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Abstract

Objective—Despite its large clinical impact, the underlying mechanisms for vein graft failure 

remain obscure and no effective therapeutic solutions are available. We tested the hypothesis that 

Notch signaling promotes vein graft disease.

Approach and Results—We used two biotherapeutics for Delta-like ligand 4 (Dll4), a Notch 

ligand: 1) blocking antibody; and 2) macrophage- or endothelial cell (EC)-targeted small-

interfering RNA (siRNA). Dll4 antibody administration for 28 days inhibited vein graft lesion 
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development in LDL-receptor deficient (Ldlr−/−) mice, and suppressed macrophage accumulation 

and macrophage expression of pro-inflammatory M1 genes. Dll4 antibody treatment for 7 days 

after grafting also reduced macrophage burden at Day 28. Dll4 silencing via macrophage-targeted 

lipid nanoparticles reduced lesion development and macrophage accumulation, while EC-targeted 

Dll4 siRNA produced no effects. Gain-of-function and loss-of-function studies suggested in vitro 

that Dll4 induces pro-inflammatory molecules in macrophages. Macrophage Dll4 also stimulated 

smooth muscle cell (SMC) proliferation and migration and suppressed their differentiation.

Conclusion—These results suggest that macrophage Dll4 promotes lesion development in vein 

grafts via macrophage activation and crosstalk between macrophages and SMC, supporting the 

Dll4-Notch axis as a novel therapeutic target.
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Introduction

Vein graft failure is a global health burden with no effective medical solutions.1 Due to the 

pandemic of atherosclerotic peripheral artery disease (PAD) and the growing prevalence of 

underlying metabolic disorders,2 the incidence of vein graft failure is rising. Although many 

mechanisms for arterial diseases have been established, the pathogenesis of vein graft failure 

remains incompletely understood. Autologous saphenous vein grafts (SVG) are widely used 

for PAD because they remain patent longer than artificial conduits.3 Approximately 50% of 

lower extremity SVG, however, become occluded or narrowed within a year.4 When PAD 

grafts fail, the only available therapeutic options are devastating limb amputation or invasive 

and expensive angioplasty or surgical revascularization. Coronary artery SVG also fail at 

high rates.5 Although current therapies such as statins can reduce the onset of complications 

of arterial diseases (e.g., myocardial infarction),6 no effective medical solutions are available 

for vein graft failure.

The Notch pathway, involving ligands (Delta-like ligand 1 [Dll1], Dll3, Dll4, Jagged1, 

Jagged2) and receptors (Notch1-4), contributes to biological processes during development 

and to disease mechanisms in adults.7, 8 Direct cell-to-cell contract via the binding of a 

ligand to a Notch receptor, both of which are expressed on the cell surface, triggers 

downstream responses.9 We previously demonstrated that Dll4-mediated Notch signaling 

promotes macrophage activation.10, 11 Clinical and preclinical evidence has established the 

causal role of macrophages in arterial atherosclerosis.12, 13 Failing vein grafts also tend to 

contain macrophages,2, 14 but their role in the disease progression remains unclear. To test 

the hypothesis that macrophage Notch signaling contributes to the pathogenesis of vein graft 

disease, the present study used two clinically-relevant biotherapeutics: 1) Dll4 blocking 

antibody; and 2) Dll4 siRNA encapsulated in macrophage- or endothelial cell (EC)-targeted 

lipid nanoparticles (LNP).

Materials and Methods

Materials and Methods are available in the online-only Data Supplement.
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Results

Increased expression of Dll4 in macrophages in human and mouse vein grafts

In control human saphenous veins before grafting, little if any intimal cells were 

immunoreactive for Dll4, whereas the thickened intima of failed human SVG contained 

many cells expressing Dll4 (Figures 1A; Supplemental Figure I). In the failed grafts, some 

CD68-positive intimal macrophages were immunoreactive to Dll4 antibody (Supplemental 
Figure IB). In high-cholesterol/high-fat-fed Ldlr−/− mice, IVC implanted into the carotid 

artery developed more advanced lesions than in wild-type mice.15 The neointima of vein 

grafts in Ldlr−/− mice showed features similar to those of advanced arterial plaques prone to 

rupture, including foam cell accumulation, microvessels, and intraplaque hemorrhage 

