying map cannot be a channel (whether
local or not) since discord-free (classically correlated) states
form a nonconvex set [27], but it can simply be a local
measurement in an eigenbasis of the reduced density operator.
In the following, we use upper and lower case Greek letters to
denote channels and general maps, respectively.

Resource-free conditions.—Now we are ready to intro-
duce a group of general conditions with simple mathemati-
cal forms, based on resource destroying maps, which

correspond to various typical resource-free properties of
quantum operations.

Consider a theory with resource destroying map 4. Let £
be some quantum operation. We start from

Eo) = Ao&ol, (1)

where o is the composition of maps. An equivalent form of
this condition is the following: £(4(p)) = A(E[A(p)]) forall
p. Recall that only free states are fixed points of A. This
condition indicates that the output of £ol is always a fixed
point of 4, thus free. In other words, the set of free states is
closed under £. So we call this condition the nongenerating
condition, and, correspondingly, the operations satisfying
this condition resource nongenerating operations. This is a
necessary constraint on free operations, since any other
operation can create resource, thus trivializing the theory.
Theories that allow all such operations (under some
assumptions including convexity) possess a common
structure: they are reversible and have regularized relative
entropy as the unique monotone asymptotically [9,10].

Next, we consider the following dual form of the
nongenerating condition:

Ao& = Ao&oA. (2)

Think of the output of 1 as the free part of an input state.
This condition means that £ cannot make use of the
resource stored in any input to affect the free part. We
call this condition the nonactivating condition. An alter-
native interpretation is that such operations never break up
a family: members of the same family must be mapped to
the same target family (not necessarily the original one
though). An illustration of the nongenerating and non-
activating conditions is given in Fig. 1.

In general, the nongenerating and nonactivating con-
ditions can hold independently. Because of the idempo-
tence of A, the sufficient and necessary condition for an
operation to be resource nongenerating and nonactivating
simultaneously is that it commutes with A:

o€ = Eo. (3)

We call this condition the commuting condition.

Recall that a quantum operation £ can be specified
by Kraus decomposition £(+) = > K, - K, where {K,}
are Kraus operators satisfying E”KZK u < 1. Each Kraus
arm E,(-) =K, - K}, corresponds to a (unnormalized)
generalized measurement outcome with probability
tr(K,, - K}). In practice, one may want to require that the
nongenerating, nonactivating, or commuting conditions be
satisfied even when considering selective measurements;
i.e., the outcome of the measurement is accessible. This
leads to the following modification of each condition: there
is some Kraus decomposition of £ such that all £, satisfies
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FIG. 1. An illustration of the resource-free conditions. The set
of free states is closed under resource nongenerating operations.
States belonging to the same family are mapped to the same target
family by resource nonactivating operations.

the condition. We call such counterparts selective condi-
tions. In other words, selective operations can be imple-
mented by some POVM that exhibits corresponding
resource-free properties, even if measurement outcomes
are retained. Here we do not impose these conditions on
every Kraus decomposition: typically, the relevant decom-
position is specified by how we implement the operation,
and this can be an overly strong requirement that places
extra constraints irrelevant to the resource under study [28].
We shall compare the strength of the original conditions
and their selective counterparts in the next section.

For a given resource-free set F, the definition of 4 is in
general nonunique. Since A is surjective, the set of resource
nongenerating operations is not affected by different
choices of A. In contrast, resource nonactivating operations
and thus commuting operations can depend on the bundle
structure specified by A. These observations also hold for
the selective version of each condition. Explicit examples
are given in the Supplemental Material [14].

General properties.—Here we introduce some typical
features of our framework that hold generally in different
theories. We shall see that some of these features manifestly
contrast linear resource destroying maps with nonlinear
ones. Denote the sets of resource nongenerating, non-
activating, and commuting operations as X, X*, and X,
respectively, and their selective versions by subscript s. By
definition, they satisfy X = XNX* and X, = X;NX".

For a theory with resource destroying channel A, one can
easily construct these operations. Notice that AoQ € X,
where Q is an arbitrary operation, by the idempotence of A.
Meanwhile, AoQ belongs to X* only if Q itself does.
Similarly, QoA € X*. Destroying the resource in both the
input and output allows both conditions to be satisfied:
AoQoA € X. Selective operations can be constructed

by similar procedures on each Kraus arm. Let {M,} be
a Kraus decomposition of Q, and Q,(-) =M, - M,Jﬂ denote
the action of each Kraus arm. It can be directly verified that
each AoQ, specifies a resource nongenerating Kraus
arm, ie., ), AoQ, € X,. Similarly, >° QA € X; and
> MoQ oA € X,

