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Abstract A new phenomenological framework for
predicting ductile fracture after non-proportional load-
ing paths is proposed, implemented into FE soft-
ware and validated experimentally for a limited set of
monotonic and reverse loading conditions. Assuming
that ductile fracture initiation is imminent with the for-
mation of a shear band, a shear localization criterion
in terms of the elastoplastic tangent matrix is sufficient
from a theoretical point of view to predict ductile frac-
ture after proportional and non-proportional loading.
As a computationally efficient alternative to analyz-
ing the acoustic tensor, a phenomenological criterion
is proposed which expresses the equivalent hardening
rate at the onset of fracture as a function of the stress
triaxiality and the Lode angle parameter. The math-
ematical form of the criterion is chosen such that it
reduces to the Hosford–Coulomb criterion for propor-
tional loading. The proposed framework implies that
the plasticitymodel is responsible for the effect of load-
ing history on ductile fracture. Important non-isotropic
hardening features such as the Bauschinger effect,
transient softening and hardening stagnation must be
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taken into account by the plasticity model formula-
tion to obtain reasonable fracture predictions after non-
proportional loading histories. A new comprehensive
plasticity model taking the above effects into account
is thus an important byproduct of this work. In addi-
tion, compression–tension and reverse-shear experi-
ments are performedon specimens extracted fromdual-
phase steel sheets to validate the proposedplasticity and
fracture model.

Keywords Ductile fracture · Localization ·
Hardening rate · Reverse loading · Reverse shear ·
Hosford–Coulomb

1 Introduction

Since the pioneering work of Gurson (1977), porous
plasticity models have received considerable attention
because of their soundmicromechanical basis and abil-
ity to predict fracture in many applications. Inspired
by the early work of McClintock (1968) and Rice
and Tracey (1969), Gurson-type of models have been
developed to provide a mathematical description of the
nucleation, growth and coalescence of voids in solids.
It is undisputed that these mechanisms are relevant at
high stress triaxialities such as encountered in front of
crack tips (e.g. Needleman and Tvergaard 1987). In
crack-free sheet materials, the stress state is usually
close to plane stress and hence the void growth driving
stress triaxiality is usually below the theoretical maxi-
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mum value of 2/3. Even inside a localized neck where
three-dimensional stress states develop, the stress tri-
axiality seldom exceeds values of 0.8. Consequently,
there is limited void growth in a statistically homoge-
neous sense in sheet specimens prior to fracture initi-
ation. This conclusion is partially supported by exper-
imental observations of Ghahremaninezhad and Ravi-
Chandar (2012, 2013) from micrographs taken at dif-
ferent stages during tension and shear experiments on
aluminum alloy 6061-T6, and the synchrotron X-ray
laminography observations ofMorgeneyer et al. (2014)
for aluminum alloy 2198.

At the macroscopic level, there is also growing evi-
dence that the stress–strain response of sheet metal can
be predicted with high accuracy up to the point of frac-
ture initiation using non-porous plasticity models. The
decrease in the force level that is observed in the post-
necking range can usually be described without intro-
ducing damage into the material model. However, as
shown byDunand andMohr (2010), Sung et al. (2010),
Tardif and Kyriakides (2012) and Mohr and Marcadet
(2015), a careful identification of the large strain hard-
ening response of non-porous models through inverse
procedures is required. Despite the physically sound
formulation of Gursonmodels, it is very difficult to find
experimental evidence that justifies their application to
sheet metal as far as the description of the elasto-plastic
material response is concerned. It is reemphasized that
this statement is made with regard to the plasticity of
sheet metal only.

An ad-hoc approach to predicting ductile fracture
with porous plasticity models is to assume that frac-
ture initiates when the computed porosity reaches a
critical value. A more physical approach would be to
assume that the porous plasticity model provides an
accurate description of the effect of porosity on the
material’s load carrying capacity which implies that
ductile fracture is predicted “naturally”. In otherwords,
the solution of a boundary value problem will fea-
ture zones of plastic localization (e.g. dilatational shear
bands) that will eventually cause the loss of load car-
rying capacity of the structure at hand. The study of
Besson et al. (2003) of slant fracture nicely illustrates
this approach. Such simulation models can be supple-
mented with coalescence criteria (see review by Ben-
zerga and Leblond 2010) to account for localization
events at the mesoscale. Note that the latter may even
occur before macroscopic localization (Tekoglu et al.
2015).

Recent experimental evidence regarding ductile
fracture at low stress triaxialities (e.g. Barsoum and
Faleskog 2007; Mohr and Henn 2007; Haltom et al.
2013; Mohr and Marcadet 2015) is not in good agree-
ment with the trends predicted by conventional Gur-
son models. The qualitative differences are mostly
due to the fact that conventional Gurson models do
not predict shear localization at low stress triaxialities
(at reasonable magnitudes of strain). So-called shear-
modified Gurson models have thus been developed
to capture the localization at low stress triaxialities.
An example is the work by Nahshon and Hutchin-
son (2008) who added a shear term to the void vol-
ume evolution law of the GTN model (Tvergaard and
Needleman 1984) and demonstrated the importance of
this modification in their predictions of shear local-
ization. Danas and Ponte Castañeda (2012) used non-
linear homogenization to come up with a porous plas-
ticity model that accounts for void shape changes
(that are characteristic for shear loading). Their analy-
sis also shows the loss of ellipticity at low stress
triaxialities.

When using porous plasticity (e.g. Gurson 1977;
Gologanu et al. 1993; Benzerga and Besson 2001;
Monchiet et al. 2008) the evolution law for the void vol-
ume fraction (and other possible microstructural state
variables) is loading path sensitive and failure pre-
dictions with microstructurally-informed coalescence
criteria (e.g. Thomason 1985; Pardoen and Hutchin-
son 2000; Benzerga 2002; Tekoglu et al. 2015) are
then loading path dependent. However, given the lim-
ited benefits of Gurson type of models as far as pre-
dicting the elasto-plastic response of sheet metal is
concerned, the combination of non-porous plastic-
ity models with damage indicator models provides
an attractive framework for predicting loading path
dependent fracture initiation in industrial practice. Dif-
ferent from porous plasticity and coalescence mod-
els, damage indicator models often have no physi-
cal basis and are at most physics-inspired. The dam-
age indicator is a dimensionless scalar variable that
evolves as a function of the stress state and plastic
deformation,

dD = d ε̄p

ε̄
pr
f [η, θ̄ ] . (1)

It is initially zero while fracture is assumed to occur
when D = 1. The heart of these models is the weight-
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ing function ε̄
pr
f [η, θ̄ ],which provides the strain to frac-

ture for proportional loading as a function of the stress
triaxiality η and the Lode angle parameter θ̄ . Bao and
Wierzbicki (2004) provide a comprehensive overview
on different stress-state dependent damage indicator
models including weighting functions based on the
works of McClintock (1968), Rice and Tracey (1969),
LeRoy et al. (1981), Cockcroft and Latham (1968), Oh
et al. (1979), Brozzo et al. (1972) andClift et al. (1990).
More recent representatives of this class of models
are the modified Mohr–Coulomb model by Bai and
Wierzbicki (2010) and the micro-mechanically moti-
vatedHosford–Coulombmodel byMohr andMarcadet
(2015). Even though the latter has been derived from
a localization criterion for proportional loading only, it
gives satisfactory results for both proportional and non-
proportional loading paths (Bai 2008; Papasidero et al.
2015; Marcadet and Mohr 2015). The main shortcom-
ing of damage indicator models is the lack of physical
arguments justifying their validity for non-proportional
loading paths. Even though the variable D is often
called damage and Eq. (1) is referred to as damage
accumulation rule, it is emphasized that D has no direct
physical meaning (unlike the damage variable used in
continuumdamagemechanics). Instead, itmaybemore
appropriate to view the damage indicator framework
as a heuristic mathematical model for predicting path
dependent fracture initiation.

