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Abstract We propose two approaches to solve large-scale compressed sensing prob-
lems. The first approach uses the parametric simplex method to recover very sparse
signals by taking a small number of simplex pivots, while the second approach refor-
mulates the problem using Kronecker products to achieve faster computation via a
sparser problem formulation. In particular, we focus on the computational aspects of
these methods in compressed sensing. For the first approach, if the true signal is very
sparse andwe initialize our solution to be the zero vector, then a customized parametric
simplex method usually takes a small number of iterations to converge. Our numerical
studies show that this approach is 10 times faster than state-of-the-art methods for
recovering very sparse signals. The second approach can be used when the sensing
matrix is the Kronecker product of two smaller matrices.We show that the best-known
sufficient condition for the Kronecker compressed sensing (KCS) strategy to obtain a
perfect recovery is more restrictive than the corresponding condition if using the first
approach. However, KCS can be formulated as a linear program with a very sparse
constraint matrix, whereas the first approach involves a completely dense constraint
matrix. Hence, algorithms that benefit from sparse problem representation, such as
interior point methods (IPMs), are expected to have computational advantages for the
KCS problem.We numerically demonstrate that KCS combined with IPMs is up to 10
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times faster than vanilla IPMs and state-of-the-art methods such as �1_�s and Mirror
Prox regardless of the sparsity level or problem size.

Keywords Linear programming ·Compressed sensing · Parametric simplex method ·
Sparse signals · Interior-point methods

Mathematics Subject Classification 65K05 · 62P99

1 Introduction and contribution overview

Compressed sensing (CS) aims to recover a sparse signal from a small number of
measurements. The theoretical foundation of compressed sensing was first laid out by
Donoho [9] and Candès et al. [4] and can be traced further back to the sparse recovery
work of Donoho and Stark [14]; Donoho and Huo [12]; Donoho and Elad [10]. More
recent progress in the area of compressed sensing is summarized in Elad [19] and
Kutyniok [30].

Let x∗ := (x∗
1 , . . . , x

∗
n )

T ∈ R
n denote a signal to be recovered.We assume n is large

and x∗ is sparse (i.e., many entries of x∗ are zero). Let A be a given (or chosen) m × n
matrix with m < n. Let ai j denote the (i, j)th element of A. The compressed sensing
problem aims to recover x∗ from the compressed, noise-free signal y := Ax∗ ∈ R

m .
Specifically, we wish to find the sparsest solution to an underdetermined linear

system by solving

min
x

‖x‖0 subject to Ax = y, (P0)

where ‖x‖0 := ∑n
i=1 1(xi �= 0).This problem isNP-hard because of the nonconvexity

of the �0 pseudo-norm. To handle this challenge, Chen et al. [6] proposed the basis
pursuit approach in which ‖x‖0 is replaced by ‖x‖1 := ∑n

i=1 |xi | to obtain a convex
optimization problem

min
x

‖x‖1 subject to Ax = y. (P1)

Donoho and Elad [10] and Cohen et al. [7] provide conditions under which the
solutions to Problems (P0) and (P1) are unique in their respective problems.

One key question is to understand what conditions guarantee that the solutions
to (P0) and (P1) are equal. Various sufficient conditions have been discovered. For
example, letting A∗S denote the submatrix of A with columns indexed by a subset
S ⊂ {1, . . . , n}, we say that A has the k-restricted isometry property (k-RIP) with
constant δk if for any S with cardinality k,

(1 − δk)‖v‖22 ≤ ‖A∗Sv‖22 ≤ (1 + δk)‖v‖22 for any v ∈ R
k, (1)

where ‖v‖2 :=
√∑n

j=1 v2j . We define δk(A) to be the smallest value of δk for which

the matrix A has the k-RIP property. This property was first introduced by Candès et
al. [4]. Under the assumption that k := ‖x∗‖0 � n andA satisfies the k-RIP condition,
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Cai and Zhang [3] prove that whenever δk(A) < 1/3, the solutions to (P0) and (P1)
are the same. The works in Donoho and Tanner [15–17] take a different approach by
studying the convex geometric properties based on A instead of the RIP conditions to
derive conditions when the solutions of (P0) and (P1) are the same.

Existing algorithms for solving the convex program (P1) include interior-point
methods [4,28], projected gradient methods [20], first-order methods [27] and Breg-
man iterations [45]. Besides algorithms that solve the convex program (P1), several
greedy algorithms have been proposed, including matching pursuit [32] and its many
variants [11,13,22,33,34,38]. To achieve more scalability, combinatorial algorithms
such as the so-called “Heavy Hitters on Steroids” (HHS) pursuit algorithm [24] and
sub-linear Fourier transform [26] have also been developed.

