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Abstract 

Horizontal gene transfer plays a major role in microbial evolution, allowing 

microbes to acquire new genes and phenotypes. Integrative and conjugative elements 

(ICEs, a.k.a. conjugative transposons) are modular mobile genetic elements that reside 

integrated in a host genome, and are passively propagated during chromosomal 

replication and cell division. Induction of ICE gene expression leads to excision, 

production of the conserved conjugation machinery (a type IV secretion system), and 

the potential to transfer DNA to appropriate recipients. ICEs typically contain "cargo" 

genes that are usually not related to the ICE life cycle and that confer phenotypes to 

host cells. We summarize the life cycle and discovery of ICEs, some of the regulatory 

mechanisms, and how the types of cargo have influenced our view of ICEs. We discuss 

how ICEs can acquire new cargo genes and describe challenges to the field and various 

perspectives on ICE biology.  

 

 

INTRODUCTION 

Microbes can acquire (and donate) new genes and phenotypes rapidly by horizontal 

gene transfer (HGT), the transfer of DNA from one organism to another. There are three 

well-studied types of horizontal gene transfer in microbes: 1) Transformation, the 

natural ability to take up exogenous DNA from the environment (reviewed in 83). 2) 

Transduction, the transfer of DNA from one cell to another by bacteriophage (139) and 

references therein. 3) Conjugation, the contact-dependent, unidirectional transfer of 

DNA from a donor to a recipient via a conjugation (or mating) apparatus expressed in 

the donor (first described by Lederberg 86). Both transduction and conjugation are 

mediated by mobile genetic elements, which can mediate their transfer from one cell to 
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another. Other types of mobile genetic elements are mobile within an organism, but not 

necessarily between organisms. A fourth type of horizontal gene transfer, fusion of two 

cells, and perhaps fusion of cells with DNA-containing vesicles, appears to be less 

common in prokaryotes than transformation, transduction and conjugation.  

This review focuses on integrative and conjugative elements (ICEs), also called 

conjugative transposons, which make up a large family of mobile genetic elements. 

There are two defining features of ICEs: 1) they are found integrated in a host genome, 

and 2) they encode a functional conjugation system, a type IV secretion system 

(described below and reviewed in 2, 38, 143), that mediates their transfer to other cells. 

We limit our scope to ICEs that transfer linear single strand DNA (ssDNA) and will not 

cover the ICEs of actinomycetes (AICEs) that are transferred as double stranded DNA 

(dsDNA) by an FtsK-like ATPase (reviewed in 18, 61, 138).  

There are many excellent reviews of ICEs (14, 122, 141, 156) and various functions 

associated with ICEs and other mobile elements (14, 141). Here, we briefly summarize 

some of what has been previously reviewed and describe some of the key features of 

the ICE life cycle. We focus on aspects of ICE biology that are emergent and have not 

been extensively summarized.  

 

Integrative and conjugative elements  

ICEs and conjugative plasmids are both mobile genetic elements that carry genes 

encoding the machinery necessary for conjugation. ICEs are typically found integrated 

in the host chromosome, and contain genes needed for integration and excision. They 

are propagated passively during chromosomal replication, segregation, and cell 

division. In contrast, conjugative plasmids exist as extra-chromosomal elements that 
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replicate separately from the host chromosome. However, several ICEs, and we 

postulate many more, are capable of autonomous plasmid-like replication (see below).  

ICEs and conjugative plasmids contain genes and sites needed for processing their 

DNA for transfer. Most of these genes are not expressed when the ICE is integrated in 

the chromosome. However, upon activation, expression of ICE genes needed for 

excision and conjugation is induced, and the ICE excises from the host chromosome. 

Cells then have the ability to transfer the ICE (or other DNA) through the ICE-encoded 

conjugation machinery to an appropriate recipient.  

ICEs are typically mosaic and modular, ranging from ~20 kb to >500 kb in size. They 

contain functional modules from different sources. Genes of similar function are 

typically grouped together on the element (79, 105, 110, 121, 122, 142, 155, 156).  

Because of the mosaic and modular nature of ICEs, knowledge of other elements 

greatly informs our views of different aspects of the ICE life cycle. Regulatory 

mechanisms controlling ICE gene expression can be similar to those of phages, plasmids 

and host genes. Mechanisms of integration and excision from the host genome are 

similar to those of viruses and transposons. Processing of ICE DNA for conjugative 

transfer is similar to that of conjugative plasmids and analogous to rolling circle 

replication of some plasmids and viruses.  

The conjugation machinery encoded by ICEs, a type IV secretion system, is 

homologous to that encoded by conjugative plasmids, and much of what we know 

about the mechanism of conjugation comes from many beautiful studies of conjugative 

plasmids, including the F plasmid from E. coli, R plasmids, and the Ti plasmid 

(reviewed in 2, 3, 80, 154). In some cases ICEs and plasmids use conjugation systems to 

mobilize non-conjugative elements to new hosts. As with some plasmids, conjugation 

can be regulated by cell-cell signaling. Like both plasmids and phages, many ICEs carry 
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cargo genes with functions unrelated to the ICE life cycle. These cargo genes are 

typically thought to provide some benefit to the host cells.  

Historically, the study of cargo genes and their transfer led to the discovery of ICEs. 

Cargo genes that were typically studied encoded an easily selectable or identifiable 

phenotype that facilitated study of the ICE, including antibiotic resistance or the ability 

to metabolize a new carbon source. Recently, ICEs have been identified by sequence 

analysis, and in many cases it is not obvious what benefit these ICEs confer to their 

hosts. Therefore, our current understanding of ICE-encoded phenotypes is skewed by 

the selective studies of ICEs that confer specific phenotypes. We speculate that many of 

the recently identified ICEs confer beneficial phenotypes that are outside the range of 

those already associated with ICEs. 

The biology of ICEs can be viewed from both mechanistic and evolutionary 

perspectives. We believe that the most interesting aspects of ICE biology are those that 

are likely conserved and not well understood for other elements. This includes 

understanding the mechanisms of transfer, the processing and fate of ICEs upon 

introduction into a transconjugant, and the identity and roles of host genes in ICE 

biology. In addition, the study of cargo genes and the phenotypes conferred will 

provide insight into the evolutionary aspects of ICEs, their interactions with hosts and 

other mobile genetic elements, and their roles in enabling organisms to grow in 

different niches.  