The main objective of the present paper is to pro-
vide a mechanism-inspired model for predicting duc-
tile fracture initiation under proportional and non-
proportional loading. An important byproduct of this
work is an advanced plasticity model which accounts
for direction-dependent Lankford ratios, the Baus-
chinger effect, work hardening stagnation and quasi-
permanent softening. The proposed model is vali-
dated using experimental data for two advanced high
strength steels for proportional monotonic experi-
ments, compression–tension experiments and reverse
shear experiments.

2 Plasticity model

In view of predicting the large deformation and frac-
ture response for non-proportional loading paths, a
finite strain plasticity model formulation is presented
that accounts for (i) loading direction dependent Lank-
ford ratios, (ii) the early yield after load reversal

(Bauschinger effect), (iii) the high hardening rate in
the elasto-plastic transition regime resulting from load
reversal (transient hardening), (iv) permanent soften-
ing, and (v) work hardening stagnation. Barlat et al.
(2011) proposed an anisotropic hardening model based
on homogeneous yield functions to describe these
effects. As discussed in the review papers by Chaboche
(2008) and Eggertsen and Mattiasson (2010; 2011),
combinations of linear and non-linear hardening rules
can account for the Bauschinger effect, transient hard-
ening and permanent softening, while further model
enrichments are necessary to account for hardening
stagnation (e.g. Yoshida and Uemori 2002). To account
for all five effects (i)–(v), Marcadet and Mohr (2015)
proposed combining the plasticity models of Mohr
et al. (2010) with the non-linear hardening models of
Chaboche (2008) and Yoshida and Uemori (2002) type
of hardening stagnation.

In the sequel, the model by Marcadet and Mohr
(2015) is reformulated to simplify the associated mate-
rial model parameter identification procedure. In par-
ticular, the hardening laws are formulated such that
that the model parameters describing the material’s
response to monotonic loading do not need to be read-
justed when calibrating the parameters that account
for reverse loading effects. The model ingredients are
chosen in view of modeling Advanced High Strength
Steels (AHSS). The particular choice of the yield func-
tion and flow rule would need to be revisited before
applying the model to non-ferrous metals such as alu-
minum or HCP materials. Also, further extensions of
the back stress evolution rules are expected to be in
order to describe the material behavior for severely
non-proportional loading path changes (e.g. tension
along the rolling direction followed by tension along
the transverse direction).

2.1 Yield function and flow rule

To define the pressure-independent yield surface, we
introduce the tensor ξ as a measure of the difference
between the deviatoric Cauchy stress and a deviatoric
back stress tensor X,

ξ = dev (σ ) − X. (2)

For most advanced high strength steel sheets, the
monotonic axial stress–strain response is isotropic in
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the plane of the sheet (e.g. Mohr et al. 2010). Conse-
quently, the von Mises equivalent stress definition is
employed

ξ̄ =
√
3

2
ξ : ξ =

√
3

2

∣∣∣ξ̃
∣∣∣ (3)

to define the yield surface,

f = ξ̄ − kiso = 0, (4)

with kiso denoting the isotropic deformation resistance.
In (3), ξ̃ denotes the stress vector with the components

ξ̃ = {ξ11, ξ22, ξ33,
√
2 ξ12,

√
2 ξ13,

√
2 ξ23}T . (5)

In the case of mildly direction-dependent Lankford
ratios, we follow the recommendations of Stoughton
(2002), Cvitanic et al. (2008) and Mohr et al. (2010)
and employ a non-associated flow rule with a Hill’48
flow potential function,

dεp = dλ
G : ξ√
ξ : G : ξ

, (6)

with the plastic multiplier dλ and the positive-definite
fourth-order tensor G. When adopting vector notation
for the stress arguments, G can be represented by the
symmetric matrix

G̃ =

⎡
⎢⎢⎢⎢⎢⎢⎣

1 G12 − (1 + G12) 0 0 0
G12 G22 − (G22 + G12) 0 0 0

− (1 + G12) − (G22 + G12) 1 + 2G12 + G22 0 0 0
0 0 0 G44/2 0 0
0 0 0 0 1.5 0
0 0 0 0 0 1.5

⎤
⎥⎥⎥⎥⎥⎥⎦

. (7)

such that

ξ̄
2
Hill = ξ : G : ξ = ξ̃ · G̃ξ̃. (8)

The vonMises definition is adopted to define the equiv-
alent plastic strain, i.e.

d ε̄p =
√
2

3
dεp : dεp. (9)

2.2 Hardening laws

The hardening laws are chosen based on the Com-
bined Chaboche-Yoshida (CCY) model proposed by

Marcadet and Mohr (2015). An attempt is made to
simplify the model parameter identification by intro-
ducing a function B that describes the material harden-
ing response for monotonic uniaxial tension along the
rolling direction. For this special case, the yield condi-
tion reads

σ11 = kiso + kkin = B (10)

with kiso denoting the isotropic deformation resistance
as introduced in Eq. (4), and kkin denoting the back
stress.

In most plasticity models, established analytical
forms (Holomon, Swift, Voce, power law, exponen-
tial function, etc) are used to parametrize the isotropic
hardening law

kiso = kiso[ε̄p]. (11)

The special feature of the current model is that a para-
metric form is used to describe B as a function of the
equivalent plastic strain. In particular, we approximate
the monotonic stress–strain response through a com-
bined Swift–Voce law,

B = wA
(
ε0 + ε̄ p)n

+ (1 − w)
{
Y0 + Q

(
1 − e−bV ε̄ p

)}
, (12)

with the Swift parameters {A, ε0, n}, the Voce parame-
ters {Y0, Q, bV }, and the weighting factor 0 ≤ w ≤ 1.
Both the Swift and the Voce form can be well-fitted
to the stress–strain curves measured up to the point of
necking in uniaxial tension experiments. However, the
Voce hardening law usually underestimates the strain
hardening at large strains, while the opposite holds true
for the Swift law. The combined Swift–Voce law fea-
tures an additional weighting factor as parameterwhich
can be conveniently identified through inverse analy-

123



Predicting path-dependent ductile fracture 81

sis of the specimen response in the post-necking range
(e.g. Mohr and Marcadet 2015; Gu and Mohr 2015).
The repartition of the effective hardening response
into isotropic and kinematic hardening will then be
described through additional constitutive equations.

For general 3D settings, kiso and kkin will serve as
internal variables of the constitutive model. For nota-
tional convenience, we also introduce the sum of kiso
and kkin as dependent variable,

k = kiso + kkin . (13)

The initial configuration of the material is then charac-
terized through the initial condition

@ε̄p = 0 : k = kiso

= B0 := wAεn0 + (1 − w) Y0 and kkin = 0. (14)

For arbitrary three-dimensional loading, the stress B
defines a bounding limit for k,

k ≤ B, (15)

while the evolution of k is expressed through the dif-
ferential equation

dk = S
{
dB + γβ (B − k) d ε̄p

}
(16)

where S ∈ [0, 1] is an additional internal variable asso-
ciated with hardening stagnation. For loading paths
without any hardening stagnation (e.g. monotonic uni-
axial tension), we have S = 1 at all times, and con-
sequently dk = dB and k = B. In the case where
work hardening stagnation occurs, the strict inequality
k < B holds true. The recovery term γβ (B − k) d ε̄p
allows the variable k to converge towards B whenever
thematerial deformed outside the hardening stagnation
regime (S = 1).