In this paper, we revisit the optimization aspects of the classical compressed sensing
formulation (P1) and one of its extensions, Kronecker compressed sensing [18]. We
consider two ideas for accelerating iterative algorithms. One reduces the total number
of iterations, and the other reduces the computation required to do an iteration. We
demonstrate the effectiveness of these ideas by thorough numerical simulations.

Our first idea, an optimization algorithm, is motivated by the fact that if the desired
solution is very sparse, it should be reached after a relatively small number of simplex
iterations starting from the zero vector. Such an idea motivates the usage of an opti-
mization algorithm that can exploit the solution sparsity, e.g, the parametric simplex
method (see, e.g., [8,41]). In this paper, we propose a customized parametric simplex
method. Compared to standard simplex methods, our algorithm exploits a new pivot
rule tailored for compressed sensing problems. It is well known that slightly alter-
ing the pivot rules and formulation of the simplex method can result in a significant
increase in computational speed [21,35].

While the simplex method has an exponential computational complexity in the
worse case [29], we emphasize that the parametric simplex method is a suitable
optimizationmethod for our compressed sensing problem. Thismatches existing theo-
retical results on the simplexmethod that state the “average complexity” or “smoothed
complexity” of the simplex method is polynomial. See Adler et al. [1]; Spielman and
Teng [37]; Post and Ye [36] and the references within.

Our second idea, a problem reformulation, requires the sensing matrix A to be
the Kronecker product of two smaller matrices, B and C. Since we are typically
allowed to design the sensing matrix A ourselves, this requirement does not impose
any practical limitations. This formulation results in a Kronecker compressed sensing
(KCS) problem that has been considered before [18]. In our paper, we reformulate the
linear program to ensure the constraint matrix is very sparse so that the problem can
be solved efficiently. The computational advantage of using sparse constraint matrices
has been well established in the linear programming literature [25,31,39,42]. While
most optimization research in compressed sensing focuses on creating customized
algorithms, our approach uses existing algorithms but a sparser problem formulation
to speed up computation. To the best of our knowledge, such an idea has not been
exploited in the compressed sensing literature yet.

Theoretically, KCS involves a tradeoff between computation and statistics: it gains
computational advantages (as will be shown in the numerical section) at the price of
requiring more measurements (i.e., larger m). More specifically, using sub-Gaussian
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random sensing matrices (to be defined later), whenever m = O(k2 log2(
√
n/k)),

KCS recovers the true signal with probability at least 1 − 4 exp(−C
√
m) for some

constant C > 0. The sample requirement m for KCS is grows quadratically with k, as
compared to the linear rate of m = O(k log (n/k)) in standard compressed sensing.
We provide more details in later sections.

The rest of this paper is organized as follows. In the next section, we describe how
to solve the standard compressed sensing version (P1) of the problem using the para-
metric simplex method. Then in Sect. 3 we describe the statistical foundation behind
Kronecker compressed sensing (KCS). In Sect. 4 we present the sparse formulation
of KCS that dramatically speeds up existing optimization algorithms (such as interior
point methods). In Sect. 5 we provide numerical comparisons against state-of-the-art
methods to show the advantage of our methods. The problem formulations considered
in Sects. 2 through 5 involve no noise—the measurements are assumed to be exact.
In Sect. 6 we conclude and discuss how our methods can be used to handle noisy or
approximately-sparse settings of compressed sensing.

2 Compressed sensing via the parametric simplex method

Consider the following parametric perturbation to (P1) for a specified μ:

{x̂, ε̂} = argmin
x,ε

μ‖x‖1 + ‖ε‖1 (P2)

subject to Ax + ε = y,

where ε ∈ R
m denotes the residual. Since μ is a tuning parameter that affects the

solution x̂, we should denote the solution to (P2) as x̂μ, but for notational simplicity,
wewrite x̂ as shown in (P2) instead. For large values ofμ, the optimal solution is x̂ = 0
and ε̂ = y. For small, strictly-positive values of μ, the situation reverses: ε̂ = 0 and
we’ve solved the original problem (P1). Belloni and Chernozhukov [2] considered
the above formulation, and they provide statistical guarantees on the solution for a
particular magnitude of μ.

In this section, we require that the sensing matrix A satisfies a suitable k-RIP
property specified by the following lemma.

Lemma 1 [3] For a small enough μ, let {x̂, 0} be the optimal solution of (P2), and
let k = ‖x∗‖0 be the sparsity of vector x∗. If δk(A) < 1/3, then x̂ = x∗.