 

The ICE life cycle  

Under normal circumstances, most ICEs are integrated into the host chromosome 

and conjugation genes are not expressed (Fig. 1A). When ICE gene expression is 

induced, by specific cellular conditions, or perhaps stochastically, the ICE excises from 
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the chromosome and forms a circular, dsDNA molecule, essentially a plasmid (Fig. 1B). 

Several of the ICE gene products assemble into a mating pore that is capable of 

transferring the ICE DNA. Other host and ICE-encoded proteins recognize the origin of 

transfer (oriT) and process the ICE DNA to generate a linear ssDNA-protein complex, 

referred to as the transfer DNA (T-DNA) (Fig. 1C). The mating machinery pumps the T-

DNA into the recipient (Fig. 1D), where the ICE likely recircularizes, becomes double 

stranded (Fig. 1E), and then recombines into the chromosome using an ICE-encoded 

recombinase (integrase) (Fig. 1F). Because the known recombinases require dsDNA as 

template for recombination, it is inferred that the ICE ssDNA must be converted to 

dsDNA. Many ICEs integrate into a specific chromosomal site, often a tRNA gene. 

Others are more promiscuous and can integrate into many locations. In all cases, if the 

ICE is to be maintained in the original donor, it must eventually integrate back into that 

chromosome (Fig. 1F).  

 

CARGO GENES AND THE DISCOVERY OF ICEs  

Identification of ICEs that confer antibiotic resistances 

The discovery and earliest studies of ICEs resulted from interest in resistances to 

antibiotics and heavy metals, and how those resistances were spread between 

organisms. At the time, the spread of many of these types of resistances was known to 

be mediated by conjugative plasmids that harbored the resistance genes. Work with 

Enterococcus faecalis (52), Bacteroides species (98, 117), Haemophilus influenzae (124, 136), 

Streptococcus pneumonia (128), Proteus rettgeri (108) and Clostridium species (94, 134) 

identified antibiotic and heavy metal resistance determinants that were transferred via 

conjugation. Importantly, the resistance genes were later found to be transiently or 

permanently located on the chromosome and not on a stable plasmid.  
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Conclusive evidence of a conjugative element that integrated into DNA came from 

studies of Tn916 in E. faecalis (then called Strepotococcus faecalis). It was found that 

tetracycline resistance could be transferred between strains of E. faecalis via conjugation 

in the absence of plasmids, and that the recipients in these experiments were converted 

to donors that could then transfer the resistance to another recipient. This work 

demonstrated that Tn916 encoded genes necessary to mediate its own conjugative 

transfer and that it could integrate into various sites on a plasmid or the host 

chromosome (often in multiple copies) much like a transposon. Furthermore, Tn916 

functioned in recombination-deficient strains, demonstrating that homologous 

recombination was not needed for integration of the element into other DNA (52, 58). 

Because of these properties, Tn916 was called a conjugative transposon.  

 

Identification of ICEs that confer other phenotypes 

ICEs were also identified based on their ability to enable cells to utilize an 

alternative carbon source. This trait, like antibiotic resistance, provided a selective 

phenotype that facilitated study of the ICE. The ability of Pseudomonas knackmusii B13 to 

degrade chlorocatechols and use them as a carbon source was found to be transferrable 

to other strains via conjugation of the chromosomal element ICEclc (119). Genes 

allowing the fermentation of sucrose were determined to be on the ICE CTnScr94 in 

Salmonella (71) and on the ICE Tn5276 in Lactocuccus lactis (118). Genes allowing 

Pseudomonas putida to metabolize biphenyls and salicylate are located on the ICE bph-sal 

(107). 

Some genomic, pathogenicity, and symbiosis islands are also ICEs. These are regions 

of bacterial genomes that are present or absent in otherwise closely related bacterial 

strains. For example, the opportunistic pathogen Pseudomonas aeruginosa has an 
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extremely plastic genome, in large part due to pathogenicity islands (67, 97). One of 

these islands, PAPI-1, is an ICE (32). The genes that allow Mesorhizobium (then 

Rhizobium) species to form nodules on Lotus species are on a symbiosis island 

ICEMlSymR7A (116). 

The selective advantages and phenotypes conferred to the bacterial hosts by ICEs 

led directly to the identification of these mobile elements and have been a convenient 

and powerful means for identifying and tracking these ICEs. However, identification of 

ICEs based solely on the phenotypes conferred by the cargo genes provides a limited 

means for identifying ICEs. Other means for identifying ICEs provides a more complete 

view of these elements, their distribution in various organisms, and their potential 

contributions to microbial phenotypes.  

 

Identification of ICEs based on conserved features  

Many ICEs, or putative ICEs, have now been identified based on sequence 

similarities rather than the phenotypes conferred by cargo genes. Bioinformatic 

approaches have been used to: 1) Find new ICEs based on the presence of conserved 

conjugation and DNA processing genes. 2) Compare closely related ICEs to identify 

conserved features, and 3) Survey a wide variety of genomes for conserved features 

indicative of conjugative elements. 

Functional ICEs have been identified in diverse organisms using bioinformatic 

approaches. For example, ICEA of Mycoplasma agalactiae (47, 96), ICEPmu1 of Pasteurella 

multocida (101) and ICE-ßox (also LpPI-1) of Legionella pneumophilia (21, 51) were found 

by identifying variable regions within the chromosomes of closely related bacteria that 

contain conjugation genes. ICEBs1 of B. subtilis was identified both bioinformatically 

(25) and by analysis of a peptide signaling system (rapI-phrI) that was found to regulate 
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conjugation (5).  

Examination of genome sequences and sequencing of known ICEs has facilitated 

comparisons between closely related ICEs, such as those of the ICEHin1056 (79) and 

SXT/R391 families (8, 155). Such studies helped distinguish conserved genes that 

contribute to the ICE life cycle from cargo genes. In addition, they help to reveal the 

breadth of cargo genes associated with closely related ICEs and to highlight the fact that 

ICEs carry many of their cargo genes in defined regions (hot spots) that tolerate gene 

insertion without disrupting ICE function. An online tool, ICEberg, has been recently 

created that facilitates the identification and comparison of closely related ICEs 

(http://db-mml.sjtu.edu.cn/ICEberg/) (16). 

Recently, a systematic approach has been applied to the broad-scale identification of 

candidate conjugative elements, including ICEs, in genomic sequence databases (66). 