There is experimental evidence that the hardening
of rolled steel sheets after loading reversals must be
mostly kinematic to accurately describe theBauschinger
effect (Yoshida and Uemori 2002). However, when
introducing complex evolution laws in the constitutive
equations, special attention is required with regards
to thermodynamic constraints. For these reasons, the
repartition between isotropic and kinematic hardening
is prescribed through the equation

dkiso =
{
0 if kkin < ϕkiso
dk
1+ϕ

if kkin = ϕkiso
(17)

with the model parameter ϕ ≥ 0; this particular form
of the evolution law ensures that kkin ≤ ϕkisois always
fulfilled. According to (17), the apparent strain harden-
ing under uniaxial tension (evolution of B) is entirely
due to kinematic hardening, until B = (1 + ϕ)B0.

2.3 Evolution of the back stress tensor

2.3.1 General form of the back stress evolution
equations

The evolution rules for the back stress tensors will be
a combination of terms inspired by the classic Prager
(1956) and Armstrong and Frederick (1966) formula-
tions:

dx = 2

3
Hdεp + γ

(
2

3
kdεp − xdλ

)
. (18)

The first term of the right hand side of (18) represents
linear kinematic hardening. Under proportional load-
ing, it is macroscopically equivalent to isotropic hard-
ening with a tangent modulus H . The second term of
the right hand side is motivated by the dynamic recov-
ery in the Armstrong and Frederick (1966) formula-
tion. After loading reversal, the back stress tensor is
expected to remain within a sphere of radius k in the
deviatoric stress space. The particular feature of our
evolution laws is that the radius of the bounding sphere
may evolve. This feature mimics the behavior of two
surface models (e.g. Dafalias and Popov 1976). For
monotonic loading, the back stress evolution is only due
to the first right hand side term. After loading reversal,
the back stress contribution of the first term is neg-
ligibly small as compared to the second term during
the transition phase until the backstress approaches the
sphere boundary.

2.3.2 Evolution law for permanent softening

In order to account for permanent softening andharden-
ing stagnation, we make use of two back stress tensors,

X = α + β. (19)

The evolution rule for the back stress tensor β accounts
for permanent softening (Fig. 1a) and kinematic hard-
ening at large strains (Fig. 1b); it is defined through the
differential equation
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dβ = 2

3

(
dkβ

d ε̄p

)
dεp + Sγβ

(
2

3
kβdεp − βdλ

)
. (20)

As mentioned above, the proposed evolution rule is a
combination of terms inspired by the classic Prager
(1956) and Armstrong and Frederick (1966) formu-
lations. However, different from Prager’s linear kine-
matic hardening rule which makes use of a constant
modulus, the hardeningmodulusdkβ/d ε̄p of thePrager
term (first term of the right hand side) is bounded by
the evolution of the variable kkin . Formally, this non-
linearity is introduced through the constraint

dkβ

d ε̄p
= min

(
Cβ,

dkkin
dλ

)
(21)

which typically becomes active at large strains and
for large values of Cβ . Similarly, different from
Armstrong–Frederick‘s kinematic hardening rulewhich
makes use of a constant radius, the radius of the bound-
ing surface for the back stress evolution is controlled
by the variable kβ . Note that the Armstrong–Frederick
recovery effect on the back stress evolution (second
term on the right hand side of Eq. 20) is interrupted
during work hardening stagnation.

2.3.3 Evolution law for Bauschinger effect

Analogously to the evolution equations of the back
stress β, we define the hardening law for α to rep-
resent the Bauschinger effect and transient hardening
(Fig. 1c),

dα = 2

3

(
dkα

d ε̄p

)
dεp + γα

(
2

3
kαdεp − αdλ

)
(22)

with the model parameter γα and the coupling con-
straint

dkα = dkkin − dkβ. (23)

As discussed in Marcadet and Mohr (2015), the evolu-
tion of α is not affected by hardening stagnation.

2.4 Work hardening stagnation

As for the CCY model (Marcadet and Mohr 2015), the
constitutive equations for the evolution rule of S are
inspired by the work of Yoshida and Uemori (2002).
Work hardening stagnation (Fig. 1d) is activated as a

function of the loading history. Firstly, the strain-like
measure ω is introduced to characterize the loading
path,

dω = 2

3

ξ√
3
2ξ : ξ

dλ. (24)

The distance of ω̄ to a point q is then defined as

ω̄ =
√
2

3
(ω − q) : (ω − q). (25)

and limited to

ω̄ − r ≤ 0. (26)

When ω̄ = r and (ω − q) : dω > 0, r and q are
updated according to

dq = (1 − h) · dω (27)

dr = h
(ω − q)

ω̄
: dω. (28)

The internal variable S is then defined as

S[ω, q, r ] =
{

if (ω − q) : dω ≥ 0 then ω̄
r

if (ω − q) : dω < 0 then 0
(29)

The variable S corresponds to the ratio of the distance
of ω to q when ω̄ increases. It is set to zero when it
decreases. This means that the hardening is deactivated
in case of reverse loading and progressively reactivated
at large strains after reversal.

2.5 Thermodynamic constraints

The starting point of our considerations is the free
energy imbalance (e.g. Gurtin et al. 2013) of the form

ψ̇ ≤ σ : ε̇ (30)

The free energy is limited to an elastic part ψe

ψ = ψe, (31)

which must be positive, i.e.
ψe ≥ 0. (32)

Assuming the quadratic elastic strain energy potential:

ψe = 1

2

(
C : (ε − εp)

) : (ε − εp) (33)

along with the elastic constitutive equation:

σ = ∂ψ

∂(ε − εp)
= C : (ε − εp) (34)
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Fig. 1 Illustration of the
effects of selected kinematic
hardening model parameters
for a DP600 steel:
a permanent softening
parameter Cβ , b parameter
γβ , c Bauschinger
parameter γα , d stagnation
parameter h. The default
parameters are γα = 180,
Cb = 220MPa, h = 0.4 and
γb = 9

the free energy imbalance may be substituted by the
requirement of nonnegative rate of plastic dissipation,

ḋp = σ : ε̇p ≥ 0. (35)

Combining Eqs. (2), (6), (19) and (35), we obtain the
rate of plastic dissipation

ḋp = (α + β + ξ) : ε̇p = ξ̄Hill λ̇+︸ ︷︷ ︸
≥0

(α + β) : G : ξ

ξ̄Hill
λ̇.