Problem (P2) is referred to as �1-penalized quantile regression. It can be solved
by the parametric simplex method [8,41], which is a homotopy method used for
sensitivity and perturbation analysis. In particular, we start at a large value of μ and
successively reduce it to form a solution path. That is, the solution to Problem (P2)
for a particular value of μ serves as the initialization to solve the same problem for a
smaller value ofμ. It can be shown that such a solution path is piecewise linear and all
the transition points can be easily calculated. Algorithmically, the parametric simplex
algorithm calculates the full solution path until we arrive at a value of μ for which the
optimal solution has ε̂ = 0, at which point we have solved the original problem (P1).
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The advantage of the parametric simplex method over the standard simplex method
is that it solves the entire regularization path in terms of μ. Specifically, each basic
solution produced by the algorithm is optimal for some interval of μ-values. Once the
solution path indexed byμ is given, we could pick the desiredμ as specified in Belloni
and Chernozhukov [2] to satisfy certain statistical properties. However, we focus on
picking the first μ for which ε̂ = 0. More details of the parametric simplex algorithm
are illustrated in Fig. 1.

To formulate (P2) as a linear program, we reparametrize it using nonnegative vari-
ables and equality constraints. To this end, we split each variable into the difference
between two nonnegative variables:

x = x+ − x− and ε = ε+ − ε−,

where the entries of x+, x−, ε+, ε− are all nonnegative. The next step is to replace
‖x‖1 with 1T (x++x−) and tomake a similar substitution for ‖ε‖1. In general, the sum
x+
j + x−

j does not equal the absolute value |x j | but it is easy to see that equality holds
at optimality. This is a well-known and standard technique for rewriting problems
involving �1-norms as linear programs. The resulting linear program becomes

Simplex CS: min
x+,x−,ε+,ε− μ1T (x+ + x−) + 1T (ε+ + ε−) (P3)

subject to A(x+ − x−) + (ε+ − ε−) = y
x+, x−, ε+, ε− ≥ 0.

For μ large enough, the optimal solution must be x+ = x− = 0, and ε+ − ε− = y.
Given that our variables are required to be nonnegative, we initialize ε+ and ε−
according to

Fig. 1 Illustration of the parametric simplex method. The horizontal line (black) corresponds to varying
values of μ. We explicitly use superscripts to denote the iteration counter for clarity (the solution path
segment between two consecutive transition points is called an iteration). The horizontal line is partitioned
into a finite number of intervals such that each interval corresponds to a solution {x, ε} that is optimal for
any value of μ within that interval. μ is initialized to be ‖A‖1, which ensures the initialization {x(0), ε(0)}
is optimal. The algorithm decreases μ toward 0 until it reaches a solution {x(T ), ε(T )} where ε(T ) = 0.
Then x(T ) = x̂ is our desired optimal solution to Problem (P1). If the solution to (P1) is unique, the interval
corresponding to {x(T ), ε(T )} will contain μ = 0. Since we obtain the entire solution path, other methods
such as Belloni and Chernozhukov [2] can be used to pick the solution x(T−1) corresponding to μ∗, though
it is not the focus of our paper
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yi > 0 �⇒ ε+
i = yi > 0 and ε−

i = 0, (2)

yi < 0 �⇒ ε−
i = −yi > 0 and ε+

i = 0. (3)

The equality case can be decided either way. Such an initialization is feasible for
arbitrary μ. Furthermore, declaring the nonzero variables to be basic variables and
the zero variables to be nonbasic, we use this as our initial basic solution for the
parametric simplex method. We note that this initial solution is optimal for μ ≥
‖A‖1 := max1≤ j≤n

∑m
i=1 |ai j |, the largest column-wise �1 norm of A. That is, for

any solution {x, ε} such that y = Ax + ε, our initial solution setting x = 0 and ε = y
will be the global optima: ‖y‖1 = ‖Ax + ε‖1 ≤ ‖A‖1‖x‖1 + ‖ε‖1 ≤ μ‖x‖1 + ‖ε‖1.
The pseudo-code to initialize and determineμ is presented in Algorithm 1, where Step
3 and Step 4 refer to the pivot step described in Chapters 7 and 8 of Vanderbei [43].

Algorithm 1 Pseudo-Code for Parametric Simplex Method
Require: Inputs A and y as in Problem (P3).
1: Set μ = ‖A‖1,1. Set initial optimal solution to be x+ = x− = 0 and ε+ and ε− to follow (2) and (3)

respectively, as illustrated in Figure 1.
2: while ε+ + ε− �= 0 do
3: Determine the smallest value of μ such that the current solution for (P3) is optimal.
4: For the current value of μ, apply a simplex pivot step to determine a new feasible solution.
5: end while
6: return The optimal solution to (P1), x̂ = x+ − x−.