Regions that contained conserved features of conjugative elements were identified in 

genomic sequences, including genes predicted to encode conjugative relaxases, type IV 

coupling proteins, and ATPases of type IV secretion systems. A search of over 1000 

genomes revealed 335 putative ICEs and 180 putative conjugative plasmids, 

documenting that ICEs are present in most clades of bacteria and are likely more 

common than conjugative plasmids (66). 

 

Approaches to identify cargo genes and benefits of ICEs to host cells 

Many of the putative ICEs that have been identified bioinformatically are likely to 

have cargo genes with functions distinct from those already associated with most well 

characterized ICEs. Understanding the function of these cargo genes can reveal 

important information about the specific ICE, its host, and the environment in which 

the host normally resides. 
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A variety of approaches have been used to identify phenotypes conferred by ICEs. 

In some cases, a phenotype can be inferred from bioinformatic analyses based on 

homology of cargo gene to genes of known function, and testing for that function (51, 

101). High throughput screening of multiple possible phenotypes (phenotype 

microarrays) has been used to identify phenotypes conferred by ICEs (51, 55). Many 

ICEs confer multiple, seemingly unrelated phenotypes to their hosts, so the 

identification of one phenotype conferred by an ICE does not preclude the existence of 

another.  

It is possible that not all ICEs benefit their hosts. Some ICEs have a broad host range, 

and as such, an ICE that confers a benefit to one host may not confer a benefit to 

another. In some cases, particular cargo genes may have mutated and become non-

functional. Genes associated with mobile genetic elements are more likely to be 

pseudogenes than are chromosomal genes not associated with mobile genetic elements 

(91). 

 

Generation of diversity among ICEs 

ICEs are largely modular. Genes responsible for related functions, including 

conjugation, recombination, regulation, and cargo genes, are often grouped together. 

Conjugation genes are usually the most highly conserved, but the specific gene order 

can vary between otherwise closely related ICEs due to insertion of other genes (8, 64, 

79, 155). Several mechanisms have been described that generate this diversity (Fig. 2). 

Tandem insertion and accretion at the cognate att site 

Composite ICEs can be generated by tandem insertion of an ICE alongside an 

existing mobile genetic element, followed by transfer of both elements. This occurs 

when the att site normally targeted by an ICE is occupied by an element and the ICE 
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inserts in one of that element’s flanking att sites (Fig. 2A). Cis mobilizable elements 

(CIMEs) are non-conjugative elements that occupy an att site used by an ICE (13, 23, 

111). When the ICE inserts next to the CIME, the att site that the ICE inserts into is 

duplicated, forming a composite ICE with an internal and external att site at one end, 

either of which may be used during subsequent excision and conjugation events (13, 

111).  

An ICE can insert next to another ICE that is occupying its normal att site (Fig. 2B), 

forming a tandem array {e.g., ICEclc (119) and SXT (27, 70)}. These ICEs may be capable 

of moving together to a new host. However, if the tandem ICEs carry genes with high 

sequence similarity, then recombination between the ICEs can occur, removing the 

intervening sequence and generating a new ICE that inherits sequences from both 

parents. The SXT/R391 family of ICEs carry homologs of the lambda red genes bet and 

exo that enhance RecA-dependent recombination between tandem ICEs, promoting 

genetic exchange within this family of ICEs (57). 

Recombination into an existing ICE 

ICEs can accrue other mobile genetic elements within the boundaries of their 

attachment sites and thereby transfer these elements during conjugation (Fig. 2C). 

Several ICEs, including ICEHin1056 (79), SXT/R391 (17, 72), and ICEEc2 (125), carry 

insertion sequences and-or transposons. Other ICEs, including SXTET (72), ICEEc2 (125), 

and Tn5253 (6, 76) contain integrons (reviewed in 141). In some cases, a plasmid has 

integrated, apparently by single crossover, into an ICE, for example Tn5253 (6, 76). 

Relaxase-mediated recombination 

Some conjugative elements are able to insert into oriT-like sequences by a relaxase-

mediated recombination event (Fig. 2D). The relaxase of the conjugative plasmid R388 

is able to direct recombination of plasmid T-DNA into a cognate oriT site in a recipient 



 Johnson & Grossman 13 

(1, 49). Although this activity is not conserved in all conjugative relaxases (1, 35, 49), we 

suggest that relaxases from some ICEs or plasmids could mediate this type of 

integration into a cognate oriT, either in another mobile element or in a host 

chromosome.  

Imprecise excision   

In addition to the mechanisms described above, we suspect that imprecise excision 

of an ICE could bring along flanking genes, analogous to the imprecise excisions that 

generate lambda transducing phage (reviewed in 30). Acquisition of flanking sequences 

could also occur if multiple sequences resembling an attachment site are present 

beyond the ends of an ICE, for example in the ICE in Bacillus atrophaeus (our 

unpublished observations and 60). Imprecise excision might be more common with 

ICEs that have promiscuous integration sites (e.g., Tn916 58) rather than a single 

preferred site. It might also be more prevalent with ICEs that use DDE recombinases 

(24) that usually have low sequence specificity (see below).  

 

Summary of cargo genes and our view of ICE biology 

ICEs were initially discovered because of interest in the genes they carry. Thus, it 

appeared that most ICEs (at least many of those that have been characterized) contained 

genes that provide obvious phenotypes and benefits to the host, including antibiotic 

resistances, the ability to metabolize various compounds, and the ability to colonize 

various hosts (symbiosis, pathogenesis). However, recent bioinformatic analyses have 

identified ICEs throughout the prokaryotic domain (66), and there are at least a few 

functional ICEs that provide no obvious (known) benefit to the host. We postulate that 

there will be many ICEs with cargo genes that confer previously uncharacterized 

phenotypes to the host cells, and that these phenotypes are likely advantageous under 
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conditions normally experienced by the host. These phenotypes might be difficult to 

identify initially, but could contribute to interactions between ICEs and the host or 

between ICEs and other mobile genetic elements of a cognate host. Understanding some 

of these phenotypes will likely provide further insight into the continuing evolution of 

ICEs and microbes and how cells inhabit particular niches.  

 

MECHANISMS OF ICE FUNCTION 

As described above, the two defining features of ICEs are that they integrate into the 

host genome and that they encode a functional conjugation system that mediates their 

intercellular transfer. To integrate into the host chromosome, ICEs employ integrases 

that are homologous to those encoded by phage and some genomic islands. To mediate 

conjugation, most ICEs encode a type IV secretion system and DNA processing proteins 

that are homologous to those used by conjugative plasmids. In addition, like certain 

plasmids, some ICEs undergo autonomous rolling circle replication. This is likely to be 

a critical property of many ICEs that facilitates maintenance of an ICE in a population of 

cells (88).  