(Supplemental Figure II), supporting previous reports on a similar model in 

hypercholesterolemic ApoE3*Leiden mice by the Paul Quax group.16, 17 Vein grafts of Ldlr

−/− mice expressed higher levels of Dll4 mRNA compared to native IVC of Ldlr−/− or wild-

type mice (qPCR, Figure 1B). In mouse vein grafts, Dll4 localized primarily to intimal 

macrophages, while smooth muscle cell (SMC) expression of Dll4 was minimal (Day 28, 

double immunofluorescence, Figure 1C). Ligand binding promotes the cleavage of Notch 

receptors and release of the intracellular domain.9 The amount of Notch1 intracellular 

domain (NICD), as identified by the antibody that recognizes the neoepitope, thus indicates 

the levels of Notch signaling activation. NICD accumulated primarily in intimal 

macrophages of vein grafts 28 days after implantation, while few if any smooth SMC and 

EC were stained positively (Supplemental Figure III). Dll4 and NICD were almost 

undetectable in the native IVC (Supplemental Figure IVA). But the amounts of 

immunoreactive Dll4 and NICD in the intima of mouse vein grafts increased in parallel over 

time (Supplemental Figures IVA and IVB), indicating acceleration of Notch signaling 

activation during the lesion development. Furthermore, the amounts of Dll4 and NICD 

correlated positively with the wall area (Supplemental Figure IVC). These results suggest 

that Dll4-Notch signaling is accelerated during the development of vein graft lesions.

Blockade of Dll4 reduces lesion formation and inflammation in vein grafts

Blocking antibody for Dll411, 18, 19 was administered to Ldlr−/− mice twice a week for 28 

days. Reduced amounts of NICD following antibody administration indicate that Dll4 

mediates Notch activation in vein graft lesions (Figure 1D). Dll4 blockade produced no 

effects on serum levels of total cholesterol (801.0 ± 51.5 vs. 867.0 ± 15.7 mg/dL), 

triglycerides (216.2 ± 19.3 vs. 249.3 ± 36.1 mg/dL), and body weight (29.6 ± 0.7 vs. 30.5 

± 1.1 g). We previously verified that administration of the same antibody for 3 months did 

not affect blood pressure, food consumption, and physical activity in Ldlr−/− mice.11

Histologic assessment demonstrates that 28 days of Dll4 antibody treatment decreased the 

area and thickeness of the intima of vein grafts in Ldlr−/− mice but produced no significant 

changes in the lumen diameter, media/adventitia thickness, or vessel diameter (Figure 2A). 

Noninvasive ultrasonography is routinely used to monitor the patency of vein grafts in 

patients. Clinically relevant ultrasound imaging visualized and quantified the decreased wall 

area and volume of vein grafts, but no significant changes in the lumen area, in mice treated 

with Dll4 antibody (Figures 2B and 2C), which is consistent with the microscopic data. 
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Dll4 blockade also reduced the accumulation of macrophages (Mac3-positive cells), SMC 

(α–SMA), and proliferating cells (PCNA) in the intima (Figure 2D). Proliferation of 

macrophages and SMC may contribute to the pathogenesis of vascular diseases.20-23 

Blockade of Dll4 reduced proliferating macrophages and SMC, as demonstrated by double 

immunofluorescence with PCNA (Supplemental Figure V). Inflammation in the adventitia 

may contribute to the pathogenesis of vascular diseases.24 Dll4 antibody therapy, however, 

did not reduce adventitial macrophages significantly (Supplemental Figure VI).

To examine whether Dll4 plays a major pathological role in the early processes of venous 

responses to the arterial environment and ask a more clinical question whether a shorter 

antibody administration after surgery is also effective, we administered Dll4 antibody only 

for 7 days after graft implantation. This one-week Dll4 blockade did not reduce lesion size 

at Day 28 (Supplemental Figure VIIA). It should be noted, however, that this short 

treatment produced a statistically significant reduction of intimal macrophage accumulation, 

which was sustained until 21 days later (Day 28) without continued antibody administration 

(Supplemental Figure VIIB). We previously reported that Dll4 blockade for 12 weeks 

improves glucose tolerance and insulin sensitivity.11 As demonstrated in the present study, 

Dll4 blockade for 7 or 28 days significantly reduced macrophage accumulation in vein 

grafts. To address whether improved glucose metabolism may have contributed to the 

beneficial effects of Dll4 suppression on vein grafts, we examined glucose tolerance and 

insulin sensitivity 7 days after the initiation of antibody administration. Seven-day Dll4 

antibody treatment caused no effects on these metabolic parameters (Supplemental Figure 
VIII).