(36)

Thefirst term is unconditionally nonnegative.However,
(α + β) : G : ξ may become negative. The non-zero
dissipation condition requires that

− (α + β) : G : ξ ≤ ξ̄
2
Hill . (37)

The left hand side of (36) is bound by

− (α + β) : G : ξ ≤ |(α + β) : G : ξ|
=
∣∣∣G̃ (

α̃ + β̃
)

· ξ̃

∣∣∣
≤
∣∣∣G̃ (

α̃ + β̃
)∣∣∣
∣∣∣ξ̃
∣∣∣ ≤ λmax

∣∣∣α̃ + β̃

∣∣∣
∣∣∣ξ̃
∣∣∣ (38)

while a lower bound for the right hand side term in (36)
reads

ξ̄
2
Hill = G̃ξ̃ · ξ̃ ≥ λmin

∣∣∣ξ̃
∣∣∣2 (39)

with λmax and λmin denoting the largest and smallest
positive eigenvalues of the symmetric G̃ matrix. Com-
bining the above inequalities leads to the constraint

λmax

∣∣∣α̃ + β̃

∣∣∣ ≤ λmin

∣∣∣ξ̃
∣∣∣ (40)

Inserting the bounds provided by the kinematic and
isotropic hardening laws, we obtain

λmax
2

3
kkin ≤ λmin

√
2

3
kiso (41)

This constraint means that the sum of the back stresses
is bounded by the current isotropic yield surface. It is
readily fulfilled if the model parameter ϕ [see Eq. (17)]
is chosen such that
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ϕ ≤ λmin

λmax

√
3

2
. (42)

3 Critical hardening rate fracture initiation model

We are concerned with predicting the instant of duc-
tile fracture initiation in structural applications such as
sheet metal forming or the crush loading of thin-walled
structures. The applicability of our model will be lim-
ited to materials and structural applications where a
shear band forms prior to the formation of a crack.
Furthermore, it will be assumed that the deformation
accumulated within a shear band prior to fracture is
not relevant for assessing the structural performance.
In other words, there is no need tomodel the post shear-
localization response. At the length and time scales of
interest, it shall be reasonable to assume that the for-
mation of a crack is imminent with the formation of a
shear localization band. We emphasize that the physics
of shear localization and fracture are fundamentally
different. However, with the above working assump-
tions in place, we will no longer carefully differentiate
between shear localization and fracture. It will actu-
ally be postulated that shear localization is the govern-
ing mechanism leading to ductile fracture, which is the
basis for to the development of a “mechanism-inspired”
ductile fracture initiation model.

The results from a notched tension experiment on
a TRIP780 steel (Fig. 2) illustrate the above working
assumption. After accumulating an equivalent plastic
strain of 0.18 up to the force maximum (Fig. 2a), a
through-thickness neck develops at the specimen cen-
ter. Within this neck, the deformation increases further
up to strains of 0.47, before a slant shear band forms
(blue solid triangle) and the specimen fractures (black
solid triangle). At the structural level, the displacement
up to the force maximum is 1.55mm, another 0.55mm
displacement increment is accumulated during neck-
ing until fracture initiates at u f = 2.10mm; the dis-
placement increment between the instant of shear local-
ization and fracture is almost zero at the scale of the
macroscopic displacement recordings. It was only in a
specimen from an experiment interrupted at a displace-
ment of 0.99u f (blue solid triangle in Fig. 2a), where
we could detect some evidence of an emerging shear
band of a width a few microns (order of grain size).

Even though the modeling assumption is expected
to hold true for many engineering materials, it is noted

(a) 

(b) 

Fracture

Necking
Shear band

500µm

Thickness 
direc�on

Tensile
direc�on

Fig. 2 a Force-displacement response of a flat notched tension
specimen extracted from a 1.4mm thick TRIP780 steel sheet,
the insert shows the evolution of the equivalent plastic strain
at the specimen center as a function of the stress triaxiality, b
micrograph of a longitudinal cut through the fractured NT20
specimen

that it does not apply to materials such as superplastic
metals or metallic glasses. For example, the formation
of intense localized shear bands is the main deforma-
tion mechanism in metallic glasses for accommodating
substantial inelastic strains at low homologous temper-
atures without fracturing (e.g. Anand and Su 2005).
For the sake of simplicity, we will also limit our atten-
tion to the formulation of an isotropic fracture initi-
ation model. The developments below would need to
be repeated on the basis of the anisotropic Hosford–
Coulomb model (Gu and Mohr 2015) in the case of
materials that exhibit a pronounced anisotropic frac-
ture response. Note that the complexity of the plas-
ticity model (Sect. 2) remains almost unchanged when
extending the model from isotropic to anisotropic plas-
tic flow. Consequently, themild anisotropy in the Lank-
ford ratios is taken into account. As far as the fracture
modeling is concerned, themodel complexity increases
significantly from the isotropic to the anisotropic for-
mulation. Consequently, we recommend neglecting the
effect of anisotropy on the fracture initiation except
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Predicting path-dependent ductile fracture 85

in the case of severely anisotropic materials (e.g. alu-
minum extrusions).

3.1 Mechanism-based modeling

Assuming that the initiation of ductile fracture, i.e.
the formation of macroscopic cracks in metals is
imminent with the onset of localization, the onset
of ductile fracture can be predicted through an infi-
nite band-type of localization analysis (Rice 1976).
For a material obeying the incremental stress–strain
relationship

dσ = L : dε, (43)

Rice (1976) showed that the condition for localization
in a planar band reads

det[Li jklnknl ] = 0 (44)

with n denoting the unit normal vector to the localiza-
tion band. Rice (1976) has also shown that the above
bifurcation condition describes the loss of ellipticity
of the governing field equation. It is worth noting that
Rice’s criterion remains valid irrespective of the load-
ing history. The loading history effect on the onset of
shear localization is solely described by the plastic-

ity model which provides the evolution of the elasto-
plastic tangent matrix L (fourth-order tensor) and the
stress tensor σ (which enters into the corresponding
finite strain formulation, see Mear and Hutchinson
1985). In engineering practice, the above approach is
seldom used due to the high computational costs asso-
ciated with solving equation (44) and its incompatibil-
ity with non-porous plasticity models (when predicting
localization at low stress triaxialities).

3.2 Phenomenological modeling for proportional
loading

As an alternative to bifurcation analysis, engineers
often use fracture initiation criteria that provide the

equivalent plastic strain to fracture as a function of the
stress state,

ε̄
pr
f = ε̄

pr
f [η, θ̄ ]. (45)

The existence of a fracture envelope can be justified for
proportional loading in stress space. Mohr and Mar-
cadet (2015) have shown that any envelope in stress
space can be transformed into the formof (45) formate-
rials featuring isotropic hardening only. For example,
the Hosford–Coulomb model in principal stress space
{σI , σI I , σI I I } reads

σ̄HF + c(σI + σI I I ) = b (46)

with the isotropic (Hosford 1972) scalar measure of the
deviatoric stress tensor,

σ̄HF =
{
1

2

(
(σI − σI I )

a + (σI I − σI I I )
a

+(σI − σI I I )
a) } 1

a

(47)

and the model parameters {a, b, c}. Using coordinate
transformations, the same criterionmaybe expressed in
termsof the stress triaxiality, Lodeparameter andMises
equivalent stress. In the modified Haigh–Westergaard
space {η, θ̄ , σ̄ }, we have,

σ̄ = σ̄ f [η, θ̄ ] = b{ 1
2 (( f1 − f2)a + ( f2 − f3)a + ( f1 − f3)a)

} 1
a + c(2η + f1 + f3)

. (48)

with the Lode angle parameter dependent functions

f1[θ̄ ] = 2

3
cos

[π

6
(1 − θ̄ )

]
,

f2[θ̄] = 2

3
cos

[π

6
(3 + θ̄ )

]
,

f3[θ̄ ] = −2

3
cos

[π

6
(1 + θ̄ )

]
(49)

For a Levy–von Mises material with isotropic hard-
ening, a third representation of the Hosford–Coulomb
criterion in the mixed stress–strain space {η, θ̄ , ε̄p} is
readily obtained when using the inverse isotropic hard-
ening law, ε̄p = k−1[σ̄ ], to substitute the von Mises
equivalent stress by the equivalent plastic strain,

ε̄
pr
f = k−1 [σ̄ f [η, θ̄ ]] . (50)
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In the latest coordinate frame transformation, we
made use of the bijectivity of the isotropic hardening
law σ̄ = k[ε̄p].

