
Abstract

Our goal is to design a prediction and decision system for real-time use during a professional car race. In designing
a knowledge discovery process for racing, we faced several challenges that were overcome only when domain
knowledge of racing was carefully infused within statistical modeling techniques. In this article, we describe how we
leveraged expert knowledge of the domain to produce a real-time decision system for tire changes within a race.
Our forecasts have the potential to impact how racing teams can optimize strategy by making tire-change decisions
to benefit their rank position. Our work significantly expands previous research on sports analytics, as it is the only
work on analytical methods for within-race prediction and decision making for professional car racing.

Introduction

Currently in the United States, professional car racing

has the second-largest viewing audience among all sports.1

Within a professional stock car race, some of the most critical

decisions by the teams are made during pit stops, where teams

can choose to change either zero tires, two tires, or all four

tires of their car. Changing four tires is more time consuming,

and teams can risk losing their advantage over the other

players because of extra time spent changing tires in the pit;

on the other hand, changing two tires or zero tires may be

risky, since providing the car with fewer fresh tires could

decrease its maximum potential speed. Predicting in advance

which decision would most benefit a team can depend on

many complex variables, a relationship that is difficult for

racing teams to predict. Currently the choice needs to be made

by the team captain instantaneously, without computational

tools, yet somehow considering all possible data about each

team in the race. These are key decisions, viewed by millions

of fans, that are made almost purely from experience and

judgment rather than with the help of analytical tools.

There are many other sports in which key strategic decisions

are made without the help of in-game analytical tools. Even

in sports like baseball and basketball, where there has been a

lot of work on analytics, analyses are typically done at the

season level, prior to the start of the game. This is very dif-

ferent than our work because, in racing, the actual conditions

of the race are potentially very useful for predicting the

outcomes, beyond what one can obtain using season-level

statistics.

This work started with the hypothesis that a data-driven

prediction engine operating in real time may be able to assist

team captains in making these critical tire-change decisions.

As no such prediction software or methodology previously

existed, it was unclear how the data could be leveraged to

produce an accurate prediction model; there was no previous

knowledge discovery system for working with data from

professional stock car races or from any similar enough sport.

Further, the predictions need to be made at the finest gran-

ularity available for racing data—at the level of individual

laps—which is the most detailed race-level data made avail-

able to teams by (at least through 2012). While

constructing a knowledge discovery system for these data, we

faced considerable challenges in how to process and define

the prediction model. In handling racing data, it is easy for a

bad mathematical definition to lead to a conclusion that a
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particular feature is not important for prediction, and it is

easy for Simpson’s paradox to appear, indicating (for in-

stance) that tire-change decisions do not impact race posi-

tion. In the end, we were able to obtain high-quality results

only when domain expert knowledge about racing was

carefully infused into all of the mathematically defined fea-

tures and evaluation metrics used in the prediction engine.

We consider the entire cycle of the

knowledge discovery process: ex-

ploratory analysis, feature genera-

tion, building a model, data mining,

and decision making for within-race

strategies. Mining the raw data re-

quires many domain-specific con-

siderations in order to construct

meaningful statistics. Model building

requires careful assumptions about

the observed data and molding the

problem into a tractable learning

formulation. Based on the model

outputs, decision making requires an

understanding of the horizon and time scale where it is most

meaningful to make a decision and characterize its risk–reward

tradeoff. In the sports-prediction and decision-making studies

of the past, these components have been examined mainly in

isolation. Our study can be abstracted to a framework that is

both unified and tractable, allowing the possibility of system-

optimal solutions in a practical amount of time (instanta-

neously) for professional racing and other sports.

The statistical hypotheses we address will be derived from the

following questions:

Q1. Can we predict the change in rank position of a racer

over the next portion of the race, based on the racers’

recent histories?

Q2. Can we optimize within-race tire change and refueling

strategies based on the predicted future performance

of a racer?

Q3. Can we gain insight from past races that can assist the

team in a future race?

Considering question Q1, the design of in-race data-driven

strategies critically relies on our ability to forecast the perfor-

mance of the racer based on his and his neighbors’ recent race

history, the state of the race up to that point, and any decisions

he can potentially make (zero tires, two tires, or four tires).

The racer’s recent history can include the number of other

racers he overtook, the racer’s speed, rank position, and the age

of each of his tires. Another valuable outcome of answering Q1

is being able to forecast the finishing rank as early as possible

within the race. This is conventionally forecasted using season-

level data before the race even starts.

To determine strategy, we need to know beforehand what the

impact of a racer’s tire change will be on his rank position

and deceleration. It is possible for a racer to rapidly gain rank

position by changing zero or two tires during a pit stop, but

this action can penalize his ability to maintain this rank

position throughout the next portion of the race. This effect

can be highly complex and dependent not just on the racer

but on the tire-change decisions of other racers, the track

itself, the track temperature and weather, and the type of

tires used for the race. Yet, being

able to forecast the impact of a tire-

change decision can assist with

critical elements of racing strate-

gies; in other words, answering Q1

can lead to an answer to Q2. For

instance, a reasonable myopic strat-

egy is as follows: If we predict that

a two-tire change is likely to lead to a

loss in track position compared to a

four-tire change, the team captain

could make a decision to change four

tires. Answering Q2 is important

because strategies may have a large

impact on the racer’s success when

all his peers are almost equally skilled and the cars have very

comparable speeds.

Besides the goals of real-time prediction and decision

making, a knowledge discovery framework for racing can

help provide specific insights into racing strategy (Q3). It

can be a valuable tool for reasoning about how different

actions in the past have impacted the subsequent rank po-

sitions of the racers. For instance, does the value of the

prediction depend on the forecast horizon? Does the vari-

ability of laps raced between tire changes have an effect on

ranks? We would like to know answers to such questions

because they can lead to better predictions and insights for

future races.

The following section provides related work. In the third

section, we describe some of the complexities we encountered

in the knowledge discovery process in our setting. We also

describe some experimental shortcomings that restrict the

predictions and inferences we can make. In the fourth sec-

tion, we define the prediction problem and describe the key

hypotheses about our data that guide our construction of

features for predicting change in rank position. A straight-

forward myopic decision-making step is proposed to address

Q2. Prediction results are provided in the fifth section, an-

swering Q1. Some insights from the knowledge discovery

process are mentioned in the last section in an attempt to

answer Q3.