 

Integration and excision 

ICEs integrate into and excise from DNA using an ICE-encoded recombinase. 

Though, referred to as an integrase, it is needed both for integration and excision. The 

recombinase is often homologous to phage integrases and, like temperate phage, ICEs 

frequently insert at a particular attachment site. The chromosomal att site for ICEs is 

often in a tRNA gene. Many ICE integrases are tyrosine recombinases, but some ICEs 

use serine recombinases or DDE recombinases (for example 24, 47, 65, 147). Tyrosine 

and serine recombinases catalyze slightly different biochemical reactions, but both have 
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the same functional consequence for the ICE. These enzymes mediate site-specific 

recombination between double-stranded DNA molecules at short stretches of similar 

sequences (reviewed in 62, 114). When these sequences, termed attachment (att) sites, 

are on a circular ICE and the chromosomal target, recombination results in insertion of 

the ICE flanked by two att sites (attL and attR, on the left and right sides respectively). 

When recombination is between two att sites flanking the ICE, the result is excision of 

the ICE and reestablishment of the unoccupied chromosomal att site. Frequently, in 

addition to the integrase, an ICE encoded recombination directionality factor, often 

designated xis, is required for excision. This factor influences the direction of 

recombination mediated by the integrase to favor excision (reviewed in 69).  

There is a great deal of variation in the specificity that ICEs have for a particular 

attachment site. Many ICEs target a single att site in the host chromosome that is similar 

to the att site in the ICE. If the normal att site is unavailable, some ICEs target alternate 

sites at lower efficiency (26, 87, 100). Other ICEs have lower specificity for a specific att 

site. For example, CTnDOT inserts at multiple sites that contain a consensus sequence 

(11, 37). Tn916 insertion is not site specific in most organisms (references in 122). 

Recently, ICEs have been identified that integrate into the host chromosome using 

DDE recombinases. These recombinases are typically associated with transposons, 

insertion sequences and phage. DDE recombinases employ a variety of recombination 

mechanisms and frequently do not target a specific site for integration (reviewed in 68). 

The ICEs TnGBS1, TnGBS2 and ICEA all encode DDE recombinases (24, 65). None of 

these ICEs integrate at a specific target site, however TnGBS2 inserts upstream of 

promoter sequences and has a preferential insertion site that it uses more frequently 

than others (24, 47).  
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Conjugation and the Type IV secretion system 

Like conjugative plasmids, ICEs encode conjugation machinery, at type IV secretion 

system, for the transfer of DNA to another cell. The mechanism by which type IV 

secretion systems transfer DNA has been extensively studied in Gram negative bacteria 

(reviewed in 2, 29, 38). Homologous type IV secretion systems of conjugative elements 

have been identified in most bacterial phyla (66), indicating that the general mechanism 

of conjugation is likely to be widely conserved. Some of the details of the transfer 

mechanism likely vary as the number and composition of proteins within conjugation 

systems varies widely. There are also different challenges in transferring across the 

larger cell wall in Gram positive bacteria versus both the inner and outer membranes of 

Gram negative bacteria, though it is noteworthy that the “minimal” conjugation system 

of Tn916 successfully negotiates both. We briefly summarize the conserved aspects of 

type IV secretion systems, including the mating machinery and DNA processing. More 

extensive descriptions of these features have appeared elsewhere (reviewed in 15, 29, 

38, 143, 146).  

 

DNA processing 

Plasmids and excised ICEs exist as covalently closed circles of dsDNA and must be 

processed prior to conjugation. A dsDNA circle is converted to linear ssDNA covalently 

bound to a relaxase protein, the substrate for conjugative type IV secretion systems. The 

proteins that perform these functions are homologous for ICEs and plasmids.  

During conjugation an ICE-encoded relaxase recognizes its cognate oriT. The 

relaxase then nicks one strand of the ICE DNA and is covalently attached to the 5’ 

terminus to form the T-DNA. Both host and ICE factors assist in unwinding the two 

DNA strands and an ICE-encoded type IV coupling protein (an ATPase) engages the T-
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DNA to the type IV secretion system. The type IV secretion system then enables 

translocation of the T-DNA into the recipient cell where the DNA is recircularized by 

the relaxase. The ssDNA is presumably converted to dsDNA, which is eventually 

integrated into the host chromosome by site-specific recombination. This conversion of 

circular ssDNA to dsDNA is thought to be the same as second strand synthesis of 

rolling-circle replication employed by some plasmids and phage (reviewed in 82). Many 

conjugative plasmids use separate origins for replication and transfer and distinct 

proteins for processing each origin (77). In contrast, some ICEs use the same origin and 

DNA processing proteins both for conjugation and to replicate using a rolling-circle 

replication mechanism (see below).  

 

Autonomous replication of some ICEs 

Studies with ICEBs1 provide the most direct evidence that an ICE can replicate 

autonomously. When ICEBs1 is induced, it excises from the chromosome and the copy 

number of all ICE genes, but not adjacent chromosomal genes, increases (88). 

Replication is unidirectional, starts at oriT and requires the conjugative relaxase, NicK, 

the ICE encoded helicase processivity factor HelP, the chromosomally encoded helicase 

PcrA, PolC, and the ß-clamp (DnaN) (88, 140). Replacement synthesis of the unwound 

(leading) strand is presumably primed from the 3’-OH terminus created by the nicking 

event. The leading strand is presumed to be recircularized by NicK, by analogy to other 

systems (reviewed in 82). Synthesis of the complementary, or lagging strand is primed 

by a single strand origin (sso) (158). The nicking and unwinding of DNA for rolling 

circle replication is very similar to that needed to transfer ICE ssDNA during 

conjugation (Fig. 3) (reviewed in 36).  
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ICEMlSymR7A of Mesorhizobium loti R7A also replicates using its conjugative relaxase. 

When ICEMlSymR7A is genetically induced, the element excises and is maintained in a 

host population at a copy number of 1.5. If the conjugative relaxase is deleted the 

element is lost from the population (116). 

Some of the earliest evidence for autonomous replication of an ICE comes from 

Haemophilus influenzae. ICEHin1056, and related elements, integrate into a host 

tRNALeu gene (46). These elements were originally described as a family of antibiotic 

resistance vectors that were integrated in the chromosome of the donor, but could be 

recovered as plasmids from outgrown transconjugants (45, 136). This implies that these 

elements are maintained as replicative plasmids in the recipient for some generations 

before integrating into the chromosome.  