We further examined the effects of Dll4 suppression on the inflammatory burden in vein 

grafts. Dll4 antibody-treated vein grafts contained lower levels of IL-1β, TNF-α, and PDGF-

B mRNA compared to control grafts (Figure 3A). To examine whether the reduced 

expression of these factors merely resulted from diminished macrophage number, or whether 

Dll4 blockade also reduced macrophage activation, we performed qPCR on macrophages 

isolated from vein grafts. Dll4 antibody treatment decreased macrophage expression of 

IL-1β and TNF-α, molecules typical of a pro-inflammatory “M1” phenotype (Figure 3B).13 

In contrast, Dll4 antibody therapy increased arginase 1 that represents non/anti-

inflammatory “M2” polarization (Figure 3B). A reduction of Hey2, a prototypical Notch 

target gene, indicates that Dll4 antibody indeed suppressed Notch signaling in macrophages. 

These results indicate that Dll4 suppression diminishes the pro-inflammatory 

microenvironment in vein grafts.

Dll4 blockade suppresses MMP activity and reduces thin collagen fibers

In vivo molecular imaging further assessed the effects of Dll4 suppression on macrophage 

activation in vein grafts. We co-injected two imaging agents that elaborate near-infrared 

signals to visualize macrophage phagocytic activity (AminoSPARK, 750 nm) and MMP 

activity (MMPSense, 680 nm). Dll4 blockade inhibited macrophage phagocytic activity and 

MMP activity in parallel (Figure 4A). Notably, Dll4 antibody therapy reduced macrophage 

activation in vein grafts as early as 7 days after implantation, supporting our microscopic 

observation (Supplemental Figure VII). MMP produced by activated macrophages impair 
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collagen content and structures.12, 22 Picrosirius red staining viewed under a circularly 

polarized microscope showed no significant difference in the content of total fibrillar 

collagen between two groups (Figure 4B). Collagen hue analysis, however, revealed that 

Dll4 blockade decreased thin collagen fiber (Figure 4B), indicating that collagen 

degradation by macrophage-derived proteolytic activity may have reduced.

Macrophage-targeted Dll4 silencing inhibits intimal thickening and macrophage 
accumulation

To determine the relative contribution of macrophage Dll4 to the development of vein graft 

lesions, we used macrophage-targeted LNP (C12-200) to deliver Dll4 siRNA in vivo.25, 26 In 

pilot experiments, a single injection of 0.5 mg/kg C12-200-siDll4 resulted in a 51% 

reduction of Dll4 mRNA in splenic macrophages in 72 hours (Figure 5A). To validate the 

selectivity of Dll4 silencing to macrophages in vivo, we administered 0.5 mg/kg C12-200-

siDll4 at 21 days and 24 days after vein graft implantation. qPCR of intimal tissues 

containing endothelium or macrophage clusters isolated by laser capture microdissection 

showed inhibition of Dll4 expression in vein graft macrophages by > 70%, but no effect in 

endothelium (Figure 5B).

C12-200-siDll4 was then injected at 0.5 mg/kg, twice a week, in Ldlr−/− mice. C12-200-

siDll4 decreased intimal area and thickness as compared with control C12-200 containing 

non-targeting siRNA (Figure 5C). C12-200-siDll4 reduced macrophage accumulation in the 

intimal layer (Figure 5D), although it did not significantly increase thick collagen fibers 

(Figure 5E). These results indicate that Dll4 expressed by macrophages contributes to the 

lesion formation and macrophage burden in vein grafts.

Dll4 regulates expression of pro-inflammatory molecules in macrophages

To explore mechanistic evidence for the causal role of Dll4 in macrophage activation, we 

performed gain-of-function and loss-of-function experiments in mouse primary 

macrophages. Transient overexpression of Dll4 induced prototypical Notch target genes 

Hes1 and Hey1 (Figure 6A). Enforced expression of Dll4 induced pro-inflammatory 

molecules typical of “M1” macrophages (e.g., IL-1β, TNF-α; Figure 6B). In contrast, Dll4 

blocking antibody exerted opposing effects (Figure 6C). Furthermore, Dll4 blockade 

inhibited the expression of pro-inflammatory genes iNOS and TNF-α induced by IFN-γ, a 

typical “M1” stimulation (Figure 6D). These in vitro findings are consistent with in vivo 

data shown in Figure 3.