Related Works

Work on knowledge discovery systems in different domains

have highlighted some of the important challenges that we

‘‘THIS WORK STARTED WITH
THE HYPOTHESIS THAT A

DATA-DRIVEN PREDICTION
ENGINE OPERATING IN REAL

TIME MAY BE ABLE TO ASSIST
TEAM CAPTAINS IN MAKING

THESE CRITICAL TIRE-
CHANGE DECISIONS.’’
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also face in this work (see, for instance, Refs.2–9) In particular,

these works have highlighted the importance of designing

knowledge discovery systems around the unique aspects of a

domain. These works also emphasize the key choice of proper

evaluation metrics and being able to provide insight that goes

beyond prediction accuracy and back to the important as-

pects of the domain. The choice of machine learning algo-

rithm itself is not always a critical

choice within a knowledge discovery

system; in our data mining step, we

found that several different algo-

rithms have essentially similar per-

formance.

There have been few recent attempts

to use prediction models for in-

game decision making in sports such

as baseball,10,11 basketball,12 and

cricket.13,14 This is contrasted with

season-level statistical modeling,

which is well researched in the lit-

erature because of their applicability, in particular, to sports

betting and fantasy sports in addition to helping the teams

improve their competencies (see Ref.15 for a brief overview).

Note that for professional racing, season-level research has

been sparse (see, for instance, Refs.16–19) and our work is the

first to explore in-race predictive modeling.

For baseball, Ganeshapillai and Guttag10 developed a pre-

diction model to decide when to change the starting pitcher

as the game progresses. Similar to our workflow, they pro-

posed several features from historical data and the current

game’s history to predict a pitcher’s performance. At a given

point in the game, they forecast the future performance of the

pitcher, compare it to a predefined threshold, and make a

binary myopic decision whether the pitcher should continue

or not. A related work11 looks at predicting the type of pitch

that will be thrown by a pitcher given the current state of the

game and historical data about the teams playing.

In basketball, Bhandari et al.12 developed a knowledge dis-

covery and data mining framework for the National Basket-

ball Association (NBA) with the aim of discovering

interesting patterns in basketball games. This and related

(often proprietary) systems have been in operation with

many basketball teams over the past decade. Such solutions

are tailored for offline use and do not address in-game pre-

diction and decision making as we do. There has also been

some recent work20 exploring in-game decision making as a

function of time remaining in the game without building any

prediction models.

A key difference between predictive modeling for professional

racing compared to that in basketball (and baseball) is the

nature of the evolution of the game. In racing, the race his-

tory cannot be easily segmented into ‘‘plays.’’ At each point in

time of a race, the entire history of the race determines the

racer’s current rank position. On the other hand, in basket-

ball, the game is restarted at the beginning of each play and

the team’s current state does not heavily depend on their state

before the restart. One can reasonably approximate a bas-

ketball game to be a sequence of independent plays and even

model them as independent observations drawn from a dis-

tribution. These long-standing cor-

relations of decisions within the race

makes racing inherently much more

difficult to model.

In cricket, Bailey and Clarke13 and

Sankaranarayanan et al.14 explored

machine learning methods to pre-

dict the future states of the game

given features related to the current

state of the game and the features of

the two teams competing. They

consider both season-level data and

the data collected within the game

to predict future scores. Although both these works are

closer to what we do, there are a couple of key differences:

(a) these works involve a much lower dimensional predic-

tion problem (about 15 features in Sankaranarayanan

et al.14) compared to ours (>100, see the Prediction Fra-

mework section), and (b) professional racing involves many

more strategic agents (for , about 40 racers race)

compared to cricket (two teams, which is is also the case for

basketball and baseball). We believe having a high number

of strategic agents can have significant impact on predict-

ability and makes the knowledge discovery process more

critical compared to two-team games.

Another key feature of our work is that we explore the

knowledge discovery pipeline extensively compared to the

previous works. This is partially because for basketball,

baseball, and even cricket, there has been significant prior

academic research output compared to professional racing. In

this work, we critically examine many details and character-

istics of in the section Data and Observations. For

instance, we observe Simpson’s paradox-like phenomena

between two explanatory variables (slope of lap times and

number of tires changed). Our exploration of data can help

future work on racing focus more on statistical modeling and

prediction as in baseball and basketball.

The need for predictions at the finest granularity of racing is

two-fold: 1) Previous studies on racing, like those using only

race-level and season-level statistics, may be too coarse to be

beneficial within the middle of a race. For example, we believe

that statistics computed during the race, for instance, the

state of the race after 100 laps, often reveal more about the

outcomes of the current race than the predictions made by

the previous studies. Season-level and multi-year studies are

also susceptible to changes in the rules or other changes to the

‘‘A KEY DIFFERENCE BETWEEN
PREDICTIVE MODELING FOR

PROFESSIONAL RACING
COMPARED TO THAT IN

BASKETBALL (AND BASEBALL)
IS THE NATURE OF THE

EVOLUTION OF THE GAME.’’
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sporting event. For example, for , rules have

changed multiple times, the latest ones being in 2008 and

2011. This further reduces the effectiveness of race-level sta-

tistics for aiding racing strategy. 2) By calculating within-race

predictions dynamically as the race evolves, we can better

quantify the contribution of real-time observations toward

predicting outcomes in each portion of the race.

Finally, we note that the approach we take to building a

knowledge discovery framework and decision-making system

for professional racing can be applied to other racing sports

with similar structural characteristics, including MotoGP (see

also Ref.21), Formula 1, IndyCAR, various other types of races

within , and also bicycle races and marathons.*

Data and Observations

We define some of the race-specific terms used in the article:

� Lap: One full trip around the race track.
� Lap time: The time for a racer to finish one lap.
� Rank position: The position of the racer at the end of a

lap. If the position is 1, the racer is leading the race.
� Pit stop: The event in the race when a racer stops

racing and enters the pit (area where cars are serviced)

with the intention of changing tires or refueling.
� Caution lap, or yellow lap: A lap is called a caution

lap{ when the racers are not actively racing, have

slowed down and are following a ‘‘safety car.’’ Caution

flags (yellow flags) are displayed due to a hazard on

the track (crash, tire burst, etc). In our racing data set,

caution flags are a random influence that substantially

affect race dynamics.
� Green lap: Laps that are not in caution are called green

laps.
� Warm-up period: After a racer’s pit stop or after the

end of a caution, the warm-up period includes green

laps in which the lap times are decreasing successively

as the car gains speed.
� Epoch: The green laps after the warm-up period–until

the next pit stop or caution lap–constitute an epoch.
� Outing: The green laps in the warm-up period and

epoch together form an outing for the racer.