3 Kronecker compressed sensing formulation

In this section, we introduce the Kronecker compressed sensing idea [18]. While
Duarte and Baraniuk [18] discusses Kronecker sensing to handle multi-dimensional
signals, we show that representing one-dimensional signals as multi-dimensional sig-
nals will bear computational benefits. Unlike the previous section where we required
the sensing matrixA to satisfy the k−RIP condition, in this section we impose a struc-
tural requirement on the sensing matrix. In particular, for given matrices B and C, we
consider the problem formulation that has the following representation:

IPM CS: min ‖x‖1 subject to
(
B ⊗ C

)
x = y. (P4)

The matricesB andC are of sizem1×n1 andm2×n2 respectively, andA, our sensing
matrix, is (m1m2) × (n1n2) and defined as the Kronecker product of B and C:

A := B ⊗ C =
⎡

⎢
⎣

Cb11 · · · Cb1n1
...

. . .
...

Cbm11 · · · Cbm1n1

⎤

⎥
⎦ .

This Kronecker structural assumption on the new sensing matrixAmotivates a new
matrix-based sensing strategy based on a left and right sensing matrix. To see this,
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assuming we want to recover a signal vector x∗ ∈ R
n , we first reparameterize x∗ into

a matrix X∗ ∈ R
n2×n1 by assigning each consecutive length-n2 sub-vector of x∗ to a

column of X∗. Here, without loss of generality, we assume n = n1 × n2. Then, the
observed matrixY is given byY := CX∗BT . We define ‖X‖0 := ∑

i, j 1(xi j �= 0) and
‖X‖1,1 := ∑

i, j |xi j |. Let the vec(·) operator take amatrix and concatenate its elements
column-by-column to build one large column-vector containing all the elements of the
matrix.

Given Y ∈ R
m2×m1 and the sensing matrices B and C, we make one important

observation. Recall the constraint in Problem (P4). If y := Ax∗ where x∗ = vec(X∗),
we have y = vec(Y). This means that Problem (P4) is equivalent to

min ‖X‖1,1 subject to CXBT = Y. (P5)

In otherwords, if x̂ is the solution to (P4) and X̂ is the solution to (P5), then x̂ = vec(X̂).
Hence, we can interpret our Kronecker compressed sensing scheme as either having a
Kronecker structural assumption on A or having two separate (left and right) sensing
matrices B and C.

Recall the definition of RIP given in Eq. (1). To understand the statistical theory
of imposing the Kronecker structure on the sensing matrix A, we use Lemma 2 from
Duarte and Baraniuk [18], which establishes the relationships between the k-RIP
constants of δk(B), δk(C), and δk(A).

Lemma 2 [18] Suppose A = B ⊗ C. Then

1 + δk(A) ≤ (1 + δk(B))(1 + δk(C)). (4)

In addition, we define a sub-Gaussian distribution as follows.

Definition 1 (Sub-Gaussian distribution) We say a mean-zero random variable X
follows a sub-Gaussian distribution if there exists some σ ∈ R+ such that

E exp (t X) ≤ exp

(
σ 2t2

2

)

for all t ∈ R.

It is clear that the Gaussian distribution with mean 0 and variance σ 2 satisfies the
above definition. The next theorem provides sufficient conditions for perfect recovery
of KCS.

Theorem 1 Suppose the entries of matrices B and C follow a sub-Gaussian distrib-
ution with parameter σ . Then there exists a constant C > 0 (depending on σ ) such
that whenever

m1 ≥ C · k log (n1/k) and m2 ≥ C · k log (n2/k) ,
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260 R. Vanderbei et al.

the convex program (P5) attains perfect recovery with probability

P

(
X̂ = X∗) ≥ 1 −

(
2e−m1

2C + 2e−m2
2C

)

︸ ︷︷ ︸
ρ(m1,m2)

.

Proof (for Theorem 1) We use the equivalence between Problem (P5) and Problem
(P4). FromLemma1andLemma2, it suffices to show that δk(B) and δk(C) are both less
than 2/

√
3−1.Let τ := 2/

√
3−1. FromTheorem9.2 of Foucart andRauhut [23], there

exist constants C1 and C2 (depending on σ ) such that if m1 ≥ 2C1τ
−2k log(n1/k)

and m2 ≥ 2C2τ
−2k log(n2/k), then

P

(

δk(B)<
2√
3

−1 and δk(C)<
2√
3

−1

)

= 1−(
P (δk(B) ≥ τ)+P (δk(C) ≥ τ)

)

≥ 1 −
(

2e
− τ2m1

2C1 + 2e
− τ2m2

2C2

)

≥ 1 − ρ(m1,m2).

��
An analogous result can be derived from the results in Duarte and Baraniuk [18]

which uses thewavelet basis. From the above theorem,we see that form1 = m2 = √
m

and n1 = n2 = √
n, whenever the number of measurements satisfies

m = O

(

k2 log2
(√

n

k

))

, (5)

we have X̂ = X∗ with probability at least 1 − 4 exp(−C
√
m) for some constant C .