There are additional elements in which replication can be inferred because the copy 

number of the circular form of the ICE is greater than the copy number of the 

chromosomal attachment site. The ICE RD2 of Group A Streptococcus exists as both an 

integrated and a plasmid form in stationary-phase cultures. Treating the host with the 

DNA damaging agent mitomycin C increases the copy number of the plasmid form 

(132). ICESt3 of Streptococcus thermophilus also excises from the host chromosome and 

exists as a multicopy plasmid following induction with mitomycin C (31). Additionally, 

SXT of V. cholerae may also be capable of replication under certain situations (26). 

There are also ICEs that replicate via dedicated replication systems, independent 

from the conjugative relaxase. TnGBS1 and TnGBS2 of Streptococcus agalactiae encode a 

replication initiation protein and a conjugative relaxase. Loss of the replication initiation 

protein reduces copy number whereas loss of the conjugative relaxase does not (24, 64). 

Additionally, after conjugation, circular forms of TnGBS1 and TnGBS2 can be isolated 

from outgrown transconjugants. In the majority of cases, the attachment site in the ICE 
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matches that of the donor, and does not match a potential integration site in the 

recipient, indicating that the circular forms result from replication, rather than 

integration and subsequent excision in the recipient (64). 

 

ICEs can mobilize non-conjugative elements 

Non-conjugative mobile genetic elements can use the conjugation machinery 

encoded by an ICE or a conjugative plasmid to transfer to new hosts, a phenomenon 

known as mobilization. Mobilizable elements can exist as freely replicating plasmids, or 

as chromosomally integrated genomic islands (mobilizable genomic islands) that excise 

prior to mobilization. 

ICEs can mobilize both plasmids and genomic islands. CTnDOT/ERL (127), Tn916 

(106, 145), SXT (73), and ICEBs1 (90) have all been shown to mobilize plasmids. 

Additionally, the CTnDOT/ERL family of ICEs can mobilize genomic islands known as 

nonreplicating Bacteroides Units (NBUs) (129, 135) and the SXT/R391 family of ICEs has 

recently been shown to mobilize genomic islands of Vibrio species and related 

organisms (42-44). In both cases, these genomic islands encode their own integrase, but 

excision is regulated by the mobilizing ICE and transfer depends on the ICE 

conjugation machinery. Once in a new host these mobilizable genomic islands are 

capable of independently integrating into the chromosome. 

 

Plasmid mobilization by ICEBs1 blurs the distinction between conjugative and 

replicative relaxases  

Relaxases are frequently classified as conjugative or replicative, depending on 

whether they are required for conjugation or replication. Sequence analysis has 

revealed that these relaxases are related, but appear to be in distinct families (63, 77). 
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However, this distinction has become blurred as evidenced by the abitlity of some 

relaxases from plasmids and ICEs in Firmicutes to function in both replication and 

conjugation. For example, the replicative relaxase of the Staphylococcal plasmid pC194 

and the conjugative relaxase of ICEBs1 are both bi-functional. That is, they can act as 

both replicative and conjugative relaxases (88, 89). Both ICEBs1 and Tn916 are capable 

of mobilizing pC194 (90, 106). In the case of ICEBs1 this requires the pC194 replication 

protein, which does not resemble a conjugative relaxase (90, 133). The sequences of the 

conjugative relaxases of ICEBs1 (NicK) and Tn916 (Orf20) more closely resemble 

replicative relaxases than other conjugative relaxases (56, 89). The conjugative relaxase 

of ICEBs1 supports replication of the extrachromosomal form of this ICE, as previously 

discussed (88). These examples blur the distinction between conjugative and replicative 

relaxases and raise the possibility that replicative relaxases may also serve as 

conjugative relaxases when recognized by the correct type IV secretion system. These 

findings also blur the distinction between ICEs and rolling circle replicating plasmids.  

 

Lagging strand synthesis 

During conjugation, ssDNA is transferred into the recipient. Once there, the ICE 

must either function as ssDNA or convert to dsDNA. ICEBs1 of Bacillus subtilis 

possesses a single-strand origin of replication (sso), located on the transferred strand, 

enabling its conversion from ssDNA to dsDNA (158). ssos are DNA sequences that form 

a particular secondary structure when single stranded. This structure mimics other 

DNA elements to recruit host factors that synthesize a short RNA to prime DNA 

synthesis. The sso of ICEBs1 is homologous to the ssos of plasmids of Gram positive 

bacteria that replicate by a rolling circle mechanism. These ssos fold into a structure 

recognized as a promoter by RNA polymerase, which then synthesizes a leader RNA 
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that is used to prime DNA synthesis (reviewed in 82). Other ssos use the primase DnaG 

for synthesis of the RNA (84, 152). Once a primer is generated at the sso, the host 

replication machinery is recruited to complete synthesis of the second strand. 

Plasmids are known to prime complementary strand synthesis after conjugation. 

The RCR plasmid pMV158 is mobilized by conjugative elements and contains two ssos 

that function in different recipient species (92). In addition, several plasmids in Gram 

negative bacteria encode primase proteins, which directly polymerize RNA synthesis 

on the T-DNA, either through recognition of a cognate oriV (75) or via a general 

mechanism that functions on ssDNA (153).  

 

Summary of ICE replication  

We postulate that many (perhaps most or all) ICEs undergo autonomous rolling 

circle replication. This view is based on the conserved nature of ICE-encoded relaxases, 

the known roles of some of these relaxases in conjugation and replication, and the role 

of replication in the stability of ICEs in a population of cells. We suspect that it has been 

difficult to detect autonomous replication of most ICEs due to the low frequencies of 

induction and excision.  

 

REGULATION OF ICE ACTIVATION  

Normally, ICEs are maintained as quiescent elements in the host chromosome. The 

excision and conjugation genes are not expressed, usually due to active repression of 

transcription. Constitutive expression of conjugation genes has been found to be 

detrimental to the host and maintenance of the ICE, providing selective pressure for 

repression of these genes. Under certain conditions, the ICE can become induced, 

alleviating repression and permitting expression of ICE genes, leading to excision of the 
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ICE and the potential for conjugation. Even under inducing conditions, most ICEs 

appear to excise from the chromosome of a relatively small subpopulation of cells (95, 

102). The signals that induce ICE gene expression and the mechanisms of repression are 

not universally conserved, but there are some common themes.  