In our study, we use race data constituting 119,178 lap times

and 119,178 rank position observations from 2,932 total

outings, including each racer’s lap times and rank positions

for each one of the 5,352 laps within our data set. We also

have caution lap and pit stop information (time and num-

ber of tires changed) for each racer. (Some races had un-

usual race characteristics, for instance, some were road

courses and some had insufficient or missing tire change

information; thus, these were not used in our study.) Races

comprising this data set are listed in Table 1. The numbers

of laps in the 17 races we examine range between 160 and

500 laps. The total number of pit stops per race varies be-

tween 170 and 373, and the average number of pit stops per

racer varies from 4 to 8.9. The number of cautions varies

between 3 and 14.

Complexities of racing
To give a sense of the difficulty in modeling with racing data,

we next discuss general characteristics of racing and how

nonlinear interactions between measurements and other is-

sues pose difficulties in modeling and decision making. Sev-

eral of these observations have not (as far as we know) been

previously quantified, in particular, the ‘‘fresh air’’ effect and

the Simpson’s paradox effect from tire-change decisions

discussed below.

Tire-change decisions. As we discussed, this is a major

strategic decision for each team. In isolation, a car with four

fresh tires is generally faster than a car with only two fresh

tires; however, it is not that simple during a race. The speed

of racers is heavily dependent on more than just tire fresh-

ness; as we will discuss, rank position and the ability to

overtake other racers play important roles in determining

speed. A two-tire change may or may not be an overall ad-

vantage depending on whether the racer is also able to

maintain their rank position.

Choosing a two-tire change saves a racing team about 6

seconds on average over a four-tire change, though there is a

high variance in pit times. Pit lanes have speed limits that

dictate the minimum pit road time, and the racer has to slow

down while stopping at his designated stop, make turns into

and out of his stop, and avoid other racers executing pit stops

around him. These elements and the actual performance of

the pit crew in servicing the car determine the pit stop times.

Figure 1 shows the histogram of pit times. One can see three

peaks (around 4 seconds, 7 seconds, and 14 seconds) and a

peak at 0 seconds. The 0-second pit times are due to penalties

among other causes (including missing data defaulting to 0).

The other three peaks are due to the decision to replace zero,

Table 1. List of Races Used for Our Experiments

*MotoGP is a motorbike racing competition during which races last about 30–45 minutes with 20–30 laps. Formula 1 races are quite different than races in that the cars

within the same race can be mechanically very different, the rules are different, and the level of data can be at a much finer granularity. IndyCAR racing is similar to racing

but the type of car is different. has several different stock car and truck races beyond the particular series in our dataset.
{The rules that define a caution lap vary for different types of professional races. The definition we provide suffices for our analysis of races.
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two, and four tires respectively. A zero-tire pit stop is for

refueling only.

Saw tooth profile of lap times. Examples of the lap-time time

series for typical racers in our dataset is shown in Figure 2. Lap

times increase (the car gets slower) as the tires wear down over

the course of an outing. Toward the end of an outing, one can

also see that the lap times sometimes flatten out; the lap times

deteriorate at a slower pace later in the outing. We use the slope

(estimated rate of change in seconds per lap) of these lap times

over the course of an outing to measure tire wear. See Figure 3

for an example of how slopes are computed.

The ‘‘fresh air’’ effect, which is a nonlinear interaction between
lap time and rank position. In general, lap times are lower

(better) for racers near the front of the pack. This is illus-

trated in Figure 4 for three typical laps in three different

races. Remarkably, a linearly increasing trend is plainly

visible between lap time and rank position in each figure.

That is, the lap speeds of racers at the front of the pack can

be substantially faster than those in the middle of the pack,

which can be substantially faster than racers at the back of

the pack.

Because racers near the front of the pack tend to go faster, their

tires wear out more quickly. In fact, we observe that the slope

of lap times over an outing increases more quickly for cars at

the front of the pack. This is shown in Figure 5. Actually this

effect is highly nonlinear: The cars in the front of the pack and

the back of the pack tend to have higher slopes, and the cars in

the middle tend to have lower slopes. The effect is fit nicely by

a degree-2 polynomial, as shown in Figure 5.

Simpson’s paradox{ for the number of tires changed and the
slope. Consider the leftmost subplot of Figure 6, which

shows the distribution of slopes for two tire changes and the

distribution of slopes for four tire changes during a race. It

is clear that in this race, cars that took two tires had much

faster wear (higher slopes) than cars that took four tires. This

seems to indicate that older tires tend to wear faster for this

race, and thus if the epochs are sufficiently long, it would

generally be strategic to take four tires. However, this is a

severely incomplete picture. In fact, rank position is a lurking

variable, in the sense of Simpson’s paradox, and has the fol-

lowing effects:

(a) Because only cars that have generally better rank po-

sitions take two tires, their slopes are also higher (as we

showed in Fig. 5). In fact, for racers in ranks 26–43,

there are no instances of two tire changes compared to

49 instances of four tire changes. This results in a lower

median slope for four tire changes, as shown in the

leftmost subplot in Figure 6.

(b) If we break down our data according to rank positions

1–5, 6–15, and 16–25 as shown in the three subplots to

the right in Figure 6, we see that the median slope

values across ranks are actually very similar for two tire

changes and for four tire changes, in seeming contra-

diction with the leftmost boxplot.

Thus, conclusions drawn from simply looking at slopes for

two tire changes and slopes for four tire changes, as in the left

of Figure 6, would be misleading. Note that the impact of the

two- or four-tire decision depends on many factors besides

rank position. When the distribution of slopes are similar as

in the box plots for rank positions 1–5, two-tire changes

would be strategic since the racer could gain rank position

without any predictable change in the rate of tire wear.