The bijectivity of the hardening law allows us not
only to substitute the equivalent von Mises stress
through the equivalent plastic strain, but we can even
express the fracture criterion in terms of a critical hard-
ening rate, A fourth representation of the Hosford–
Coulomb model can be given in the mixed hardening
rate & stress state space {η, θ̄ , dσ̄ /d ε̄p},
(
dσ̄

d ε̄p

)pr

f

= dk

d ε̄p

[
k−1 [σ̄ f [η, θ̄ ]]] . (51)

All four representations of the Hosford–Coulomb cri-
terion have been visualized for plane stress conditions
in Fig. 3 for a power law material

k[ε̄p] = A(ε0 + ε̄p)
n . (52)

with the Swift parameters A = 1100MPa, ε0 = 0.02
and n = 0.2, and the Hosford–Coulomb parameters

a = 1.5, b = 1000MPa and c = 0.1. It is reempha-
sized that all four representations are fully equivalent
and predict the same instant of fracture initiation for a
given proportional loading path in stress space (under
plane stress conditions).

3.3 Phenomenological modeling for non-proportional
loading

As discussed in the introduction, we seek for a mech-
anism-based alternative to the heuristic damage indica-
tor modeling framework to predict ductile fracture ini-
tiation for proportional and non-proportional loading
paths. Aside from the lack of physical arguments sup-
porting the particular mathematical form of the dam-
age indicator framework, we also found a strong coun-
terexample: experiments suggest an increase in the total
strain to fracture after shear reversal (see Sect. 4.3.2).
This is in contradiction with the prediction of damage
indicator models which are insensitive to the effect of
loading direction reversal for pure shear.

Fig. 3 Representation of
the Hosford–Coulomb
criterion for a power law
material with plane stress
condition in the following
spaces a first and second
in-plane stress components
b modified
Haigh–Westergaard space c
mixed strain-stress state
space d mixed hardening
rate-stress state space. The
initial Von Mises yield
envelope (solid black line)
and Hosford–Coulomb
fracture locus (solid blue
line) are shown
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Inspired by the fact that Rice’s (1976) localization
criterion in terms of the tangent modulus L naturally
incorporates the effect of the loading history, we pro-
pose a phenomenological derivative of Rice’s model by
postulating that ductile fracture initiates when the hard-
ening rate dσ̄ /d ε̄ reaches a critical value for a given
stress state {η, θ̄}.
(
dσ̄

d ε̄

)
f

= g[η, θ̄]. (53)

Note that different from (51), we omit the superscript
‘pr’, i.e. criterion (53) is proposed to predict ductile
fracture for both proportional and non-proportional
loading paths. We also note that d ε̄ defines the von
Mises equivalent strain increment of the total strain
tensor,

d ε̄ =
√
2

3
dε : dε. (54)

Similarly to Rice’s localization criterion, the depen-
dence on loading history of ductile fracture initiation
is inherited from the plasticity model.

For materials exhibiting isotropic hardening only,
the proposed model would reduce to a simple stress
based criterion. This simple form for modeling the
effect of loading history has been advocated by
Stoughton and Yoon (2011). However, for materials
exhibiting non-linear kinematic hardening (such as
Bauschinger effect or permanent softening), the above
model will immediately predict a history effect on duc-
tile fracture.

This plasticity model effect is shown schematically
in Fig. 4 andwill be elaborated further in the subsequent
sections dealing with real materials. The stress–strain
relation is shown for monotonic and reverse loading
after an equivalent plastic strain of 0.45. A constant
stress state is assumed even after loading reversal (e.g.
shear reversal). Fracture under monotonic loading is
assumed to initiate at an equivalent plastic strain of 1.
Figure 4 illustrates the effect of plasticity on the strain

Fig. 4 Effect of plasticity on the prediction of fracture under
reverse loading for the Hosford–Coulomb model as a function
of the choice of critical quantity at fracture

to fracture depending on the choice of critical quantity
at fracture:

• von Mises stress, corresponding to Eq. (48), in
green,

• equivalent plastic strain, corresponding to Eq. (50),
in blue, and

• hardening rate, corresponding to Eq. (53), in red.

Note that all three models would yield the same strain
to fracture when using an isotropic hardening model,
while significant differences are observed for themodel
with kinematic hardening.

As far as the parametric formof g[η, θ̄ ] is concerned,
we suggest using (51) as evaluated for a power law
hardening model with n = 0.1,

g[η, θ̄] = HUT

〈{ 1
2 (( f1 − f2)a + ( f2 − f3)a + ( f1 − f3)a)

} 1
a + c(2η + f1 + f3)

1 + c

〉 1
n −1

(55)

The proposed critical hardening ratemodel therefore
features three model parameters: the critical hardening
modulus HUT for uniaxial tension, the friction coeffi-
cient c, and the Hosford exponent a. It is emphasized
that (55) is merely a fitting function which has been
chosen such that the critical hardening model inher-
its the capabilities of the Hosford–Coulomb model for
proportional loading. A rigorous derivation of g[η, θ̄]
from the localization problem posed by (44) is a major
undertaking which is deferred to future research.
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3.4 Extended formulation

An important underlying assumption in the proposed
ductile fracture model is that the fracture initiation is
imminent with the onset of localization. There are a
few exceptions where this assumption does not hold
true. Consider for example a material in which Lüders’
bands form (e.g. Hall 1970). In that case, localization
bands occur temporarily, but cease rapidly as the hard-
ening rate picks up. For such a material, the hardening
rate right after initial yield is close to zero or even neg-
ative; the proposed model would predict fracture at this
stage of loading even though significantly higher strains
are attained in reality.A similar situation is encountered
when PLC bands form in aluminum alloys (e.g. Benal-
lal et al. 2006) or during work hardening stagnation
after loading reversal in DP steels.

The common feature of these special cases is that
the localization is stabilized rapidly due to the mater-
ial’s remaining hardening potential. Localization corre-
sponds to a catastrophic event (i.e. fracture initiation), if
there is no more hardening stabilization possible under
continued monotonic loading along the current loading
path. The failure criterion thereforemust state that frac-
ture occurs at an instant t f if the localization criterion
(53) is satisfied, and provided that the hardening mod-
ulus would not increase if the loading continued along
the same strain path. Denoting the hardening modulus
H at an instant t f after loading along a specific strain
path ε[t] from the initial configuration (t = 0) to the
current configuration (t = t f ) as

H
[
ε[t f ]

] := dσ̄

d ε̄

∣∣∣∣
t f

(56)

the fracture criterion is formally rewritten as

max
t≥t f

H
[
ε[t f ] + ε̇[t f ](t − t f )

] ≤ g
[
η[t f ], θ̄ [t f ]

]
.

(57)

It is noted that the loading path assumed in (57) is only
one possible post-localization scenario. As for prop-
agating instabilities (e.g. Kyriakides 2001), the for-
mation of a crack after the onset of localization also
depends on the kinematic restrictions imposed by the
surroundingmaterial. In otherwords, different from the
onset of localization, fracture initiation is expected to
depend on the non-local conditions. It is also noted that
the abovemodel is not suitable for predicting fracture in
the hardening stagnation regime after loading reversal.

3.5 Comment on the model sensitivity

At first sight, the formulation of a fracture initiation
model in terms of the hardening rate appears to bemore
sensitive to experimental inaccuracies than models that
are directly formulated in terms of strains. It is therefore
worth emphasizing that the conversion from strains to
hardening rates is only done computationally, i.e. the
identification of the model parameters {a, HUT , c} is
based on the measured strains to fracture for different
stress states. Possible experimental uncertainties in the
measurement of stress–strain curve slopes therefore do
not enter the model parameter identification process.