Macrophage Dll4 promotes SMC migration, proliferation, and de-differentiation

SMC migration and proliferation may contribute to the development of vein graft lesions.21 

Notch signaling requires the direct cell-cell contact via the ligand-receptor binding. SMCs in 

the intima of atherosclerotic plaques and vein grafts are, however, surrounded by 

extracellular matrix and generally lack membrane contacts with neighboring SMCs, while 

such direct contacts are common in plaque macrophages,14, 27, 28 suggesting that direct 

physical interactions between SMC and macrophages via Dll4-Notch binding may hardly 

occur. Nevertheless, we examined the effects of Dll4 binding to SMC in vitro using primary 

human saphenous vein SMC (HSVSMC). Immobilized recombinant Dll4 (rDll4) attachment 
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did not affect the number of HSVSMCs both in 0.5% and 10% FBS (Supplemental Figure 
IXA). Blockade of Dll4 binding also produced no effects on the growth of HSVSMC 

(Supplemental Figure IXB). These results indicate that direct Dll4 binding may not play a 

major role in SMC biology. Therefore, we performed indirect co-culture experiments to 

examine whether macrophage expression of Dll4 induces SMC migration, proliferation, and 

de-differentiation by soluble factors in a paracrine fashion. Conditioned media from 

RAW264.7 cells transfected with Dll4 plasmid accelerated SMC migration (Figure 7A), 

increased SMC number (Figure 7B), and suppressed their expression of myosin heavy chain 

(SM-MHC), the strictest SMC differentiation marker (Figure 7C).29 PDGF-BB induces 

SMC migration, proliferation, and de-differentiation.30, 31 Notch activation by enforced 

expression of Dll4 or immobilized rDll4 induced PDGF-B expression in RAW264.7 cells 

(Figures 7D and 7E), indicating that PDGF-BB may mediate the effects of Dll4 via 

macrophage–SMC crosstalk. Other pro-inflammatory factors, which Dll4 induces in 

macrophages, may contribute this interaction (Figure 6).

The role of EC-derived Dll4 in the development of vein graft lesions

Among human primary macrophages, HSVSMC, and human saphenous vein EC (HSVEC), 

Dll4 mRNA levels were highest in HSVEC under the quiescent state (Supplemental Figure 
XA). LPS markedly induced Dll4 only in primary macrophages (Supplemental Figure 
XA). Endothelium also appeared positive for Dll4 in the failed human vein grafts 

(Supplemental Figure I). In HSVEC, blockade of Dll4 suppressed MCP-1, IL-1β, IL-6, 

and VCAM-1 expression (Supplemental Figure XB). In contrast, immobilized Dll4 

induced EC expression of IL-1β and VCAM-1 (Supplemental Figure XC). Dll4 antibody 

treatment reduced the number of adventitial microvessels (Supplemental Figure XI). We 

therefore explored a new mechanism by which EC-derived Dll4 participates in the 

pathogenesis of vein graft disease using Dll4 siRNA formulated in EC-targeted LNP 7C1 

(7C1-Dll4 siRNA).32 Dll4 by 7C1-Dll4 siRNA reduced Dll4 mRNA in endothelium by > 

70% (Figure 8A). Despite the high silencing efficacy, EC-targeted Dll4 suppression 

produced no effects on several parameters for the development of vein graft lesions (intima 

area, intima thickness, lumen diameter, media/intima thickness, and vessel diameter; 

Figures 8B and 8C). These results further support a major role for macrophage Dll4 in vein 

graft disease.

Discussion

Although many mechanisms have been proposed and validated for arterial diseases, the 

pathogenesis of vein graft disease remains obscure. Using two different biotherapies — 

blocking antibody and macrophage-targeted siRNA, the present study demonstrates novel 

mechanisms by which macrophage Dll4 promotes the development of vein graft lesions. 

Accumulating evidence has established that macrophages contribute to various mechanisms 

for arterial diseases, including plaque rupture.6, 12, 13 The role of macrophages in vein graft 

disease, however, remains elusive. Failing vein grafts in patients exhibit macrophage 

accumulation14 and signs of rupture.33, 34 Clinical evidence has linked biomarkers of 

inflammation with vein graft failure.35 Preclinical studies proposed the role of macrophages 
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in neointima formation in vein grafts.16, 36, 37 However, no medical therapies are currently 

available to target vein graft inflammation, which has driven our current efforts.