Race dynamics around a green lap pit stop are different from
those after a caution lap pit stop. Racers may choose to pit

during a green lap to refresh tires and/or refuel. Not all cars

take green lap pit stops around the same time, which causes a

high variance in rank positions around the laps when these

pit stops occur. For instance, a 20th-rank position racer, who

has been in the same position through the outing, can become

a first-rank position racer temporarily if the 19 racers in front

of him pit while he does not. Usually, he will then pit in the

succeeding laps. While the other cars are in the pit and he is

not, his first-rank position is artificial. Also, in this case, his pit

entry rank position would be recorded as 1. Thus, the green lap

pit stops can be very problematic for our analysis, as rank

FIG. 1. Histogram of pit times taken by various racers in our data
set.

{Simpson’s paradox occurs when conclusions drawn from parts of a data set are the opposite of conclusions drawn from the union of these parts. For example, let
pi, j

qi, j
with i = 0,1 and

j = 0,1 be the fractional frequencies of cooccurrence of a factor i and a lurking factor j. Then, a Simpson’s-like paradox occurs due to the following:
p0, 0

q0, 0

>
p1, 0

q1, 0

and
p0, 1

q0, 1

>
p1, 1

q1, 1

does not imply
p0, 0 þ p0, 1

q0, 0 þ q0, 1

>
p1, 0 þ p1, 1

q1, 0 þ q1, 1
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position is not completely meaningful when other racers are in

the pits. Caution lap pit stops, on the other hand, are less

susceptible to high variability. In the case of outings preceded

by green lap pit stops, the racers are more spread out on the

track than in the outings preceded by caution lap pit stops

(which are similar to a race restart).

Game theoretic aspects (neighbor-
hood interaction). Neighboring

racers impact each other because of

shared track space. This is a key

difference from other racing sports

like athletic short distance track

events or indoor swimming where

there is minimal neighborhood in-

fluence since each player has his own

assigned lane.

Data issues
Besides the inherent complexities of

racing discussed above, there are

some natural challenges that arise

when making decisions based on historical data. In

, the decision to replace two tires versus four tires

is one such case, particularly due to the data problems of

control, imbalance, and noise described below.

No controlled experiments. Recall that our objective was to

make informed decisions (two tire or four tire) based on race

history. Unfortunately, we cannot perform randomized con-

trolled trials in order to measure the effect of a decision; we are

limited by what we can do with the historical data. One way to

partially handle this shortcoming is to pick ‘‘similar’’ racers

who differ only in their tire decisions and verify whether there

is any difference in the causal effect of the decision. Again this

is unsatisfactory, as controlling for all other variables in the

system is very difficult.

Imbalance. There are far more four-tire pit stops than two-tire

pit stops. This makes it difficult to quantify the effect of the

number of tires on the performance of the racer. Figure 7a shows

the number of two-and four-tire pit stops in each race of our

data set. In addition, almost all practice before a race is based on

four-tire changes with the intention of tuning the settings of the

car. During practice runs, the total number of tires and total laps

that can be run are budgeted as well.

Races are different. We would like

to be able to generalize knowl-

edge (or borrow strength) across

races. However, races can be fun-

damentally different, prohibiting a

straightforward merging of obser-

vations across races. The number of

laps in the race, the length of the

tracks, and their physical charac-

teristics (e.g., banking characteris-

tics) can be very different, which all

heavily affect lap times. For in-

stance, Figure 7b shows the median

lap times of races we analyze, where the median is taken

over all racers and all laps; these heavily vary from race to

race. In general, statistics of pit information and lap time

information are not race invariant and cannot be directly

compared across races.

Noise. ‘‘Irregularities’’ in racing occur very regularly, such as

having accidents (hitting the wall, spinning out of control),

running completely out of gas, experiencing mechanical

failures, and incurring race penalties. These irregularities can

affect the quality of our predictions if they are not carefully

filtered out. Another aspect that adds to the noise is out-of-

sequence pit stops, where a racer takes a pit stop at a different

time than the majority, altering the rank positions of others

temporarily. Race rules such as ‘‘free pass’’x and strategies

‘‘UNFORTUNATELY, WE
CANNOT PERFORM

RANDOMIZED CONTROLLED
TRIALS IN ORDER TO

MEASURE THE EFFECT OF A
DECISION; WE ARE LIMITED
BY WHAT WE CAN DO WITH

THE HISTORICAL DATA.’’

FIG. 2. Sawtooth profile of typical racers in a race.
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such as staying out to lead a lap to earn a point also make our

observations noisy.

Prediction Framework

Keeping in mind the complexities of racing and the data

issues discussed above, we now discuss our framework for

real-time prediction and strategy in racing.

The prediction problem
Based on the Complexities of Racing section we made the

following choices about the time scale of learning and the

dependent variable.

We chose to forecast the decision-to-decision loss in rank

position for each racer, for each decision during the race.

This is the change in rank from a car’s pit entry to the end

of its next outing when it enters the pit again. If we are

able to predict this quantity, taking into account the racer’s

current state, his race history, and previous decisions, this

will tell us whether the racer’s current strategy may give

him an advantage between the current decision time and

the next one. Note that since a majority of outings end

due to cautions, the racer’s strategy does not generally

determine the end of the outing. The prediction interval

includes a pit stop and the outing following it for a given

racer. Our system makes a prediction before each predic-

tion interval. Because of this choice of model formula-

tion, our prediction problem becomes a supervised learning

problem, for which we can use a range of supervised learning

techniques.

We chose to model the change in rank position and not other

functions of the outing (for instance, slope of lap times)

because improvement in rank is really the goal of the team

rather than improvements in, for instance, lap time. One

might be tempted instead to model the direct results of a tire-

change decision such as lap times, or equivalently, the slopes.

However, slopes of lap times, though indicative of a racer’s

performance, are not a direct metric of success at the finish of

the race. Also, as we discussed earlier, lap time measurements

are heavily tied to rank position (see the Complexities of

Racing section). Predicting rank position can still be com-

plicated since, as we discussed earlier, it can depend on the

timing of other racers’ pit stops.

To build the prediction model, we use all race information

from the current racer and his peers up to the pit entry lap

index when our prediction interval starts. We also incorpo-

rate the team’s planned action during the pit while learning

from historical data. This naturally leads to the following

myopic strategy: given a learned model, we can compute

predictions for each planned action (zero, two, or four tires)

FIG. 4. Fresh air effect: ordered lap times of the racers at lap 50, sorted by rank position, for two separate races. Each dot represents a racer’s
lap time. There are about 40 racers in each plot.