The same applies to inaccuracies in the calibrated
plasticity model. Even if the plasticity model provides
only a poor approximation of thematerial’s large defor-
mation response, these plasticity model inaccuracies
will not affect the model predictions of the strain to
fracture for proportional loading. However, the model
predictions for non-proportional loading depend on the
slope accuracy of the plasticity model. In other words,
in order to benefit from the model’s ability to estimate
of the strains to fracture after complex loading histo-
ries, it is necessary to use an adequate plasticity model.
For instance, the increase in ductility after reverse shear
loading is only possible if a plasticity model with non-
linear kinematic hardening or hardening stagnation is
employed.

4 Experiments

4.1 Materials

The proposed plasticity and fracture models are vali-
dated based on the experimental data for two different
materials: 1.0mm thick DP780 steel sheets provided
by US Steel, and 1.4mm thick DP590 steel sheets pro-
vided by ArcelorMittal.

4.2 Specimens

In an attempt to obtain a comprehensive characteri-
zation of the plastic and fracture response of advanced
high strength steels, the following types of experiments
have been performed:

(a) Monotonic uniaxial tension (UT): tensile speci-
mens with a 10mm wide gage section (Fig. 5)
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Fig. 5 Drawings of all specimens employed: flat dogbone spec-
imen for uniaxial tension (UT), tension specimens with dif-
ferent notch radii (NT20, NT6), central hole tension specimen
(CH2), uniaxial tension–compression specimen (UTC), notched

compression–tension specimen (CTR), punch specimen (PU),
butterfly fracture specimen (BUT), and Mohr–Owald specimen
(MO)
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are positioned into a universal testing machine
and loaded at a constant cross-head velocity of
2mm/min. In addition to the axial strain, the width
strain is measured using planar Digital Image Cor-
relation (DIC);

(b) Monotonic notched tension (NT): the minimum
gage section width of all notched specimens was
10mm (Fig. 5), while the notch radii were either
20mm (NT-20) or 6.67mm (NT-6). The notched
specimens were loaded at constant cross-head
velocity of 0.5mm/min all the way to fracture. The
relative axial shoulder displacements were mea-
sured using 17 and 15mm long DIC extensometers
for the NT-6 and NT-20 specimens, respectively.
In addition, a local relative displacement has been
measured using a 2mm long virtual extensometer
at the specimen center;

(c) Monotonic central hole tension (CH): the employed
tensile specimens were 20mm wide and featured a
4mmdiameter hole at the gage section center; as for
the NT specimens, a global relative displacement
has beenmeasured using a 20mm long axial virtual
extensometer;

(d) Monotonic punch experiments (PU): the disc spec-
imen is clamped onto a 100mm diameter die and
subjected to out-of-plane loading using a 44.5mm
diameter hemispherical punch (Dunand and Mohr
2010); the specimen is loaded all theway to fracture
at a punchvelocity of 5mm/min.The surface strains
are measured in the apex region of the punched
specimen using stereo DIC.

(e) Uniaxial tension–compression experiments (UTC):
the specimens are first loaded up to an axial strain
of 0.1 or 0.2 under uniaxial tension, before load-
ing direction reversal. A low friction anti-buckling
device is employed to apply compression stain
increment of up to 0.15 before buckling failure. The
axial strains are monitored in these experiments
using a 12mm long virtual extensometer;

(f) Notched compression–tension experiments (CTR):
notched specimens (Fig. 5) with the same gage sec-
tion dimensions as the NT-20 specimens are first
subject to compressive strains of up to -0.13, before
removing the anti-buckling device and loading the
specimen all the way to fracture under tension; the
global and local axial DIC extensometer lengths are
12 and 2mm, respectively.

(g) Reverse shear plasticity experiments (MO): tangen-
tial loading is applied onto a rectangular specimen

(Fig. 5),while keeping the vertical force zero (Mohr
and Oswald 2008). The strains are measured within
the 5mm high and 50mm long gage section using
planar DIC. To avoid any plastic deformation in the
gripping areas and to reduce the required tangen-
tial forces, the gage section thickness is reduced to
0.5mm using conventional milling. Fracture initi-
ates near the gage section edges which limits the
validity of the experiments to equivalent strain lev-
els of about 0.3 for monotonic loading; the exper-
iment are performed in a tangential displacement-
control mode at a constant velocity of 0.2mm/min;

(h) Reverse shear fracture experiments (BUT): in close
analogy with the shear plasticity experiments, tan-
gential loads are applied to a butterfly-shaped spec-
imen (Fig. 5, Dunand and Mohr 2011). Different
from the MO specimen, fracture initiates near the
specimen center where the stress state is close to
pure shear. The relative tangential and normal dis-
placement of the specimen shoulders is monitored
using planar DIC. All experiments are performed a
constant tangential velocity of about 0.2mm/min,
while keeping the normal force zero.

4.3 Details on experimental procedures

The experimental procedures for experiment types (a)–
(f) have been described in detail in Dunand and Mohr
(2010), Mohr and Marcadet (2015) and Marcadet and
Mohr (2015). We therefore limit our detailed descrip-
tion to the experimental procedures for the reverse shear
experiments which have not been reported previously.

All shear tests are performed on a custom-made
Instron dual actuator system (Fig. 6). The boundary
conditions and the alignment are well controlled by the
high pressure grips. The vertical actuator controls the
vertical load applied to the top of the specimen. The
horizontal actuator is under displacement control.

4.3.1 Reverse shear plasticity experiments

The high width to height ratio of the MO specimen
ensures that the shear stress field is approximately uni-
form within the specimen gage section; it can there-
fore be calculated based on the force measurements at
the specimen boundaries. After machining the spec-
imens, a random speckle pattern is applied onto the
gage section surface. A digital camera equipped with
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Fig. 6 Dual actuator system

Nikon 105mm 1:1 macro lenses monitored the central
part of the gage section at a frame rate of 1Hz. The
tangential displacement is applied at a constant hori-
zontal actuator speed of 0.5mm/min. The experiments
are aborted as soon as small cracks become visible by
eye in the gage section corners. The reader is referred to
Mohr andOswald (2008) for details on the stress–strain
curve extraction. An example equivalent stress versus
equivalent plastic strain curve for the DP780 material
for an MO experiment with loading reversal at a strain
of about 0.09 is shown in Fig. 7. In the same figure,
we also show the stress–strain curve from a tension–
compression experiment (UTC specimen) with load-
ing reversal at the same equivalent plastic strain (solid
dots). The remarkable agreement of both curves is seen
as a partial validation of the reverse loading testing
techniques. Furthermore, it illustrates that significantly
larger strains could be achieved with the MO specimen
(before the formation of corner cracks) than in a UTC
specimen (which fails due to buckling).