Here we compare the above result to that of (standard) compressed sensing problem
(P1). Following the same argument as in Theorem 1, whenever

m = O

(

k log
(n

k

))

, (6)

we have x̂ = x∗ with probability at least 1−2 exp(−Cm). Comparing (6) to (5), we see
that KCS needs more stringent conditions for perfect recovery. Specifically, for a fixed
n, as k (the unknown sparsity level) increases, the required number of samples for KCS
will grow quadratically with k rate as opposed to linearly. However, in the next section
and in the numerical results, wewill see that KCS enjoys a tremendous improvement in
computation time. Thiswill illustrate our tradeoff between computational performance
and statistical recovery.

4 Sparsifying the constraint matrix for efficient computation

We can use standard LP algorithms such as an interior-point algorithm to solve (P4).
However, to achieve improved computational performance, we carefully formulate
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the problem so that our algorithm can explicitly exploit the Kronecker structure of
A. The key to efficiently solving the linear programming problem associated with the
Kronecker sensing problem lies in noting that the dense, Kronecker product A can be
factored into a product of two sparse matrices:

A =
⎡

⎢
⎣

Cb11 · · · Cb1n1
...

. . .
...

Cbm11 · · · Cbm1n1

⎤

⎥
⎦ =

⎡

⎢
⎢
⎢
⎣

C 0 · · · 0
0 C · · · 0
...

...
. . .

...

0 0 · · · C

⎤

⎥
⎥
⎥
⎦

×

⎡

⎢
⎢
⎢
⎣

b11In2 b12In2 · · · b1n1In2
b21In2 b22In2 · · · b2n1In2

...
...

. . .
...

bm11In2 bm11In2 · · · bm1n1In2

⎤

⎥
⎥
⎥
⎦

=: VW,

where In2 denotes an n2 × n2 identity matrix and 0 denotes an m2 × m2 zero matrix.
Notice that while the matrix A is usually completely dense, it is a product of two very
sparse matrices: V = Im1 ⊗ C ∈ R

m×m1n2 and W = B ⊗ In2 ∈ R
m1n2×n . Hence, if

we introduce new variables z, we can rewrite (P4) equivalently as

min
x,z

‖x‖1 (P6)

subject to Wx − z = 0
Vz = y.

Using our previous matrix notation, we can rewrite (P6) as

IPM KCS: min
X,Z

‖X‖1,1 (P7)

subject to CX − Z = 0
ZBT = Y.

If we want to use a parametric simplex method to solve (P6), we can, as before,
split x and ε into a difference between their positive and negative parts and enforce
equality constraints to convert the problem into a linear program:

Simplex KCS: min
x+,x−,ε+,ε−,z

μ1T (x+ + x−) + 1T (ε+ + ε−) (P8)

subject to z − W(x+ − x−) = 0
Vz + (ε+ − ε−) = y

x+, x−, ε+, ε− ≥ 0.

This formulation (P8) has more variables and more constraints than (P3), but now
the constraint matrix is very sparse. We reiterate that while (P8) and (P3) are math-
ematically equivalent when A is a Kronecker product, the reparameterization in (P8)
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is more amendable to fast computational performance. Specifically, for linear pro-
gramming, the sparsity of the constraint matrix is a significant contributor towards
computational efficiency [25,39]. In fact, we can view the decomposition in (P7) as
a sparsification technique analogous to one step of the fast-Fourier optimization idea
described in [44].

5 Numerical results and comparisons

Before showing our simulation results, we briefly describe three other popularmethods
to solve compressed sensing problems: �1_�s , Mirror Prox, and Fast Hard Thresh-
olding Pursuit. We will compare the performance of our method against these three
methods on noiseless compressed sensing problems.

Proposed methods In this paper, we have presented two ideas, the parametric
simplex method (an optimization algorithm) and Kronecker compressed sensing (a
problem reformulation). We have made implementations that use these two ideas
either separately or jointly. We use “KCS” to refer to optimization problems that
explicitly exploit sparsity structure in the formulation, (P7) and (P8). We modify the
parametric simplex algorithm described in Vanderbei [41] implemented in C found at
http://www.orfe.princeton.edu/~rvdb/LPbook/src/index.html, to solve both (P3) and
(P8). We refer to these implementations as “Simplex” and “Simplex KCS” respec-
tively in our simulation results. We also use an interior-point solver called loqo ([40])
to solve (P4) and (P7). We refer to these implementations as “IPM” and “IPM KCS”
respectively in our simulation results.

(Specialized) interior-point method The �1_�s method [28] is a truncated Newton
interior-point method using a preconditioner to solve

x̂ = argmin
x

‖Ax − y‖22 + λ‖x‖1 (P9)

for a given regularization parameter λ. Since computing the Newton direction is
computationally prohibitive for large-scale problems due to its Hessian, �1_�s cir-
cumvents this problem by approximating the Newton direction using preconditioned
conjugate gradients. In general, interior-point methods are very efficient because they
use second-order information. The Matlab code for this algorithm can be found at
http://stanford.edu/~boyd/l1_ls/.