 

Pressures against ICE activation  

Expression of conjugation genes is likely to be maladaptive under most 

circumstances for both the host and the ICE. In general, expression of the genes likely 

creates a metabolic burden on the host, diverting cellular resources away from essential 

processes. It has been shown that constitutive activation of SXT, either by deletion of the 

CI-like repressor, SetR, or overexpression of the transcriptional activators SetC and SetD 

is deleterious to the host (9, 10). This, however, may be due to loss of the element and 

subsequent activation of a toxin-antitoxin system carried by SXT (157). For its part, an 

excised ICE can no longer rely on chromosomal replication to ensure vertical 

inheritance. Even ICEs that replicate are lost from a population if they are constitutively 

activated (5, 116). In addition to these general considerations, ICE activation can be 

deleterious to a host for specific reasons. In the case of Gram-negative conjugation 

systems, expression of a mating pilus may make the host susceptible to male-specific 

phage. In other cases, induction of the ICE results in host death. Activation of ICEclc 

causes a portion of the cells with the element to differentiate into potential donors that 

have reduced growth kinetics and eventually lyse (120). In the absence of its preferred 

attachment site, ICEBs1 will integrate into secondary sites within the host chromosome. 

If the ICE cannot efficiently excise from these secondary sites, induction of the ICE kills 

the host in a manner dependent on activity of the relaxase (100). 
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ICEs are induced by a variety of signals 

ICEs are induced in response to a wide variety of signals. The inducing signals vary 

for each ICE, but there are common stimuli known to activate multiple ICEs. These 

include: induction of the cellular SOS response to DNA damage; secreted signaling 

molecules from potential recipients; the growth phase of the host, and mechanisms tied 

to selective advantages conferred by the cargo genes in an ICE. Some ICEs are known to 

respond to more than one cue.  

Some of the signals that induce ICEs activate other mobile genetic elements. The 

SOS response to DNA damage induces many lysogenic phages to enter the lytic cycle 

(41, 109). Cell-cell signaling regulates conjugation of some plasmids (50, 113).  

Induction during the SOS response 

DNA damaging agents cause induction of the recA-dependent SOS response in host 

cells and also induce several ICEs (5, 10, 12, 19, 132). During the SOS response, DNA 

damage generates ssDNA. This is bound by and activates RecA, which causes auto-

cleavage of the LexA repressor, the phage lambda repressor CI, and related repressors 

(reviewed in 28, 41, 109).  

SXT, ICEBs1, and ICESt3 all contain genes homologous to phage repressors and 

these ICEs are induced by the SOS response (4, 5, 10, 12, 26). This induction is known to 

be RecA-dependent for SXT and ICEBs1. Whereas canonical CI-like repressors (LexA, 

CI) mediate their own cleavage, the ICEBs1 repressor, ImmR, is cleaved by a separate 

protease, ImmA (19). immR and immA are linked in ICEBs1 and are immediately 

upstream of the gene for the site-specific recombinase int. In addition to ICEBs1, this 

gene arrangement and protease-mediated cleavage of a repressor appears to be a 

common property of many phages (19).  
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Induction of ICEs by the SOS response likely indicates that the host is facing a 

potentially lethal challenge and that the ICE must rely on horizontal, rather than 

vertical transmission in order to propagate. Alternately, induction via the SOS response 

may be a way of maintaining a low level of horizontal transmission without incurring 

an undue metabolic burden on the population as a whole. The SOS response is 

generally activated in a small subset of growing cells (81, 112), usually in response to 

replication fork stress (39, 112). Induction of ICE within these cells would ensure that a 

small portion of an ICE-bearing population is primed to act as donor cells at any given 

time.  

Control by cell-cell signaling 

Some ICEs respond to cell-cell signaling, becoming induced when the population 

density of potential recipients is high. The use quorum-sensing pathways can allow 

ICEs to activate expression of conjugation genes when the density of related cells is 

high, indicating the presence of potential mating partners. In some cases, multiple 

signals are used to indicate the presence of potential recipients and whether or not the 

recipients already contain a copy of the cognate ICE, allowing an additional level of 

control such that conjugation is induced only when it is likely to result in horizontal 

transmission to a naïve recipient, rather than a cell with an established ICE. 

The Mesorhizobium loti symbiosis island, ICEMlsymR7A is also induced by quorum 

signals. It specifies the production of least one and possibly two acyl homoserine 

lactones (AHLs), as well as a transcription factor, TraR, that drives expression of genes 

needed for conjugation (115, 116). TraR is activated by several different AHLs, likely 

enabling this element to respond to a variety of potential recipients.  

ICEBs1 of B. subtilis is controlled by cell-cell signaling in two ways (Fig. 4 ). First, 

secreted peptides produced and sensed by B. subtilis strains indicate the presence of 
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neighboring cells, likely as an indicator of the presence of potential mating partners. 

These peptides stimulate transcription of rapI, leading to activation of ICEBs1. RapI 

activates ICEBs1 gene expression by stimulating the ImmA-mediated proteolysis of the 

ICEBs1 repressor ImmR (4, 5, 19). Second, ICEBs1-containing cells produce an 

additional secreted peptide that inhibits activation of ICEBs1 gene expression. This 

inhibition occurs when the peptide PhrI is imported and inhibits the activity of RapI. 

The ICEBs1 encoded peptide PhrI signals that the surrounding cells already have a copy 

of ICEBs1 and serves to limit activation and potential loss of the element. In addition to 

this peptide-mediated mechanism of limiting activation of ICEBs1, there are other 

mechanisms for limiting acquisition of ICEBs1 by cells that already have a copy (e.g., 4).  