The key novel findings demonstrated in the present study include: 1) the expression of Dll4 

by macrophages in the intima of human and mouse vein grafts; 2) increased Dll4 expression 

and NICD accumulation during the development of experimental vein graft lesions; 3) 

positive correlations between the graft wall area and Dll4 expression or NICD accumulation; 

4) reduced vein graft lesions after Dll4-targeted biotherapeutics (blocking antibody and 

macrophage-selective Dll4 siRNA); 5) the role of Dll4-Notch signaling in macrophage and 

SMC growth in vein grafts; 6) the effects of Dll4 blockade on macrophages being 

independent of metabolic effects; 7) the potential role of Dll4 in EC activation; 8) no 

substantial in vivo role for EC-derived Dll4 in vein graft disease as demonstrated by EC-

targeted Dll4 siRNA; and 9) the role of Dll4-expressing macrophages in SMC de-

differentiation, migration, and proliferation via a paracrine mechanism.

The previous studies including our own suggested that Notch signaling components, 

including Dll4, contribute to various biologies of hematopoietic cells.10, 11, 38-43 However, 

the mechanistic evidence for the role of Dll4 in inflammation of cardiovascular organs 

remains scant.10, 11 Macrophage polarization, as often classified by at least two 

subpopulations: a pro-inflammatory (“M1”) and an anti/non-inflammatory (“M2”), is 

associated with various cardiovascular diseases.13, 44 In vein grafts, Dll4 blockade reduced 

the expression of multifunctional pro-inflammatory IL-1β and TNF-α, typical “M1” 

molecules, suggesting the broad anti-atherogenic effects of Dll4 antibody via suppression of 

a positive feedback loop of sustained macrophage activation and providing insight into the 

clinical impact of this therapy. Examining the relative contribution of macrophage-derived 

Dll4 used the macrophage-targeted LNP C12-200. Dll4 silencing in macrophages via 

C12-200 decreased intimal thickening and macrophage burden.

Our in vitro evidence in the present study suggests a role for Dll4 in EC activation. 

Therefore, we used EC-targeted LNP 7C1 to explore an additional potential mechanism for 

vein graft disease mediated by EC-derived Dll4. Despite an excellent silencing efficacy in 

endothelium, Dll4 siRNA formulated in 7C1 produced no effects on the development of vein 

graft lesions, as quantitatively determined by several parameters. These results provide 

another line of evidence for the pivotal role of Dll4 expressed by macrophages in the 

development of inflamed vein grafts.

Phenotypic modulation of SMC contributes to the pathogenesis of arterial diseases.29 SMC 

activation may also participate in the pathogenesis of vein graft disease.21 The present study 

therefore explored the novel mechanism that Dll4 in SMC promotes activation of this 

vascular cell type. Dll4 expression levels were, however, much lower in quiescent or 

activated primary human SMC than those in macrophages or EC. Dll4 binding to primary 

SMC did not induce their proliferation. In addition, previous studies demonstrated a lack of 

membrane contact between SMC surrounded by extracellular matrix, while direct contact 

between macrophages is common.27, 28 Notch signaling activation requires direct cell-to-cell 

contact that allows ligand-receptor binding. Thus, Dll4-Notch interaction between 

neighboring SMC or between SMC and macrophages may not occur so frequently in 
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vascular lesions. Instead, a series of experiments reported in the present study suggest a 

novel paracrine mechanism by which macrophage Dll4 activates neighboring SMC 

(Supplemental Figure XIIA).

To maximize clinical significance of our study, we used two scientifically validated and 

clinically relevant techniques to suppress Dll4 — RNAi mediated by LNP and antibody 

administration. The gene silencing by siRNA oligos formulated in LNP, a robust and well-

established research tool for investigating the role of macrophage gene expression in vivo, 

enabled us to selectively target Dll4 in macrophages or EC, as documented in the previous 

studies.25, 26, 32, 45, 46 It should be noted that the delivery of siRNA in such LNP has already 

been used in humans and proven safe and effective, contributing to the generation of 

promising clinical data.47-49 In addition, antibody therapies for chronic diseases have 

become widely available in the clinic. For instance, a Phase IIb clinical trial on 4 months of 