Greedy method Fast Hard Thresholding Pursuit (FHTP) [22] is a greedy algorithm
that alternates between two steps to approximately solve

x̂ = argmin
x:‖x‖0=k

‖x‖1 : Ax = y (P10)

for a given sparsity level k. In the first step, it chooses the best k coordinates of x
according to a certain criterion, and in the next step it optimizes x for only thse k
coordinates while setting the remaining coordinates to 0. This algorithm is appealing
because of its simplicity and its exact recovery as long as A satisfies an RIP condition
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and k is correctly chosen. TheMatlab code for this algorithm can be found at http://
www.math.drexel.edu/~foucart/HTP.zip.

First-order method The Mirror Prox algorithm [27] is a first-order algorithm that
solves

x̂ = argmin
x

‖x‖1 : ‖Ax − y‖2 ≤ δ (P11)

for a given tolerance δ by reformulating the problem as a saddle-point problem and
using a proximal method to solve its variational inequality. First-order algorithms
are favored in compressed sensing literature for their computational speed since they
avoid calculating the Hessian matrix, and saddle point formulations are advantageous
because they naturally combine the primal and dual of the problem via variational
inequalities. The Matlab code for this algorithm can be found at http://www2.isye.
gatech.edu/~nemirovs/MirrorProxJan10_2012.zip.

Experimental protocol In the rest of this section, let x∗ denote the true signal and
x̂ denote the estimated signal using one of the above algorithms. We measure the
accuracy of the solution by

Relative �1 error:
‖x∗ − x̂‖1

‖x∗‖1 and �∞ error: ‖x∗ − x̂‖∞.

We compare five different algorithms, the parametric simplex method, the interior
point method, �1_�s , FHTP and Mirror Prox at different sparsity levels k. FHTP
requires two different modes, oracle and agnostic. In the former, FHTP is given the
true sparsity of x∗. In the latter, FHTP is always given a sparsity of 100 regardless of
the true x∗.

Since each algorithm is solving a slightly different optimization problem, we devise
a methodology for fair comparison. An important quantity to achieve fairness is the
imprecision, ‖Ax̂ − y‖22, the degree to which the solution x̂ satisfies the constraints.
We first apply our proposed methods (Simplex KCS, IPM KCS, Simplex CS, IPM
CS) and record their imprecision. Since simplex methods are exact algorithms, we
cannot reasonably expect the same magnitude of constraint error with �1_�s (P9) and
Mirror Prox (P11). Hence, we require these last two to have imprecision of only up to
two magnitudes more than the simplex-based algorithms. For each k, we found that
λ = 0.01 in (P9) achieves a comparable imprecision. Given the solution to �1_�s , we
can easily set δ in (P11) to match the precision. The parametric simplex method and
oracle FHTP naturally achieve the highest precision in most cases.

To ensure that each optimization algorithm is solving the same problem, we sample
A and B as Gaussian matrices where each entry is a standard Gaussian (mean 0,
standard deviation 1). “Simplex KCS” and “IPM KCS” use the matrices V = I ⊗ C
andW = B⊗ I, while all the other methods use the sensing matrixA = B⊗C. In the
following, we perform two different simulation sets. In the first simulation set, we vary
the sparsity level of x. In the second, we vary the length of x. In either simulation set,
we simulate 10 trials for each sparsity level or length. Instructions for downloading
and running the various codes/algorithms described in this section can be found at
http://www.orfe.princeton.edu/~rvdb/tex/CTS/kronecker_sim.html.
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Table 1 This table shows the time (seconds), relative �1 error and relative �∞ error for 6 selected sparsity
levels averaged (median) over 10 trials

Sparsity k = 2 Sparsity k = 20

Time
(s)

Rel. �1
Error

�∞
Error

Time
(s)

Rel.�1
Error

�∞
Error

Simplex KCS 1e−8 0 0 2.000 0 0

IPM KCS 44.650 3.71e−10 9.41e−8 48.000 1.98e−8 1.36e−6

Simplex 2.000 0 0 3.500 0 0

IPM 730.350 3.78e−10 9.73e−8 758.700 2.54e−10 9.23e−8

l1ls 110.120 6.02e−6 1.08e−5 96.753 9.68e−6 0.00010

Mirror Prox 28.070 0.00025 0.00099 82.740 0.00143 0.01535

FHTP (Oracle) 16.912 1.30e−11 2.60e−11 14.270 2.67e−5 8.79e−5

FHTP (Agnostic) 191.575 0.25993 4.67440 196.25500 0.17329 3.49615

Sparsity k = 50 Sparsity k = 70

Time
(s)