Induction during stationary phase 

Several ICEs are induced during stationary phase. In ICEclc expression of genes that 

regulate conjugation is driven by the host-encoded stationary phase sigma factor RpoS 

(104). ICEMlSymR7A preferentially excises during stationary phase, likely in response to 

the growth phase of the host in a manner independent of cell-cell signaling. Deletion of 

TraR, the ICE-encoded transcription factor that responds to acyl-homoserine lactones 

has a negligible effect on ICE excision, although conjugation is reduced (115). ICESt3 is 

also activated during stationary phase as evidenced by an increase in excision from the 

chromosome and expression of conjugation genes (31). Induction of an ICE during 

stationary phase does not necessarily lead to conjugation during stationary phase, but 

could indicate that the ICE is primed to transfer once nutrients become available, as 

with ICEclc. Stationary phase may also serve as an indicator that the host is poorly 

adapted to grow under current conditions. In this case, it might be beneficial for the ICE 

to move to a different host rather than relying on vertical inheritance in the starving 

stressed host.  
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Phenotype-dependent induction 

In several instances, the induction of an ICE is tied to a selective advantage that the 

ICE provides to the host. Tn916 was originally identified because it confers tetracycline 

resistance to its hosts (52). Tetracycline induces conjugation of Tn916 and other related 

elements (48, 130). This induction is initially regulated at the level of transcriptional 

attenuation. Under non-inducing conditions, most of the transcripts that initiate at the 

promoter for tetM (Ptet) in Tn916 terminate at a factor-independent terminator 

upstream of tetM (the gene for tetracycline resistance) and other genes. Following 

exposure to tetracycline, transcription extends past this terminator, into tetM and 

downstream regulatory genes. Full expression of the conjugation genes occurs when 

Tn916 circularizes upon excision from the chromosome (Fig. 5 and 34, 137).  

Tetracycline also induces conjugation of the CTnDOT/ERL family of ICEs from 

Bacteroides sp., which confer tetracycline resistance to their hosts. In this case, induction 

is regulated at the level of translation initiation, rather than the level of transcriptional 

attenuation. Transcription of a tetQ is constitutive, however, the ribosome binding site 

is inaccessible because of the secondary structure of the mRNA. Tetracycline causes 

ribosomes to stall on a leader peptide, also encoded on the tetQ mRNA. The paused 

ribosomes change the mRNA secondary structure so that the tetQ ribosome binding site 

is accessible, allowing translation of TetQ and the downstream regulators RteA and 

RteB (148, 149). This initiates a regulatory cascade leading to excision and conjugation 

of CTnDOT (reviewed in 150).  

Other ICE-encoded phenotypes can also serve as activation signals. ICEclc enables 

Pseudomonas sp. to metabolize chlorocatechols, permitting some species to use 3-

chlorobenzoate as their sole carbon source. Growth of ICEclc donors on 3-

chlorobenzoate enhances expression of conjugation genes and conjugation of ICEclc 
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(102, 126). The advantage of linking conjugation to an adaptive phenotype conferred by 

the ICE is two-fold. Any bacterium that acquires the ICE and can benefit from the 

phenotype immediately gains a selective advantage over its peers, promoting vertical 

transmission of the ICE. Additionally, any metabolic burden on the donor due to the 

expression of conjugation genes may be offset by the ability to exploit a distinct niche 

made available by the ICE. 

Induction upon entry into a new host 

Some ICEs are active immediately upon entering a recipient cell. When ICEBs1 is 

introduced into a new recipient, it is able to spread rapidly to other cells in a manner 

that requires the conjugation machinery (7). This activity does not require rapI, which is 

needed for activation of ICEBs1 in response to cell density. Similarly, if Tn916 is 

delivered to a cell on a conjugative plasmid, it frequently transposes to a new location 

before becoming quiescent (58, 59). The initial burst of activity seen in these ICEs is 

likely due to a lack of repression. When the ICE enters a recipient cell, the ICE-encoded 

regulators that repress gene activity are absent. It is only after the ICE has expressed 

these regulatory genes that repression of ICE functions is achieved. 

 

CHALLENGES TO THE FIELD 

Although there has been a tremendous increase in our knowledge of ICE biology 

since the description of Tn916 (52), there is still a tremendous amount to learn. One area 

of intense interest is the nature of the mating machinery and how a protein attached to 

ssDNA is transferred out of the donor cell and into the recipient. Many components of 

the type IV secretion system encoded by ICEs and conjugative plasmids are conserved 

across the bacterial domain. Recent biochemical and structural advances (e.g.33, 53, 54, 
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93) have improved our understanding of this macromolecular machine, but a thorough 

understanding of its structure and function remain elusive. 

It is not known if there is a specific cue that signals the mating machinery to export 

the T-DNA. There is reason to believe that such a cue exists and that conjugation 

systems do not pump DNA into the environment when no recipient is present. Studies 

of conjugative plasmid R1 indicate that the mating channel is gated and that 

communication occurs between the inside and outside. Entry of the R17 phage via the 

conjugation channel requires that a T-DNA and type IV coupling protein be docked at 

the inner opening of the channel (85). 

It is becoming evident that there is not a clear distinction between conjugative and 

replicative relaxases in Firmicutes. The distinction between conjugative plasmids and 

ICEs is also becoming blurred as several ICEs appear to undergo plasmid-like rolling 

circle replication. Further studies are needed to identify and characterize interactions 

between relaxases and conjugation systems of Gram positive bacteria. In particular, 

investigation into the role of type IV coupling proteins in determining the range of 

relaxases that can be recognized might prove fruitful. 

Host genes, both essential and non-essential, are likely involved in every step of the 

ICE life cycle. Some of these genes, such as IHF (99) and components of the host 

replication machinery (88, 140) have been identified and their roles are understood to 

varying degrees. However, the contribution of other host genes remains to be 

elucidated (78) and it is likely that other, unidentified, genes are also involved in 

conjugation. 

Similarly, the relationship between the host range of an ICE and the genetic content 

of the permissive (or non-permissive) hosts is not well understood. Some ICEs, such as 

Tn916, have a very broad host range, whereas others are more restricted. Host range 
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could be limited by incompatibility between a given type IV secretion (conjugation) 

system with a particular recipient’s cell envelope. Host range could also be restricted by 

cytoplasmic factors, for example, restriction/modification or CRISPR systems, an 

inability of a specific ICE to replicate or integrate in some hosts, or incompatibility with 

other resident mobile genetic elements.  

A mechanistic understanding of what happens to an ICE once it enters a recipient 

has not been thoroughly developed. It is generally assumed that the ICE must generate 

a complementary strand to the T-DNA prior to integrating into the chromosome. For 

ICEs that replicate prior to integration this is certainly the case, and this is also likely for 

those that encode a mechanism for generating a complementary strand. However, it is 

not clear that such a requirement exists for all ICEs. Some integrases of the tyrosine-

recombinase family can insert single-stranded DNA elements into the chromosome, 

provided the DNA forms a double-stranded structure at the attachment site (20, 144). 

The integrase itself might be expressed from a single-stranded promoter on the T-DNA, 

or transferred from the donor to the recipient, as is thought to be the case for Tn916 (22). 

Alternately, the relaxase could directly mediate integration of the covalently bound T-

DNA into the chromosome, though this would require that the chromosome already 

harbor a cognate oriT (49). 