FIG. 3. Plot of lap times and linear fits for a 15th ranked racer in a
race. Slopes are computed by fitting a line through the lap times
in an outing using simple linear regression.

xThe first of the racers who are one lap down gets to join the racers in the lead lap if a caution occurs.
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and determine which action(s) might be strategic between

now and the next time a decision is made.

Preprocessing
Our model needs to bypass the data issues discussed earlier,

for instance, the artificial jumps in lap times caused by pit

stops and cautions (the jumps in the sawtooth shape of the

lap times discussed in the Complexities of Racing section).

The key to this is to correctly create automated definitions

of ‘‘outings,’’ ‘‘warm-up laps,’’ and ‘‘epochs.’’ We found that

the prediction quality, interpretation of the prediction

model, and potential value of predictions to the racers and

the teams improved dramatically as a result of improving

these model inputs, along with the other preprocessing

steps discussed below. The definition we developed is

fairly complicated and not fully discussed. For instance, our

definitions are robust to events such as pit stops during

green flags, which can cause a racer’s rank position to be

FIG. 5. Slopes of lap times within an outing versus initial rank in the outing, for two separate races. Each dot represents a racer’s outing
within a race. In a typical race, each racer has multiple outings; thus, there are multiple dots for each of the *40 racers in each race.

FIG. 6. On the left, we include slopes for all ranks on a single boxplot. The right three boxplots again show the distribution of slopes, but
separated by rank position. Rank position can be considered the lurking variable for Simpson’s paradox, as the right three boxplots refute
the hypothesis from the left boxplot—namely, that the slopes for two-tire changes are substantially larger than the slopes for four-tire
changes. In these boxplots, there were 26 two-tire changes and 176 four-tire changes. These data are from a track in the midwest of the
United States.
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artificially inflated or deflated, impacting results. In the

example we gave earlier, a racer with rank position 20 can

come into the pit with rank position 1 if the 19 racers in

front of him pit before him. To minimize the number of

artificially inflated or deflated rank positions in our pro-

cessed observations, we alter the pit entry lap indices ap-

propriately. This way, the definition of the epoch has a

smaller number of laps and aims to contain only the laps for

which cars in front of the racer had not gone into the pit.

Key hypotheses
Based on exploratory analysis of lap time and rank position

measurements, we believe the following key hypotheses im-

pact our ability to predict change in rank. To our knowledge,

these have not been published before.

‘‘Rank momentum’’ leads to useful predictive factors. We

compute a racer’s ‘‘rank momentum’’ based on whether he

is generally gaining or losing ranks. Simply, a racer that

started at the back of the pack and continues to obtain better

rank positions has a different trajectory than a racer that

started out at the front of the pack and gradually moves

toward the back. Rank momentum may help alleviate issues

with the ‘‘fresh air’’ effect described in the Complexities of

Racing section. Rank momentum terms rely on discrete

derivatives of rank position time series. They capture in-

formation about racers relative to each other. This is dif-

ferent than the slope of lap times (‘‘lap time momentum’’),

which considers the racers in absolute terms rather than

relative to each other.

‘‘Protection’’ and other neighborhood effects can lead to useful
predictive factors. As we discussed, when a racer takes two

tires instead of four tires, this can potentially put the racer in

a better rank position initially, but he must maintain his

position in the outing afterward to gain ranks. Our evidence

suggests that it is sometimes easier for a racer to maintain

rank position if several cars behind him also take two tires.

This way he is ‘‘protected’’ by the cars behind him—a faster

car (for instance, one that had taken a four-tire change)

coming from behind would need to pass several other cars

before passing him. Figure 8 illustrates this phenomena using

race data. Here, in a certain block of the race, the rank

profiles for racers who took two tires beforehand are plotted.

We see that racers with ranks 13–19 took two tires before the

outing. About half of these racers maintained their rank

position through the outing (see the horizontal lines between

ranks 8–11). The remaining half were overtaken by four-tire

racers behind them (see the upward drifting curves ending

between ranks 17–27). We hypothesize that the first group of

racers were protected from the four-tire cars whereas the latter

group of cars were not.

There are other possible neighborhood effects besides pro-

tection. For instance, we hypothesize that the historical per-

formance of a racer’s immediate neighbors can help to

predict both change in rank and slope of lap times over the

course of an epoch. We considered two types of neighbors:

neighbors who hold similar rank positions at the beginning of

the current outing’s pit exit lap**, and neighbors who have

held similar rank positions and lap times historically within

the race (even if they do not hold similar rank positions in the

current outing’s pit exit lap). These neighborhood effects help

to capture correlations across racers, whereas rank momen-

tum captures temporal correlations.

FIG. 7. Bar plot of two-and four-tire decisions per race for our data set is plotted in (a). Left (blue) bars are the total number of two-tire
decisions in the race, and right (red) bars are the total number of four-tire decisions. In (b) is a bar plot of median lap times observed per race
for our data set.

**This information needs to be forecasted, as it may not be available before the current outing begins.
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Aggregation across races can be done, and there are two
fundamentally different types of races. Our evidence suggests

that it is possible to generalize across races; that is, we can

borrow strength from the data of similar races to make im-

proved predictions. This type of

across-race regularization helps

make the predictive modeling more

robust to noise and and helps with

the imbalance problem. It is also

particularly useful at the start of the

race: Using another race’s data is

better than the alternative, which is

no data at all.

Through descriptive statistics, we

made the hypothesis that there are

fundamentally different types of ra-

ces, namely, those for which cars

typically lose position after a two-

tire change (Group A), and those for which cars typically

maintain their rank position after a two-tire change (Group

B). Thus, in Group B, there is more incentive to take two

tires instead of four tires to gain rank positions. In reality,

the determination of which group the race belongs to can

be done using data from practice and qualifying stages that

occur on the same track prior to the race. The fact that our

observations are race-specific rather than racer-specific

indicates that properties of the track, tires, and weather

matter more than racer-specific details in determining how

tire-change decisions should be made within a race. In our

experiments, we did not explicitly use track-specific in-

formation for this clustering and instead used the given lap

position and lap time information to come up with the two

groups: Group A (with loss in rank pattern) included 6

races and Group B (without loss in rank pattern) included

the remaining 11.