Rel. �1
Error

�∞
Error

Time (s) Rel.�1 Error �∞ Error

Simplex KCS 12.000 0 0 25.500 0 0

IPM KCS 47.700 3.41e−8 7.62e−6 48.950 3.67e−8 6.95e−6

Simplex 19.500 0 0 66.000 0 0

IPM 758.700 3.49e−8 7.62e−6 821.250 4.23e−8 2.65e−6

l1ls 170.315 1.45e−5 0.00031 267.155 1.84e−5 0.00052

Mirror Prox 42.840 0.00011 0.06293 64.030 0.00015 0.11449

FHTP (Oracle) 13.273 0.00020 0.00160 15.575 0.00017 0.00144

FHTP (Agnostic) 146.215 0.00504 1.773 35.64750 0.00518 1.42405

Sparsity k = 100 Sparsity k = 150

Time
(s)

Rel. �1
Error

�∞
Error

Time
(s)

Rel.�1
Error

�∞
Error

Simplex KCS 70.500 0 0 462.500 4.50e−6 0.00017

IPM KCS 49.950 5.2e−7 2.31e−5 56.500 1.40e−5 0.00136

Simplex 234.500 0 0 1587.500 2.00e−6 0.00010

IPM 783.450 5.31e−7 0.00035 794.500 1.50e−5 0.00150

l1ls 377.315 2.43e−5 0.00104 789.165 9.79e−5 0.00683

Mirror Prox 410.050 0.00011 0.42348 635.085 0.00036 2.43170

FHTP (Oracle) 16.231 0.00040 0.00471 79.677 0.01460 128.01000

FHTP (Agnostic) 20.439 0.00040 0.00471 148.945 0.01646 145.07500

If themedian value is smaller than 1e−4, wewrite out at least two significant digits in scientific notation.We
write “0” to denote exact recovery (achieved by only the simplex method). The first two rows of each table
represent our proposed methods. Parametric simplex method outperforms other methods for very sparse
problems k ≤ 70. Naturally, FHTP (oracle) is the fastest for k ≤ 100, but we see that both our methods
outperform FHTP in relative �1 error and uniform error. By incorporating Kronecker structure, we see that
previously slowmethods can experience a drastic speed-up (i.e., the difference between IPM and IPMKCS)
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Fig. 2 Solution times for a large number of trials having m = 1, 122, n = 20, 022, and various degrees
of sparsity in the underlying signal. The horizontal axis shows the number of nonzeros in the signal. The
vertical axis gives a semi-log scale of solution times. The error bars have lengths equal to one standard
deviation based on the multiple trials. Between Simplex KCS and IPM KCS, we outperform �1_�s and
Mirror Prox

Results (Varying sparsity) In the first simulation set, we vary the true sparsity level
by generating random problems using m = 1, 122 = 33 × 34 and n = 20, 022 =
141 × 142 and vary the number of nonzeros k in signal x∗ from 2 to 150.

Table 1 provides time measured in seconds, the relative �1 error and the �∞ error
averaged across 10 trials for each level of sparsity. All the simulation times are shown
in Fig. 2. There are two observations. First, when the true sparsity is very small
(k ≤ 70), the parametric simplex method without the Kronecker structure (Simplex)
outperforms most modern methods in terms of precision and time. Second, we see
that previously slow methods (Simplex and IPM) are tremendously sped up once the
problem is formulated using the Kronecker structure (Simplex KCS and IPM KCS).
There is roughly a ten-fold improvement in speed. In fact, IPM KCS is uniformally
faster than �1_�s and Mirror Prox. Our results show that if our sensing matrix has
Kronecker structure and our algorithm is adapted to exploit the this property, simplex
and interior point methods are highly competitive.

In four of the trials for Simplex throughout the entire simulation set, the solver erro-
neously reported that the solution was unbounded. We suspect this is due to numerical
imprecision after the hundreds of thousands of simplex iterations for large values of k.
This is not unexpected since we coded the entire parametric simplex method ourselves
in C instead of using commercialized functions inMatlab.