ICEs have tremendous potential to be developed as tools for genetic engineering. 

Conjugation can be used to deliver DNA to organisms from all domains of life, 

provided there is a match between the conjugation system and the recipient. ICEs have 

the added benefit, over plasmids, of being able to insert into a host chromosome, 

provided the integration system functions in the recipient. This avoids the need for 

replication of and selection for the element to ensure maintenance, and inherent 

variability in copy number of most plasmids. In the past, conjugative delivery of Tn916 
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has been used to mutagenize a variety of bacteria including Gram positives (151), Gram 

negatives (74) and the wall-less Mollicutes (123) and to mobilize other elements. In the 

future, ICEs could allow the delivery of specific genes or metabolic pathways to an 

incredibly diverse array of organisms. 
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Sidebars: 

BOX 1. Typeset near introduction 

Types of horizontal gene transfer used by bacteria 

•Transformation: The direct uptake of DNA from the environment and its 

incorporation into an organism’s genome. 

•Transduction: Phage-mediated transfer of DNA from one host to another. The DNA is 

generally genomic DNA from the original host of the phage that was packaged into 

the phage head instead of or in addition to phage DNA. 

•Conjugation: Contact-dependent, unidirectional transfer of DNA from one host to 

another mediated by the mating pore of a conjugative element. 

•Fusion: Acquisition of DNA via fusion with a DNA-containing outer membrane 

vesicle or with another cell (protoplast fusion) 

 

BOX 2. Typeset near introduction 

General types of mobile genetic elements that can move within or between cells. 

Individual elements may have characteristics of more than one type of element. 

•Transposable elements: Including transposons and insertion sequences with many 

different subtypes. Capable "moving" to different DNA sites with varying degrees of 

site-selectivity. Some excise from original site and insert into new site (cut and paste) 

whereas others use replicative mechanisms to create a copy at a new site (reviewed in 

40, 131). 

•Phages/viruses: Mobile between cells. Viral nucleic acid contained in proteinaceous 

particles. Many kill the host during growth. 

•Conjugative plasmids: Mobile between cells using conjugation machinery. Require 

cell-cell contact for transfer. Replicate independently of the host chromosome. 
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•ICEs: Mobile between cells using conjugation machinery. Able to integrate into DNA 

sites via site-specific recombination. Some are also mobile within cells.  

•Many types of elements are not themselves mobile, but can be mobilized by one or 

another of the mobile elements. 

 

BOX 3. Typeset near Generation of Diversity among ICEs 

Diversity of ICEs.  

•Size range:  about 18 kb (Tn916) to over 500 kb (ICEMlSymR7A) 

•Some phenotypes conferred by ICEs: antibiotic resistance(s) (Tn916; SXT; CTnDOT 

and many others); heavy metal resistance (R391); carbon-source utilization (ICEclc, 

bph-sal, CTnScr94, Tn5276); symbiosis (ICEMlSymR7A); pathogenesis (PAPI-1); 

restriction-modification (ICESt3), bacteriocin synthesis (Tn5276) and biofilm formation 

(PAPI-1). 
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Figure legends 

Figure 1. The ICE life cycle. A model of ICE conjugation is shown and is described in 

the text. The bacterium bearing the ICE (donor) is shown in gray, the bacterium 

acquiring the ICE (recipient) is shown in green.  

 

Figure 2. Mechanisms that generate diversity between ICEs. Specific mechanisms are 

described in the text. Double black lines represent the host chromosome whereas 

double red, orange and blue lines represent mobile genetic elements as indicated. 

Double green lines indicate regions of homology. Rectangles behind double lines 

indicate att sites or insertion sites. (A,B) An ICE (blue lines) can insert in tandem next to 

a heterologous mobile element (A) or an ICE (B) occupying the ICEs preferred att site 

(purple boxes). (C,D) Other mobile genetic elements can insert into an ICE. C. Elements 

can transposase from another chromosomal location (Ci) or extrachromsomal elements 

can recombine into an ICE (Cii) either by site-specific recombination or homologous 

recombination. D. T-DNA from an external element might recombine into a cognate 

oriT site on the ICE. Insertion is more efficient when the oriT is located on the lagging 

strand, likely indicating that the target is ssDNA, as shown. The relaxase is bound to the 

transferred DNA at one catalytic tyrosine residue. The relaxase nicks and binds the oriT 

of the resident element with a second catalytic tyrosine residue (both catalytic tyrosine 

residues are required for this activity (1)). The relaxase also joins the free 3’-OH end of 

the chromosomal nick to the 5’ end of the T-DNA and the 3’-OH end of the T-DNA to 

the 5’ end of the chromosomal nick. The insertion is then fixed by replication. 
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Figure 3. Conjugation resembles rolling-circle replication. Both processes require similar 

initial steps that and generate a substrate that may be suitable to act as a T-DNA during 

conjugation. The ICE is shown as double blue lines. In both processes a relaxase 

recognizes and nicks a cognate ori, binding to the free 5’ end. An additional helicase 

activity and single-strand binding protein is required to unwind the single-stranded 

DNA. Replacement synthesis of the unwound strand can occur, but is not required for 

unwinding. If replacement synthesis occurs, a second nicking event at the reconstituted 

ori is likely required in order to generate a free 3’-OH group for recircularization of the 

unwound strand. 

Figure 4. Cell-cell signaling induces ICEBs1. The pathway by which cell-cell signaling 

regulates ICEBs1 gene expression is shown. Arrows indicate positive regulatory effects. 

Lines with bars indicate negative regulatory effects. Proteins and peptides are shown 

with a brief explanation of their role or activity. The PhrI signaling peptide is likely 

either a pentapeptide (5) or a hexapeptide (103) with sequence (A)DRVGA. 

Figure 5. Excision of Tn916 allows expression of conjugation genes. Both linear and 

circular maps of Tn916 are shown. Genes are shown as arrows on the map. Some 

known promoters are shown as bent arrows. While the element is integrated into the 

chromosome, low levels of transcription (red arrows) occur within the regulatory region 

(white arrows), but not within conjugation genes (black arrows), such as the relaxase 

encoded by orf20. Excision and circularization of Tn916 makes the conjugation operon 

contiguous and codirectional with the regulatory region, allowing conjugation genes to 

be transcribed. The red arrows are meant to demonstrate this phenomenon and do not 

depict the known variety or relative abundance of transcripts produced by Tn916. 
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