Features
Based on the key hypotheses above, we constructed several

groups of features for the prediction problem described in

The Prediction Problem section.26 These features heavily rely

on the definitions and preprocessing we established in the

Preprocessing section. We developed over 100 features, each

based on a hypothesis about what might be important for

prediction of change in rank over the course of an epoch. The

features fall into these categories:

� Basic features: Basic features are constructed from all

the historical outings in the data set. These are sta-

tistics computed from each outing up to the current

outing within the current race and the outings within

previous races. Basic features capture (i) the racer’s

rank position at the decision time and whether his

rank position is near the top of the pack or near the

bottom. We also include the racer’s starting rank

position for the race. (ii) The average of the racer’s

rank positions in previous outings (also various

percentiles). This indicates how well the racer is do-

ing generally in the race so far. We also include

nonlinear variations of this type of feature, such as

the average of the previous rank

positions squared. (iii) The age

of both the left and the right

tires at decision time. (iv) The

average of the slopes of the

racer’s lap times in previous

outings based on fits of each

‘‘sawtooth’’ function. This in-

dicates the general speed of

wear of tires for that particular

racer. We also use nonlinear

functions combining the racer’s

past rank positions and the av-

erage slope, which helps to ad-

dress the nonlinearity due to

‘‘fresh air’’ as discussed above.
� Rank momentum features: We compute the mini-

mum, maximum, and average of several rank mo-

mentum quantities over previous outings within the

race. These features include: change in rank, rate of

change in rank, change in rank times average rank, and

rate of change in rank times average rank.
� Protection features: We compute statistics of the rac-

er’s neighborhood. Here, the neighborhood includes

FIG. 8. An instance of protection: We plot rank position versus
relative lap index for a race. Cars in ranks 2, 4, 6, and 13–19 took
two tires and the remaining cars took four tires. For clarity, we
show only the rank positions of the cars that took two tires during
the sixth/seventh lap. The four-tire cars overtook some of the
two-tire cars as seen by the upward moving rank profiles in the
upper half of the graph. There were also some two-tire cars that
did not change rank position, as seen by horizontal lines in the
lower half of the graph. They were thus protected because many
of the cars behind them also took two tires.

‘‘OUR EVIDENCE SUGGESTS
THAT IT IS POSSIBLE TO

GENERALIZE ACROSS RACES;
THAT IS, WE CAN BORROW
STRENGTH FROM THE DATA
OF SIMILAR RACES TO MAKE

IMPROVED PREDICTIONS.’’
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cars within a few ranks of the racer’s average rank over

the course of the immediately previous outing. These

statistics include rank momentum features of the

neighborhood and can help to determine whether the

racer might be near cars that he needs to pass or

whether the cars in his neighborhood are likely to be

faster than he is, in which case he might lose ranks.

We further consider the number of neighbors with

zero-, two-, or four-tire changes before their outings

began.
� Tire decision features: The tire decision that happens

before the outing is a critical feature whose impact on

the change in rank can help us make decisions during

the race. We can make product features from tire-

decision features and other features, such as whether

the racer has taken two tires and is at the front of the

pack in ‘‘fresh air.’’
� Other features: These are features that are potentially

important but do not fall into the earlier categories.

These features include:

– an indicator of first outing in the race. The first

outing does not have historical information about

past outings of the racer. This makes that outing

different from all subsequent outings of the race.

– an indicator of pit in caution. This feature allows us

to address green lap pit stops differently than pit

stops during cautions.

– time taken in previous pit stops. This feature ad-

dresses the variability in pit times discussed in the

Complexities of Racing section.

– an indicator variable for whether the previous

outing was short. If the previous outing was very

short, it may affect the race dynamics in the current

outing. Many racers will not change tires if they

have done so recently.

Using these features to aggregate information across races

assists with the concerns from the Data Issues section spe-

cifically, imbalance and the lack of information at the start of

a race. It is not true, however, that any past race is able to

assist with prediction in any current race; our grouping of

tracks alleviates this problem.

Prediction to decision
We built a real-time prediction system by resolving the batch

learning problem at each lap. Specifically, to do this for a

given racer, at each lap we compute his predicted change in

rank position in the next outing given a zero-, two-, or four-

tire decision that he may choose to take in a pitstop in the

near future. Comparing these three predicted change in ranks

against one another helps the crew chief of the team make a

well-informed decision.

Experiments

We experimented with several state-of-the art machine

learning techniques that permit different combinations of

the features we created. In particular, we used ridge re-

gression,{{,23 support vector regression (SVR){{,24 with a

linear kernel, LASSO (least absolute shrinkage and selection

operator),xx,25 as well as random forests for regression26

and two baselines. Ridge regression and LASSO are very

similar techniques in that both use the same least squares

loss function, but LASSO uses [1 regularization to determine

the coefficients, whereas ridge regression uses [2 regular-

ization. Support vector regression also uses [2 regular-

ization but uses the e-insensitive loss function. Random

forests is an ensemble method that averages predictions

from many different decision trees. The two baselines are as

follows:

� Baseline initial rank: We always predict that the

change in rank over the course of the prediction pe-

riod is zero.
� Baseline regression to the mean: We always predict

that the final rank at the end of the prediction period

will be the racer’s average rank from his previous

epochs. This means the predicted change in rank

will be the difference between his historical average

rank and his rank at the beginning of the prediction

period.

Because we do not have control over data generation as

discussed in the Data Issues section, the linear model coef-

ficients (e.g., of support vector regression, ridge regression,

and LASSO) cannot be reliably interpreted in the ceteris pa-

ribus structural form. This means that if we are to quantify the

effect of the tire-decision feature on the subsequent change in

rank position, we need the other features to be as orthogonal

to the tire-decision feature as possible. Nonetheless, our ap-

proach is reasonable as prediction performance is also pri-

marily desired.