(Varying size) In the second simulation set, we vary the problem size by fixing the
number of nonzeros k in signal x∗ to 100 and constructing random problems using
m = 1, 122 = 33× 34 and varying n = 141× 142 to n = 141× 402. Let n2 denote
the varying dimension. Table 2 shows the same attributes as in the previous table. As
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Table 2 This table, similar format as Table 1, shows 4 selected dimension sizes n2 averaged (median) over
10 trials

Size n2 = 102 Size n2 = 202

Time
(s)

Rel. �1
Error

�∞
Error

Time
(s)

Rel.�1
Error

�∞
Error

Simplex KCS 23.500 0 0 165.500 1.50e−6 1.50e−5

IPM KCS 40.732 3.54e−8 6.34e−8 92.351 2.56e−6 5.23e−5

Simplex 55.300 0 0 552.500 2.50e−6 2.50e−5

IPM 452.140 2.64e−8 4.34e−8 1409.206 6.35e−6 6.54e−5

l1ls 359.672 3.54e−5 1.21e−5 691.541 2.21e−5 1.62e−5

Mirror Prox 421.268 0.00985 0.00242 502.532 0.00983 0.00357

FHTP (Oracle) 24.327 0.30032 0.01964 115.465 0.51763 0.10540

Size n2 = 302 Size n2 = 402

Time
(s)

Rel. �1
Error

�∞
Error

Time (s) Rel.�1 Error �∞ Error

Simplex KCS 652.100 0.20000 0.00200 1750.100 0.50000 0.01023

IPM KCS 185.532 0.01729 0.40000 306.290 0.00966 0.40001

Simplex 2283.200 0.01063 0.01065 5555.700 0.01594 0.01597

IPM 3143.280 0.09238 0.01829 6503.130 0.12620 0.01810

l1ls 1541.290 0.20003 0.01731 2575.930 0.60002 0.09930

Mirror Prox 1043.022 0.21061 0.02327 1682.610 0.60639 0.12080

FHTP (Oracle) 382.556 1.16788 0.47230 727.805 1.19667 0.87309

Simplex KCS and IPM KCS outperform most methods in terms of time and accuracy. The parametric
simplex (without Kronecker structure) performs better than �1_�s for k = 100 even as n2 grows. Note that
the �∞ error for n2 = 402 is large for �1_�s , Mirror Prox and FHTP, meaning at least one dimension is
drastically incorrect

shown in Fig. 3, the relative order of the seven algorithms mostly persists throughout
the simulation set. In particular, in all cases tried, Simplex KCS outperforms �1_�s and
Mirror Prox. IPM KCS outperforms most methods throughout the entire simulation
set.

6 Discussion and conclusions

We revisit compressed sensing from an optimization perspective.We advance the field
of compressed sensing in two ways.

First, despite having an exponential worst-case complexity, the parametric simplex
method is competitive for very sparse signals. It outperforms �1_�s and Mirror Prox
under this regime (and we suspect many other methods) in both time and precision.
Also, by adopting a parametric simplex method, we solve the problem for all values of
μ, thereby finding the entire solution path in one shot. This feature of the parametric
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Fig. 3 Solution times for a large number of trials having m = 1, 122 and k = 100. The number of
dimensions for x∗ in each trial is n = 141× n2, and the horizontal axis shows the range of n2. The vertical
axis and error bars denote the same quantities as in Fig. 2. IPMKCS outperforms most methods throughout
the entire simulation set

simplex method allows the user to pick a particular value of μ or take the largest μ

for which ε = 0. Our paper focused on the latter.
Second, if we use the Kronecker structure, both the parametric simplex and inte-

rior point methods speed up ten-fold, making them competitive with other modern
CS algorithms. But, as explained earlier, the Kronecker sensing problem involves
changing the underlying problem being solved. The sensing matrix is now viewed as
the Kronecker product of two sub-Gaussian matrices. While we presented this idea
using only the parametric simplex and interior point methods, we expect this idea
to benefit most optimization methods. This is left for future investigation. The Kro-
necker idea is inspired by the fast-Fourier transform where dense matrices are split
into products of sparse matrices ([39], [44]). Hence, any optimization method that
accommodates sparse matrix multiplication operations can potentially be altered to
benefit further from a Kronecker compressed sensing scheme. The theoretical guar-
antees for using Kronecker compressed sensing are more stringent, however, which
illustrates the tradeoff between computational efficiency and statistics.

In most applications, we expect some noise to corrupt the true signal. As long as the
signal-to-noise ratio is high, we can adapt our methods to handle inexact constraints.
Furthermore, the parametric simplex method computes solutions for all values of μ.
As mentioned before, we can pick the solution associated with the value suggested
in Belloni and Chernozhukov [2] to achieve statistical properties for noisy cases. If
we have a specific residual size ‖ε‖1 that we are willing to tolerate, we can pick the
appropriate solution from the solution path. On the other hand, if one were inter-
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ested settings where x is approximately sparse and we wanted to recover the s-largest
entries of x, one could use either our “Simplex” or “IPM KCS” method. The rela-
tion between the solution and the true signal can then be determined through existing
theory in Candès[5]. In future work, we plan to investigate noisy and approximately
sparse settings more thoroughly and extend the proposed method to the setting of 1-bit
compressed sensing.

Acknowledgments The authors would like to offer their sincerest thanks to the referees and the editors
all of whom read earlier versions of the paper very carefully and made many excellent suggestions on how
to improve it.
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