anti-IL-1β monoclonal antibody treatment presented anti-inflammatory effects (e.g., 

reductions in C-reactive protein levels) with no substantial adverse effects,50 leading to a 

longer, larger cardiovascular outcome study. In the present study, Dll4 antibody therapy for 

only 7 days exerted beneficial effects on lesional macrophages in vein grafts. The use of 

such clinically relevant therapeutics suggests how our preclinical findings could be 

translated into the clinical development of Dll4-targeted therapies for vein grafts. In 

addition, noninvasive ultrasonography of vein grafts, a routine procedure in the clinic, in live 

mice supports the microscopic findings. These lines of evidence indicate the clinical 

translatability of our mouse study.

In conclusion, we provides the novel evidence that the Dll4-Notch axis contributes to the 

pathogenesis of vein graft lesion development (Supplemental Figure XIIA). 

Complementary in vivo experiments using macrophage- or EC-targeted siRNA demonstrate 

the relative contribution of macrophages to the development of vein graft lesions mediated 

by Dll4. The study has identified Dll4 as a new promising therapeutic target for vein graft 

failure (Supplemental Figure XIIB), a major clinical problem with no medical solutions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Translational Perspective

Although vein graft failure is a major clinical problem, no medical therapies are 

available. Using clinically relevant biotherapies — blocking antibody and siRNA-loaded 

nanoparticles, we demonstrate Dll4 promotes inflammation and lesion development in 

mouse vein grafts, providing novel mechanisms and new therapeutic solutions for this 

disease.
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Figure 1. Dll4 expression increases in human and mouse vein grafts
(A) Human SVG harvested for bypass surgery (control native vein, left) and failed SVG 

(right). Sections were stained with anti-Dll4 antibody. Scale bar indicates 300 μm. L, lumen; 

A, adventitia. Similar data on additional samples (4 control veins; 4 failed SVG) are shown 

in Supplemental Figure I. (B) Dll4 mRNA in mouse vein grafts (VG) analyzed 28 days after 

grafting. Data are shown as relative expression normalized by native IVCs from wild type 

(WT) mice. n = 5 to 8. (C) Serial section of mouse vein graft stained with anti-Dll4, anti-

Mac-3, and anti-α–SMA antibodies. Arrowheads indicate cells positive for both Mac3 and 

Dll4. Scale bar indicates 200 μm. The data represent 5 mice that showed similar results. (D) 

Immunostaining of cleaved Notch1 intracellular domain (NICD) at 28 days after vein 
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grafting. Scale bars indicate 100 μm. Bar graph shows quantification of Notch signal 

activation evaluated as a percentage NICD-positive area in intima. n = 4.
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Figure 2. Antibody blockade of Dll4 for 28 days inhibits lesion formation in vein grafts
(A) Vein graft harvested 28 days after implantation from control IgG or Dll4 antibody-

treated animals and results of morphometric analyses. Scale bar indicates 400 μm. n = 10 

and 9. (B) Ultrasonographic images of vein grafts treated with control IgG (left) and anti-

Dll4 antibody (right) 28 days after implantation. The white dotted line indicates vessel wall 

area. (C) Lumen and vessel wall area (mm2), and vessel wall volume (mm3) of 

ultrasonographic images in control IgG or Dll4 antibody treated vein grafts (n=5 and 3). (D) 

Immunostaining of Mac-3, α–SMA, and PCNA at day 28 and quantitative data shown as 
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percentages of staining positive area (Mac-3, α–SMA) and PCNA positive nucleus in the 

intima. Scale bar indicates 200 μm. n = 4 to 7.
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Figure 3. Antibody blockade of Dll4 for 28 days inhibits the expression of pro-inflammatory 
molecules in vein grafts and lesional macrophages
mRNA expression of molecules associated with inflammation, macrophage phenotype, 

matrix degradation, and thrombogenicity were quantified in vein grafts (C) and F4/80 

positive macrophages isolated from vein grafts (D) 7 days after graft implantation. Data are 

represented as fold change by Dll4 antibody relative to control IgG. PAI-1, plasminogen 

activator inhibitor-1; TF, tissue factor; CCR2, C-C chemokine receptor type 2. n = 3 to 7.
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Figure 4. Blockade of Dll4 attenuates macrophage activation and collagen thinning
(A) Live molecular imaging of macrophage functions. Fluorescent probes (AminoSPARK 