{{Given data fxi , yign
i¼ 1 and a constant C, we obtain linear model w� 2 arg minw

1
2
jjwjj22 þC

Pn
i¼ 1 (wT xi � yi)

2 .
{{Similar to ridge regression, we get w* from solving the following for a fixed parameter e > 0:

min
w, n, n�

1

2
jjwjj22 þC

Xn

i¼ 1

(ni þ n�i )

subject to yi �wT xi � �þ ni 8i¼ 1, . . . , n

wT xi � yi � �þ n�i 8i¼ 1, . . . , n

ni � 0, n�i � 0 8i¼ 1, . . . , n:

xxSimilar to ridge regression, we get w� 2 arg minw jjwjj1 þC
Pn

i¼ 1 (wT xi � yi)
2 .
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Metrics
There are no agreed-upon domain-specific measures of success

to employ for our prediction step. We decided to use R2 (r-

squared),*** RMSE (root mean squared error) and sign accu-

racy{{{ as the evaluation metrics for the prediction models on

out-of-sample data. R2 describes the proportion of variance of

the dependent variable (change in rank position) explained by

the regressors (in the Features section) through the prediction

model. For a perfect relationship it is 1, and for no relationship

it is 0. Sign accuracy captures the proportion of time we predict

correctly whether the rank increased, decreased, or stayed the

same. Note that if we use a learning algorithm that provides

continuous-valued predictions (like Ridge Regression and the

LASSO), we will rarely predict exactly zero change in rank; zero

change in rank happens about 20% of the time, so the best sign

accuracy we can expect is around 80%.

Prediction performance
We performed two sets of experiments using data from all

outings that were sufficiently long. The first involves predictive

accuracy of the different models. In the second experiment, we

observe how the weight of the two-tire indicator feature changes

with outing length.

� Predictive accuracy: We built prediction models for

each group. This allows us to investigate the change in

prediction performance due to

grouping. We adopted the

following data-splitting strat-

egy for evaluating predictive

accuracy: we used the outings

at the beginning part of the

race in our training and vali-

dation sets and reserved the

ending part of the race for

testing. In this way, we avoid

data leakage by training only

on the earlier parts of the race to evaluate predictions

for the later parts. We could have also chosen to use all

outings of some races in the training and all outings of

the rest of the races for final testing. In our experiments,

we did not find a noticeable difference using this type of

data splitting.
� Variation of the weight of the two-tire decision

feature with outing length: We built prediction

models to forecast the change in rank over the current

outing at prespecified laps, namely, 1 lap after pit exit,

2 laps after pit exit, and so on up to 25 laps after pit

exit. Through this experiment, we expect to gain in-

sight on the effect of outing length on feature weights

in a linear model like LASSO.

For both of these experiments, we used five-fold cross vali-

dation to set the appropriate regularization coefficient (or

parameter values in the case of random forests). We repeated

splitting the data into five folds 10 times to make the cross-

validation procedure more stable{{{ and used the same set of

folds for all the models used (to control for split variance).

The results of the first experiment characterizing performance

of the methods on test data using different metrics are plotted

in Figure 9. Figure 10 shows the values of the regularization

parameters chosen for each group. The results for the second

experiment characterizing the effect of outing length on the

model weight of the two-tire change feature are plotted in

Figure 11. We summarize some of the findings from these

experiments below.

Predictive accuracy.

� From the prediction performance plots in Figure 9, we

can see that the ridge regression, SVR, LASSO, and

random forests are significantly better than the base-

line methods. The machine-learning methods give

very similar held out test set performance. Further

reduction in RMSE, increase in R2, and increase in

sign accuracy may not be possible because of the

highly strategic and dynamic nature of racing.
� Predictions on the test set are

somewhat worse than perfor-

mance on the training set. This

is not because of overfitting, it is

because the training distribu-

tion differs from the test distri-

bution because of the following:

(1) Later outings of a race

have different dynamics

than the beginning part of

the race. For instance, the

racers are closer to the finish line in the later

outings, so their risk profiles change, leading to

more aggressive driving, and typically there are a

higher number of cautions.

(2) Two-tire decisions acquire relatively more signifi-

cance during later outings and are typically ob-

served more during that period of the race. If there

are fewer two-tire changes in the earlier part of the

race than in the later part, we may not be able to

accurately characterize the later part of the race

from the earlier part.

Variation of the weight of the two-tire decision feature with
outing length. In Figure 11, we see that in Group A (with

‘‘WE CAN SEE THAT THE
MACHINE LEARNING

METHODS ARE SIGNIFICANTLY
BETTER THAN THE BASELINE

METHODS.’’

***R2 is defined to be 1�
Pn

i¼ 1
(yi � f (xi ))2

Pn

i¼ 1
(yi � 1

n

Pn

i¼ 1
yi )

2 , where f is the prediction model. Note that R2 can be positive or negative.

{{{We define sign accuracy to be equal to 1
n

(
P

yi<0 1[f (xi )<0] þ
P

yi ¼ 0 1[f (xi )¼ 0] þ
P

yi>0 1[f (xi )>0]).
{{{Since the number of observations is comparable to the number of features, a single five-fold split may lead to some folds having much less training error than others. For instance,

if we split again, we may end up picking a different regularization parameter. We found 10 repeats to give us a cross-validation matrix with significantly less variation across folds.
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loss in rank pattern) there is a positive weight on the two-tire

change indicator. In Group B (without loss in rank pattern),

there is a negative weight on the two-tire change indicator.

This effect becomes more extreme as the outing length in-

creases. This really shows the difference between the two

groups; the effect of a two-tire change can be quite different.

Some Insights

In this section, we highlight some insights and some cases in

which predictive modeling is able to forecast large changes in

ranks using historical features.

Predicting outing length is not critical. We find in our ex-

periments that the length of the outing is not an impor-

tant predictor of change in rank position as long as it is

sufficiently long. This is actually quite useful to know as it

saves us the trouble of having to forecast outing length, which

is very difficult. The reason for outing length not to be nec-

essary could be that, after the initial few laps of a long outing,

the racers are typically sufficiently spaced apart on the race

track so that the change in rank position remains relatively

constant irrespective of the length of the outing.

Note that this observation does not conflict with (and can ac-

tually be seen using) Figure 11; as the length of outings in-

creases (toward the right of the figure), the weights stabilize.

It is hard to beat the baseline initial rank with respect to the
RMSE. In many of the outings observed, racers typically

change their position by zero, one, or two ranks. Thus the

baseline trivial model that predicts zero change in rank all

the time does fairly well with respect to the RMSE. It does

not, however, perform well with respect to the R2 or sign

accuracy metrics. In fact, since it always predicts zero, and

cars stay in the same rank position about 20% of the time, the

sign accuracy is 20%.

FIG. 10. For both groups of races, we plot the mean (over 10 repeated choices of 5 validation sets) of the mean squared error along with
error bands corresponding to one standard deviation above and below while building a LASSO model. The vertical line represents the
regularization constant for which the mean cross-validation error is the minimum.