4.3.2 Reverse shear fracture experiments

As mentioned above, the MO specimen fails because
of strain concentrations at the gage section corners and
is thus not suitable for measuring the strain to frac-
ture for pure shear. Instead, the butterfly (BUT) spec-
imen (Fig. 5) introduced by Dunand and Mohr (2011)
is used. It features slightly curved specimen shoulders

Fig. 7 Comparison of the stress–strain response of DP780 steel
in an experiment with loading reversal at an equivalent plas-
tic strain of 0.1. The solid curve has been determined from a
Mohr–Oswald shear experiment, while the dotted curve has been
obtained from a uniaxial experiment with tension followed by
compression

which generate significantly larger strains at the speci-
men center than at the free gage section boundaries. As
a result, fracture initiates near the gage section center
where pure shear conditions prevail.1

A velocity of 0.5mm/min is applied to the hori-
zontal actuator, while keeping the vertical force zero.
The horizontal and vertical relative displacements �u
and �v of the specimen shoulders is measured using
an DIC extensometer at an acquisition frequency of
1Hz. Due to the heterogeneity of themechanical fields,
the equivalent plastic strain evolution at the specimen
center is extracted from a finite element simulation of
the experiment. Following the modeling guidelines of
Dunand and Mohr (2011), we made use of a solid ele-
mentmeshwith four first-order elements along the half-
thickness of the specimen gage section (i.e. an element
size of about 0.06mm). The instant of loading reversal
in reverse loading experiment is then also determined
after computing the strain evolution for a monotonic
experiment.

4.4 Overview on experiments performed

The same battery of monotonic experiments has been
completed for both materials:

1 This statement holds true for most engineeringmaterials tested
so far. However, it is important to verify the validity of this
assumption for each experiment performed.
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• Uniaxial tension (UT) for three different loading
directions

• Central hole and notched tension (CH, NT20 and
NT6) along the rolling direction

• Punch (PU) experiment
• Mohr–Oswald (MO) and butterfly (BUT) shear
with the rolling direction parallel to the vertical axis

For the DP590 steel, the effect of loading direction
reversal has been characterized using

• ReverseMohr–Oswald (MO) shear plasticity exper-
iments with loading reversal at an equivalent plastic
strain of 0.1 and 0.2;

• Reverse butterfly (BUT) shear fracture experiments
with loading reversal at an equivalent plastic strain
of 0.25 and 0.50;

For the DP780 steel, a more extensive experimental
program has been performed to investigate the effect
of loading direction reversal:

• Uniaxial tension–compression (UTC) experiments
with loading direction reversal at an equivalent
plastic strain of 0.05 and 0.1;

• Notched compression–tension (CTR) experiments
with loading direction reversal at an equivalent
plastic strain of 0.05, 0.10, 0.15 and 0.20;

We intentionally chose nearly isotropic AHSS sheet
materials to defer the investigation of the possible com-
bined effect of initial anisotropy and loading direction
reversal to future work. In our fracture testing pro-
gram, we do not consider different specimen orien-
tations and perform all experiments along the rolling
direction only. Consequently, the conclusions drawn
from this studywill be only be validated experimentally
through rolling direction data. The main purpose of the
performed experiments is to serve as basis for mater-
ial model identification and model validation. We omit
a separate discussion of the experimental observations
per se in the present section. Instead, the experimental
results are introduced in the next section on the model
application and validation.

From a mechanistic point of view, it is noted that
through thickness necking was observed in specimens
(a)–(c) and (e)–(f). The final fracture surfaces are slant,
i.e. oriented at an angle of about 45◦ with respect to the
sheet thickness direction.

Table 1 Lankford ratios

r0 (–) r45 (–) r90 (–)

DP590 0.98 0.84 1.13

DP780 0.78 0.96 0.77

5 Application and validation

The newly-proposed plasticity and fracture models are
applied to describe the large deformation response of
the DP780 and DP590 dual phase steels. It is empha-
sized that the material is nearly isotropic in its initial
state, i.e. the axial stress–strain response is direction-
independent and the Lankford ratios are also only
mildly direction dependent (Table 1). The use of an
associated (isotropic) flow rule would yield almost the
same results for the abovematerials. The fracturemodel
is fully isotropic for monotonic loading, i.e. the pos-
sible effect of initial anisotropy is neglected. How-
ever, both the plasticity and fracturemodels account for
the effects of deformation-induced anisotropy which is
represented by the evolution of the back stress tensors.

5.1 Plasticity model parameter identification

The proposed plasticity model features the following
material parameters:

• anisotropic flow potential parameters {G12,G22,

G44}
• Swift–Voce parameters {ε0, A, n,Y0, Q, bV , w}
• kinematic hardening parameters {Cβ, γα, γβ}
• hardening stagnation parameter h

As mentioned above, the great advantage of the model
over our earlier formulation (Marcadet andMohr 2015)
is that these parameters can be identified sequentially.

5.1.1 Monotonic loading

Firstly, the flow potential parameters {G12,G22,G44}
are determined from the Lankford coefficients,

G12 = − r0
1 + r0

,

G22 = r0
r90

1 + r90
1 + r0

, and

G44 = 1 + 2r45
r90

r0 + r90
1 + r0

. (58)
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Table 2 Swift–Voce model
parameters

Y0 (MPa) Q (MPa) bV (–) A (MPa) ε0 (–) n (–) w (–)

DP590 345.9 335.8 24.9 1031.0 0.0013 0.2 0.73

DP780 614.0 270.0 32.2 1170.0 3.1 10−5 0.11 0.79

Then, the Swift parameters {ε0, A, n}, and the Voce
parameters {Y0, Q, b} are independently determined
fromafit to themeasured true stress versus plastic strain
curve for uniaxial tension along the rolling direction.

Finally, the parameter w is determined through
inverse analysis; it is chosen such that the predicted
load-displacement response for the NT20 specimen
matches the experimental result. During this optimiza-
tion, the parameters for reverse loading are set to
dummy values (e.g. Cβ = 0, γα = 100, γβ = 100,
h = 0) since they have a negligible effect on the simu-
lation results. The final set of parameters formonotonic
loading is given in Table 2.

5.1.2 Reverse loading

In the proposed plasticitymodel, the effects of the para-
meters for reverse loading are nearly independent, and
do not affect the response of the model under propor-
tional loading conditions. The dimensionless parame-
ter γα controls the rate of transient hardening in the
Bauschinger phase. The dimensionless parameter h
controls the finite strain increment during which work
hardening stagnation takes place. The parameter Cβ

controls the strength reduction related to permanent
softening, while the dimensionless parameter γβ con-
trols the rate of strain hardening after the end of the
work hardening stagnation phase. The effect of each
model parameter is illustrated in Fig. 1.

The vonMises stress versus equivalent plastic strain
relation is numerically evaluated using a single ele-
ment simulation. The boundary conditions are such
that the element is under simple shear (or uniax-
ial tension); loading reversal is applied at the cor-
responding equivalent plastic strain as obtained with
the MO experiments (or UTC experiments). The
predicted stress–strain response is then compared
to the experimental response. The parameters x =
{Cβ, γα, γβ, h} are determined such as to minimize
the difference between the experimentally-measured
and numerically-predicted curves. The error function
is expressed as

Table 3 Kinematic hardening and stagnation parameters

Cβ (MPa) γα (–) γβ (–) h (–)

DP590 51.3 74.8 2.1 0.49

DP780 231.6 65.2 6.0 0.64

�I [x] =

√√√√√
2∑
j=1

Mj∑
m=1

(
σ SI M
j [εEX P

m ]
σ EX P
j [εEX P

m ] − 1

)2

(59)

where the subscript j = 1, 2 differentiates among
the stress–strain curves for different levels of pre-strain;
Mj denotes the total of experimental data points used
for the computation of the residual for the experiment j .

This inverse identification procedure has been per-
formed using a Nelder–Mead optimization algorithm
(Matlab) in conjunction with Abaqus. For the DP590
steel, the MO experiments have been used to identify
the parameters {Cβ, γα, γβ, h}, while the UTC exper-
iments have been used for the DP780 steel. The final
model parameters are listed in Table 3. The correspond-
ing comparison of the numerical (solid red) and exper-
imental (dashed black) curves are shown in Fig. 8a for
the DP590 steel, and in Fig. 8b for the DP780 steel. It
is reemphasized that the model response for monotonic
loading remained approximately unchanged after iden-
tifying the kinematic hardening and stagnation parame-
ters, which is seen as a significant simplification of the
complex and tedious process of the parameter identifi-
cation of our previous CCY plasticity model (Marcadet
and Mohr 2015).