750 for phagocytic activity and MMPSense 680 for MMP activity) were co-injected 24 

hours before intravital microscopy. Dll4 antibody therapy reduced macrophage MMP 

activity in vein grafts as early as 7 days after implantation. n = 4 to 11.. (B) Collagen content 

in the intima of vein grafts was quantified by picrosirius red staining under a polarized 

microscopy. Photomicrographs demonstrate representative samples without (top) or with 
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(bottom) polarized light. Circle graphs indicate a ratio of green (thin) vs. red (thick) collagen 

fibers. n = 6 and 5.
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Figure 5. The relative contribution of macrophage Dll4 in vein graft lesion development as 
examined via siRNA delivery to macrophages
(A) Macrophage-targeted LNP containing control siRNA (Ctrl) or Dll4 siRNA (siDll4) were 

injected via tail vein, and F4/80 positive splenic macrophages were isolated. Dll4 mRNA 

was quantified by real-time PCR. n = 7. (B) Dll4 mRNA was quantified by real-time PCR in 

macrophages (Mϕ) or endothelial cells (EC) collected by laser capture microdissection. n = 

5-6 sections. (C) Masson-Trichrome staining of vein grafts at day 28. Scale bars indicate 400 

μm. n = 9 and 8. (D) Mac-3 immunostaining at day 28. n = 6. Scale bars indicate 200 μm. 

(E) Collagen analysis. Collagen content was analyzed 28 days after vein grafting by 
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picrosirius red staining under a polarized microscope. Collagen hue analysis measured thin 

(green) and thick (red) collagen fibers. n = 6 and 8.
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Figure 6. In vitro gain-of-function and loss-of-function studies in primary macrophages
(A and B) A gain-of-function study. Immunofluorescence image of peritoneal macrophages 

24 hours after control plasmid (Control-P) or Dll4 plasmid (Dll4-P) transfection (A). Bar 

graph shows quantitative analyses of Dll4 and prototypical Notch target genes (n = 3, B) 

Data are represented as fold change by Dll4 plasmid transfection relative to control plasmid 

transfection. n = 6. (C) A loss-of-function study. Data are represented as fold change by Dll4 

blocking antibody relative to control IgG. n = 5 and 6. (D) mRNA expression after IFN-γ 
stimulation. Peritoneal macrophages were incubated overnight with control IgG or Dll4 
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antibody, and then stimulated with 10 ng/mL IFN-γ for 4 hours. Bar graphs show results of 

real-time PCR. n = 4.
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Figure 7. Macrophage–SMC crosstalk as a possible mechanism of vein graft lesion development
(A) SMC migration was examined by modified Boyden's chamber method. DMEM, control 

Dulbecco's modified Eagle's medium; RAW-CM, conditioned media from non-treated 

RAW264.7 cells; Control-CM, CM from control plasmid transfected RAW264.7 cells; Dll4-

CM, CM from Dll4 plasmid transfected RAW264.7 cells. n = 4. (B) SMC proliferation 

induced by RAW-CM. RAW-CM increased SMC number compared with DMEM (above). 

Dll4-CM augmented CM-induced SMC growth (below). FBS; fetal bovine serum. n = 8. (C) 

mRNA level of SMC differentiation markers after 24 hours of incubation with CM. Data are 
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shown as relative expression normalized by SMC treated with Control-CM. n = 6. (D) 

mRNA expression levels of PDGF-B 24 hours after Dll4 plasmid transfection or 

immobilized Dll4 stimulation. Control-P, control plasmid; Dll4-P, Dll4 plasmid. n = 6 (left) 

and n = 7-8 (right). (E) Western blot of PDGF-B. Protein was extracted 24 hours after 

plasmid transfection.
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Figure 8. The relative contribution of endothelial cell (EC)-derived Dll4 in vein graft lesion 
development as examined via siRNA delivery to endothelium
EC-targeted lipid nanoparticles (7C1) containing control siRNA (Ctrl) or Dll4 siRNA 

(siRNA) were injected via tail vein. (A) Dll4 mRNA levels were quantified by real-time 

PCR in the endothelium isolated by laser capture microdissection. (B) Masson-Trichrome 

staining of vein grafts at day 28. Scale bars indicate 500 μm. (C) Bar graphs demonstrate the 

results of quantitative morphometric analysis (each n=6).
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