FIG. 9. Predictive performance of various models over a held-out
test set are shown for races in Group A and Group B. The y-axis
plots the RMSE (lower is better) for the top subplot, R2 (higher is
better) for the middle subplot, and the sign accuracy (higher is
better) for the bottom subplot.
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Validation through expert commentary. Expert commentar-

iesxxx that are typically stated either before or after the race

can also be used to qualitatively validate the inferences of our

modeling approach. For example, some commentaries about

the characteristics of tracks that influence racing strategies

and outcomes for 2012 were:

� ‘‘As your fuel load burns off, you gain a little bit of

speed on track.the tires aren’t falling off much.’’
� ‘‘I don’t think tire wear is

going to be very high.’’
� ‘‘Tires don’t really seem to be

making a huge difference in

lap times.’’
� ‘‘.crew chiefs must decide

whether to pit or not and

whether to take two tires or

four.’’
� ‘‘.you are going to see two

tires, you are going to see four

tires.’’

When we looked at the tracks that the

experts were commenting on, we

found that the first three comments corresponded to tracks in

Group B. Recall that Group B includes tracks for which the

number of tires changed tends not to matter, and where we

recommended taking two tires rather than four because there

is no loss in rank pattern. Our grouping agreed with the expert

commentary in all three cases. The last two comments corre-

sponded to tracks in Group A, where we correctly identified

that there was a perceivable effect of a two-tire strategy on rank

position outcomes.

There are other types of commentaries that are useful in

decision making but are not directly related to our grouping.

For instance, some tracks have far-spaced and few caution lap

periods. This is because the track is wide, which reduces the

possibility of cautions and in turn affects the tire strategy of

racers. Thus, these commentaries also help to justify our

clustering of races before fitting the prediction models.

Insights for some extreme outings observed in the dataset. It

is of particular interest to the teams to understand outings in

which a high change in rank occurs. We now present some

representative cases in which change in rank was significantly

high and moderately predictable. See Table 2 for a numerical

summary of these cases. We qualitatively describe why our

prediction model (in particular, LASSO) was able to predict

these ‘‘high’’ change-in-rank cases. LASSO outputs a linear

model; that is, it provides a weight

for each feature, and the weighted

sum of features is the predicted

change in rank. These weights can be

positive or negative.

Fifth outing for car #5 in a race in the
southern United States. Our model

pinpointed two main reasons why

this particular racer should gain

ranks in the next epoch. This racer

was toward the back of the pack, and

his tires did not wear out as quickly

as the other racers in the previous

epoch (as indicated by the slope of his lap times). To show

how our model does this, we note first that the feature

rank(pit entry lap) encodes that his rank is toward the back.

Second, we note that the feature slope(laptimes of previous

outing) · rank(pit exit lap) incorporates the fact that his tires

did not wear out as quickly as usual for someone in his rank

FIG. 11. Variation in the weight of the two-tire decision feature
in LASSO as a function of the outing length. For Group A, the
weight is positive and increasing, indicating that making a two-
tire decision increases the change in rank (loss in rank). This effect
increases as the outing length increases. An opposite effect is
observed in Group B.

‘‘EXPERT COMMENTARIES
THAT ARE TYPICALLY STATED

EITHER BEFORE OR AFTER
THE RACE CAN ALSO BE USED
TO QUALITATIVELY VALIDATE

THE INFERENCES OF OUR
MODELING APPROACH.’’

Table 2. Extreme Cases in which the Change in Rank

Variable is High and Our Prediction Models

Are Able to Predict Moderately Well

Car #
Outing
number

True change
in rank

Predicted change
in rank

Tire
decision

5 5 - 17 - 10.36 2
31 5 13 6.11 0

2 5 - 5 - 2.88 2
29 8 10 3.77 2

Negative change in rank values mean that the racer gained positions by the
end of the outing compared to the pit entry before the outing. All the outings
here are toward the end of the race.

xxxFor instance, based on prerace comments by the crew chief of car 48 for 2012, among others.
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through a low slope in lap times. Further, this race is in

Group B, which means that two-tire changes do not cause as

many losses in rank position. As it turns out, in this epoch,

the racer took two tires; we predicted that with this choice he

would gain a large number of rank positions (10.36), and he

gained an even larger number of rank positions (17).

Fifth outing for car #31 in a race in the southern United States.

This racer was near the front of the pack, and in the previous

outing, his slope was relatively high for his rank, indicating

that his tires were wearing out more quickly than other

racers. Because of this, again our model used the features

rank(pit entry lap) and slope(laptimes of previous out-

ing) · rank(pit exit lap) to predict that he would lose a lot of

ranks over the next outing. He took zero tires, and we pre-

dicted that he would lose 6.11 ranks; he lost 13 ranks.

Fifth outing for car #2 in a race in the northern United States.

Similar to the previous case, this racer was near the front of

the pack through most of the race. But in contrast, his slope

was relatively low for his rank in the previous outing, indi-

cating that he had a fast car or his tires were wearing out

slower than other racers. In particular, our model used the

most dominating feature slope(laptimes of previous out-

ing) · rank(pit exit lap) to predict that he would gain ranks

over the next outing. He took two tires, and we predicted a

gain of 2.88 ranks whereas in reality, he gained 5 ranks.

Eighth outing for car #29 in a race in the southern United
States. This racer alternated between being near the front of

pack and being near the back of the pack in his previous

outings. His rank was low at pit entry for the outing of in-

terest here. In addition, in the immediate previous outing, his

lap times had a high slope (indicating a slower car or rela-

tively more tire wear). Our model used the features rank(pit

entry lap) and slope(laptimes of previous outing) · average-

rank(previous outing) to predict that he would lose ranks over

the next outing. We predicted a loss of 3.77 ranks and the

ground truth was that he lost 10 ranks (and took two tires

before the outing).

In all the above cases, many other features were also influencing

the change (loss) in rank variable, including features related to

the past two-tire and four-tire changes, slope(laptimes of pre-

vious outing) · final-rank(previous outing), and functions like

square root and square of final-rank(previous outing) among

others. Their influence was relatively smaller for these outings.

Conclusions

We describe challenges in formulating a prediction problem

that leads into the design of decision-making tools for stra-

tegic use within a professional sporting event. Careful use of

domain knowledge and transformation of time series data

into a supervised learning framework were the key aspects in

our ability to do this. We demonstrated the validity of our

prediction models using data from a professional

racing season in 2012.
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