A validation of the identified plasticity model para-
meters is given in Figs. 9 and 10 for the DP780 steel,
where we simulated the butterfly shear experiments
with loading reversal and the notched compression–
tension experiments for different levels of pre-strain.

5.2 Fracture model parameter identification

The critical hardening rate model set of parameters
{a, HUT , c} is identified from the monotonic fracture
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Fig. 8 Comparison of the von Mises stress versus equivalent
plastic strain curves after loading reversal for experimental data
(black dotted line) and the prediction of the model after cali-
bration (red solid line) for: a reverse shear on a MO specimen
extracted from DP590, and b tension–compression loading of a
DP780 UTC specimen

experiments for five different stress states: NT6, NT20,
CH, BUT and PU. In all experiments, the instant of
fracture initiation is determined through a sudden force
drop. This instant always coincidedwith the emergence
of a clearly visible (by eye) macroscopic crack. From
the simulation of each experiment, we extract the load-
ing path to fracture, i.e. the evolution of the equiva-
lent plastic strain, the hardening rate, the stress triax-
iality and the Lode angle parameter until the instant
of fracture initiation. The loading paths to fracture are
shown as solid black lines in the equivalent plastic
strain versus stress triaxiality plane in Fig. 11a (DP590
steel) and Fig. 11b (DP780 steel). Even though the
experiments are highly repeatable (the measured force-

Fig. 9 Comparison of the experimental (dotted) and predicted
(solid) force-displacement curves for experiments on BUT spec-
imens extracted from DP780 steel: a monotonic shear, b shear
reversal at an equivalent plastic strain of 0.25, c shear reversal at
an equivalent plastic strain of 0.50
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Fig. 10 Comparison of the
experimental (dotted) and
predicted (solid)
force-displacement curves
and local strain evolutions
for experiments on CTR
specimens extracted from
DP780 steel: a monotonic
tension, and load reversal
after compression up to an
equivalent plastic strain of
b 0.05, c 0.10, d 0.15 and
e 0.20

displacement curves of repeated experiments lied on
top of each other), the computed loading paths to frac-
ture include uncertainties related to the DIC displace-
ment measurement and the plasticity model approxi-
mation. The fracture displacementmeasurement uncer-
tainty of about 10μmequates to a fracture strain uncer-
tainty of about 0.03. The uncertainty related to the accu-
racy of the plasticity model is expected to be 0.05 in
the reported fracture strains (estimated based on the
surface strain comparison shown in Fig. 8). Using a

basic Matlab script, the strains to fracture are calcu-
lated according to the critical hardening rate model
for all given monotonic loading paths, and the para-
meters {a, HUT , c} are identified numerically through
residual minimization (taking all five experiments into
account). The corresponding instants of fracture initi-
ation as predicted using the model parameters given in
Table 4 are shown as solid black dots in Fig. 11. Note
that the three-parameter model provides a good fit (less
than 3% error) for all five calibration experiments.
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(a)

(b)

BUT

CH PU 

NT20 NT6  

Exp.

Model
Model Exp.

BUT CH PU 

NT20 NT6  

Fig. 11 Calibration of the critical hardening rate model using
the results from monotonic experiments on a DP590 steel, and b
DP780 steel. The ends of the solid lines correspond to the instant
of fracture initiation in the experiments, while the solid dots are
the model predictions after calibration

Table 4 Critical hardening model parameters

HUT (MPa) a (–) c (–)

DP590 146.3 1.89 0.005

DP780 143.1 1.77 0.022

5.3 Critical hardening rate model validation

The predictive capabilities of the critical hardening rate
model are evaluated using the experimental data for
fracture initiation after reverse loading (Fig. 12).

For theDP780 steel (Fig. 12a), the computed loading
paths for the compression–tension experiments (CTR)
are shown as solid blue lines; the end of each curve cor-
responds to the instant in the simulation, where fracture

(a)

(b)

BUT

BUT_25

BUT_50

CH 

NT20

PU 

NT6 

Fig. 12 Model validation for reverse loading experiments:
a compression followed by tension experiments on DP780
b shear reversal experiments on DP590. The ends of the solid
lines correspond to the instant of fracture initiation in the exper-
iments, while the solid dots are the model predictions. Note that
none of the blue curves has been used for model calibration.
Also note that the compression part of the loading path before
load reversal is not shown in a

initiated in the experiment. The instants of fracture ini-
tiation predicted by the critical hardening model are
highlighted by the solid dots. Note that the predicted
strains to fracture coincide with those obtained exper-
imentally for two levels of pre-strain (CTR-10, CTR-
15). We reemphasize that the blue dots are true predic-
tions and that no additional parameter was introduced
in the fracturemodel to account for the effect of loading
reversal.

For theDP590 steel, themodel performance is evalu-
ated for butterfly shear experiments with loading direc-
tion reversal at an equivalent plastic strain of 0.25 and
0.50 (Fig. 12b). As for the DP780 steel, we observe
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good agreement of the predicted fracture strains (solid
dots) and the end points of the loading paths to fracture.
Overall, the error in the fracture strain predictions of
the critical hardening rate model is less than 8% for all
validation experiments. Note that the critical hardening
rate model clearly captures the pronounced increase in
ductility due to the shearing direction reversal, which
is seen as a major improvement over state of the art
damage indicator models.

The general trend is that loading direction rever-
sal increases the strain to fracture. This is due to the
increase in hardening rate associated with the transient
behavior after loading direction reversal. As far as the
stress state sensitivity is concerned, we do not expect
any qualitative change related to loading direction
reversal, i.e. the same qualitative features of the frac-
ture strain versus stress triaxiality plot shown in Fig. 3c
will also be found after loading direction reversal.

6 Conclusions

It is assumed that the onset of ductile fracture in a poly-
crystalline material is imminent with the formation of
a localization band. As a phenomenological alternative
toRice’s (1976) localization analysis, it is proposed that
localization (and hence ductile fracture) occurs when
the effective hardening rate reaches a critical value that
is a function of the stress triaxiality and the Lode para-
meter. According to this approach, the path dependency
of ductile fracture is only due to plasticity. To pro-
vide an accurate description of the finite strain plas-
ticity of DP steels, a new phenomenological plasticity
model is proposed which accounts for the Bauschinger
effect, hardening stagnation, permanent softening and
non-associated anisotropic plastic flow. The plasticity
model is formulated such that its response tomonotonic
loading remains unaffected when changing the kine-
matic hardening parameters.

All three parameters of theHosford–Coulomb based
critical hardening rate model are identified from basic
monotonic fracture experiments on DP590 and DP780
steel for different stress states (notched tension, cen-
tral hole tension, punch, butterfly shear). Subsequently,
the effect of loading direction reversal at finite strains
on the fracture initiation in advanced high strength
steels is characterized experimentally through notched
compression–tension experiments and reversed butter-
fly shear experiments. It is shown that the critical hard-
ening ratemodel provides reasonable predictions of the

strain to fracture for all experiments with loading direc-
tion reversal. Different from damage indicator mod-
els (e.g. Bai and Wierzbicki 2010; Mohr and Marcadet
2015), the new modeling approach can predict the sig-
nificant increase in ductility due to reverse shearing.
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