One may also ask if the resource-free properties hold for
compositions and convex combinations. The answer is yes
for compositions for any 4. For example, X is obviously
closed under composition: given two operations &; and &,
satisfying &£ 04 = 10&;, for some resource destroying
map 4, it holds that £,0&; is also a A-commuting operation:
by using the respective commuting conditions, we obtain
(E50E )0 = E5000E | = Ao(E,0&). This conclusion also
holds for X, X*, and selective classes, which can be proven
by similar arguments. On the other hand, all classes are
closed under convex combination when 4 is a linear map.
Again, take the commuting condition as an example:
[PE1 + (1 = p)&Jod = pEioA + (1 = p)Eyod = pAol i+
(I = p)Ac&E,y = Ao[pE; + (1 — p)&,]. Similar arguments
work for other conditions. For nonlinear A, however, the
last equality does not necessarily hold. For the same reason,
when 4 is linear, selective conditions are stronger than their
respective original versions (e.g., X, C X), but otherwise
this is not necessarily true.

We now show that the commuting condition plays a
special role in the quantification of resources, a central
theme of resource theories. The most basic property of a
proper resource measure (a non-negative real function of
states) is monotonicity under free operations: free operations
should not be able to increase the amount of resource. A
natural type of measure is the minimal distance to the set of
free states, where the distance is given by some function
D(p, o) defined on two states p and o that is contractive, i.e.,
obeys the data processing inequality DI[['(p),['(c)] <
D(p, o) for any operation I'. Note that D is not necessarily
a metric. Nonsymmetric distances such as relative Rényi
entropies are also valid choices of D. Formally, a distance
measure of resource is given by D(p) := inf,crD(p, o).
Monotonicity holds for such measures due to the minimi-
zation. However, such optimizations are often computation-
ally hard. Now consider the following function:

D(p) = D(p, 4(p)). (4)

Because of the absence of minimization, D(p) > D(p).
However, if we restrict the set of allowed operations to X,
this measure also satisfies the monotonicity requirement,

D(p) = D(T(p).T[A(p)]) = D(T(p). A[L(p)]) = D((p)).
(5)

where the inequality follows from the contractivity of D.
Therefore, for any resource theory with free operations
satisfying the commuting condition, we have a class of
computationally easy monotones which avoid optimizations
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(given that A is suitably defined). We should note that D is
not necessarily continuous everywhere when 4 is nonlinear,
which requires more careful analysis in practice (as will be
demonstrated for discord). The possibility of retaining
measurement outcomes leads to the selective monotonicity
condition—monotonicity under selective measurements on
average. Following a similar argument as Eq. (5), a general
result we can obtain at the moment is that D obeys selective
monotonicity under selective commuting operations, for a
restricted class of D including quantum relative entropy
(details in the Supplemental Material [14]). Recall that,
when A is linear, X C X: selective monotonicity is stronger
than monotonicity; however, this is not necessarily the case
when 1 is nonlinear.

Examples.—We first focus on the theory of quantum
coherence. Here, a basis of interest is specified, and density
operators that are diagonal in this basis are incoherent
(free). The study of coherence from a resource theory
perspective has attracted a considerable amount of attention
and effort in recent years. A few definitions of coherence-
free operations stemmed from various perspectives are
proposed and studied lately [5,6,29-35], most of which can
directly emerge from our framework as follows. Complete
dephasing in the preferred basis, denoted by I1, is a natural
coherence-destroying map. Let X (IT) and X*(IT) and X (IT)
be the sets of coherence nongenerating, nonactivating, and
commuting operations given by II, respectively (an addi-
tional subscript s for selective operations). X(IT) contains
all coherence nongenerating operations, which are recently
analyzed in Ref. [35]. Members of X*(IT) cannot activate
the coherence stored in the input in the sense that £(-) and
EolIl(+) are always indistinguishable by measuring incoher-
ent observables. So X(IT) contains operations that can
neither create nor activate coherence. In the preparation of
this Letter, we became aware that these operations were
very recently studied as dephasing-covariant operations in
Refs. [33,34]. X, (IT) and X (TI) are, respectively, the sets
of incoherent operations [5] and strictly incoherent oper-
ations [32]. Detailed discussions of these classes and
further comparisons to other relevant proposals of coher-
ence-free operations are provided in the Supplemental
Material [14]. For any theory where the free operations
belong to X (I1), we know that D[-, I1(-)] for any contractive
D represents a coherence monotone. In comparison,
monotonicity of some D may fail if more operations are
allowed. For example, not all relative Rényi entropies are
monotone under X (IT) [34].

Next, we consider discord [36,37], the most general form
of nonclassical correlations; see Ref. [27] for a compre-
hensive review. Discord places a stronger constraint on free
states than entanglement in the sense that it can exist in
separable states. Discord has been shown to be the under-
lying resource for various tasks [38—41]. However, a formal
treatment of discord in the resource theory framework (e.g.,
transformation rules) remains elusive, mostly because our

understanding of discord-free operations is limited, and
most existing general results for resource theory do not
directly apply to discord, due to its nonconvexity. Here, we
focus on the one-sided discord as measured on subsystem A
of a bipartite state p,p, and local operations acting on the
same subsystem. The ideas can be generalized to nonlocal
operations and multipartite cases. A state is regarded as
discord-free if there exist local rank-one projective mea-
surements that do not perturb the joint state. Such states
take the form pyp = > pili)(i| ® pi, where {|i)} is a
complete orthonormal basis of A. These states are conven-
tionally called classical-quantum (CQ) states. Because of
the nonconvexity of CQ, discord can be created just by
mixing, and discord destroying maps cannot be linear.
Suppose the local density operator p, = trgp,p admits a
spectral decomposition p4 = >, p;|i)(i|. Then

mA(Pag) = Z(\i>A<i| ® Ip)pap(|i)alil ® 1), (6)

i

i.e., a local measurement in an eigenbasis of A, is the most
natural discord destroying map. Obviously, 7, is nonlinear
and thus not a channel: the basis in which the projection
takes place is dependent on the input state, and not uniquely
defined within degenerate subspaces. Also note that 7z,
never changes the local states.

We now plug 7, into the conditions. Let £, be a local
operation acting on A. Note that we are considering the effect
on the joint space: For example, the nongenerating condition
reads (€4 ® Ig)omy = m40(E4 @ I5)omy. This condition
determines whether an operation always maps a CQ state
to another. As opposed to entanglement, discord can be
created by certain local operations. Such operations have been
studied in Refs. [42,43]. X’ (7,) and X, (r4) have not been
considered before to our knowledge. We can classify a variety
of simple quantum operations according to their behaviors in
the theory of z as follows (proofs in the Supplemental
Material [14]). Local unitary-isotropic channels (mixture of
a unitary channel and depolarization, which are intuitively
strongly discord-free) indeed belong to X 4 (74 ) and X 4 (74).
Rank-one projective measurements, however, are in
X, 4(m4)\X4(7y). Furthermore, local mixed-unitary chan-
nels belong to all selective classes, but some of them are not in
the original classes, supporting our general observation that
selective conditions are not necessarily stronger than their
original counterparts for nonlinear A.

As shown earlier, contractive distances between any p,p
and 74(pag), €&, Slpapllma(pas)], is monotone under
X4 (r4) (including all unitary-isotropic channels), and selec-
tively monotone under X 4 (74) (including all mixed-unitary
channels). This quantity is equivalent to a physically moti-
vated simple measure of discord called diagonal discord
[44]. (Similar quantities are independently discussed in
Refs. [45-49].) Diagonal discord may suffer from disconti-
nuities (infinitesimal perturbations may lead to a sudden jump
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in the value of diagonal discord) [50,51]; however, it can be
shown that they only occur at degeneracies [52].

Reference [53] adopts an approach similar to the idea of
resource destroying maps to study nonclassicality of
operations. There, operations that commute with einselec-
tion [54] (complete dephasing) in a certain basis are
regarded as classical. The key difference between the setup
of Ref. [53] and the discord theory discussed here is that the
basis for einselection needs to be specified; thus, not all
discord-free states are the fixed points of such einselection
[55]. Ref. [53] is more about local coherence in some
preferred basis rather than discord.

Concluding remarks.—In this Letter, we propose a simple
framework for resource theories based on the notion of
resource destroying maps. Our theory provides a general
scheme for understanding the power of quantum operations
in relation to certain resources. The theory shows how to
extend results that have been previously derived for specific
resources to a more general class of resource theories. In
particular, our framework may lead to conceptual advances
in understanding nonconvex theories such as discord. It
would also be interesting to apply the framework of resource
destroying maps to other important resource theories, such
as those of entanglement, magic states, asymmetry and
thermodynamics.

Z.W.L. and S. L. are supported by AFOSR and ARO.
X. H. is supported by NSFC under Grant No. 11504205.
We thank Can Gokler, Iman Marvian, Peter Shor, Kevin
Thompson, and Yechao Zhu and anonymous referees for
helpful discussions.

Note added.—During the final revision of this Letter, we
became aware of a recent review on discord [56], which
includes a detailed discussion of the importance and
difficulties of studying discord under the resource theory
framework, and the state of the art of this field (in particular
the local commutativity-preserving operations as the maxi-
mal set of local free operations).
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