
Spatial and temporal colonization dynamics of segmented 
filamentous bacteria is influenced by gender, age and 
experimental infection with Helicobacter hepaticus in Swiss 
Webster mice

Zhongming Ge*, Yan Feng, Stephanie E. Woods, and James G. Fox
Division of Comparative Medicine, the Massachusetts Institute of Technology, Cambridge, MA 
02139, USA

Abstract

In this study, we examined colonization dynamics of segmented filamentous bacteria (SFB) in 

intestine of Swiss Webster (SW) mice infected with Helicobacter hepaticus (Hh). At 8 weeks 

post-inoculation with Hh (WPI), cecal and colonic SFB levels in the control males were 

significantly lower compared to those at 16 WPI. Hh infection in both genders did not alter SFB 

levels in the jejunum and ileum, but increased SFB levels in the cecum and colon of males 

compared to the controls (P<0.05) at 8 WPI. At 16 WPI, the Hh-infected females contained lower 

levels of SFB in the jejunum, cecum and colon compared to the female controls. Irrespective of 

gender, aging and Hh infection, the Il-17A mRNA levels decreased from the small intestine to the 

cecum and then to the colon, whereas the Foxp3 mRNA levels were comparable in these intestinal 

regions. There were significant differences in Il-17A mRNA levels in the ileum (P<0.05, R2 = 

0.31), with females having greater Il-17A mRNA levels than males, and higher SFB colonization 

levels related to more Il-17A mRNA. These results indicate that aging and gender play an 

important role in colonization dynamics of intestinal SFB and ileal SFB-associated Th17 response.
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1. Introduction

The intestinal mucosal surfaces of humans and other animals are colonized by complex 

microbiota which confer multiple benefits to the host such as providing essential nutrients, 

energy harvest, the maturation and regulation of the mucosal immune system and resistance 
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to colonization by invading microorganisms [1, 2]. However, perturbation of the commensal 

microbiota is also associated with human diseases such as obesity, IBD and colon cancer [1, 

2]. A well characterized example of commensal bacteria contributing to development of host 

immunity is segmented filamentous bacteria (SFB) that recently have been shown to 

promote a robust Th17 cell response [3, 4]. SFB, a group of spore-forming gram-positive 

bacteria, were previously named Candidatus Arthromitus because of their morphological 

resemblance to bacterial filaments and are currently given a provisional name, Candidatus 

Savagella, in honor of the American gut microbiologist Dwayne C. Savage [5]. These 

bacteria are members of the gut commensal microbiota in a wide spectrum of hosts 

including mice, rats, dogs, rabbits, fish and humans [6–9]. They are phylogenetically most 

closely related to the genus Clostridium and to date are uncultivable. The inability to culture 

SFB is likely in part due to the lack of pathways for synthesizing essential amino acids as 

suggested by their genomic sequences [10–13].

SFB predominantly colonize the terminal ileum where they act as a strong inducer of 

proinflammatory T helper 17 (Th17) cell responses [3, 4, 14, 15]. Crucial roles of Th17 cells 

have been implicated in bacterial clearance, autoimmune diseases and cancer [16]. SFB also 

play an important role in inducing mucosal IgA response [15, 17, 18]. Thus, potential effects 

of SFB on biomedical research in animal models require further investigations [9]. We 

previously reported that colonization dynamics of select species of 8 altered Schaedler flora 

(ASF) in Swiss Webster (SW) mice is changed by aging, gender and infection with a murine 

pathogen Helicobacter hepaticus. In this study, we tested a hypothesis that these factors 

could also influence intestinal colonization dynamics of SFB in the same set of SW mice.

2. Materials and Methods

2.1. Mice and infection

This is a retrospective cohort study of Swiss Webster mice focusing on colonization 

dynamics of SFB not included in a previous study [19]. The experimental protocols for 

housing and infecting mice with H. hepaticus as well as collection of the intestinal samples 

were previously described [19]. Briefly, 4-to-6-week-old male and female mice free of 

known murine viruses, Helicobacter spp. and parasites, were obtained from Taconic Farms 

(Germantown, NY). The mice were maintained in static microisolater cages in an 

Association for Accreditation and Assessment of Laboratory Animal Care, International-

accredited facility, and fed a diet (ProlabRMH3000) from PMI Nutrition International 

(Richmond, IN). After being in quarantine for a week, the mice were inoculated with H. 

hepaticus 3B1 (3B1) or sham-dosed with Brucella broth as a control, respectively. Mice 

received 0.2 ml of fresh inoculum (~2 × 108 organisms) by gastric gavage every other day 

for a total of three inoculations.

Five male and 5 female mice from each group were euthanized at 8 WPI (15 weeks of age) 

and 16 WPI (23 weeks of age), respectively. Immediately after euthanasia with CO2, 

contents in the intestine were removed by rinsing with sterile saline. One-cm segments of 

jejunum, ileum, cecum, and colon for RNA/DNA isolation were collected and frozen in 

liquid nitrogen immediately after sampling and stored at −70°C prior to use. Total DNA and 
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RNA from jejunum, ileum, cecum and colon were isolated using Trizol Reagents following 

the supplier’s procedure (Invitrogen, Carlsbad, CA).

2.2. Fecal and cecal DNA extraction

Three fecal pellets from each of 10 female C57BL/6 mice, 5 from the Jackson Laboratory 

(Bar Harbor, ME) and 5 from Taconic Farm, were collected and stored at −20°C prior to 

use. Fecal DNA was prepared using the QIAamp Fast DNA Stool Mini Kit according to the 

supplier’s protocol (Qiagen Inc., Valencia, CA). Additionally, cecal DNA from 2 female 

C57BL/6 mice of the Jackson Laboratory was extracted using Trizol Reagents.

2.3. PCR, molecular cloning and qPCR

Two pairs of the SFB 16S rRNA gene-based qPCR primers were described previously [18, 

20]: SFB225F (5′-AGGAGGAGTCTGCGGCACATTAGC-3′)/SFB558R (5′-

CGCATCCTTTACGCCCAGTTATTC-3′) and SFB736F (5′-

GACGCTGAGGCATGAGAGCAT-3′)/SFB844R (5′-

GACGGCACGGATTGTTATTCA-3′). PCR with primers SFB225F and SFB844R (Figure 

1A) gave rise to approximately 620 bp fragment from fecal DNA of the Taconic C57BL/6 

mice using PCR conditions as follows: in a 50 μl-volume containing ~100 ng of DNA, 500 

nM of each primer, 1 X reaction buffer #2 (Roche Diagnostics GmbH, Mannheim, 

Germany), high-fidelity Taq DNA polymerase. A thermocycling program consisted of: at 

94°C for 5 min, 35 cycles of 94°C for 1 min/58°C for 1 min/72°C for 1 min, followed by 72 

°C for 5 min. The PCR DNA fragment was cloned into a TOPO vector following the 

supplier’s instruction (Invitrogen, Carlsbad, CA) and plasmid DNA was prepared using the 

Aquick Mini Kit (Qiagen Inc.). The identity of recombinant plasmids containing the SFB 

16S-rRNA gene fragment was confirmed by DNA sequencing in the ABI 310 sequencer 

(Life Technologies, Grand Island, NY). Concentrations of the plasmid DNA were 

determined using a spectrophotometer GeneQuan Pro (Amersham Biosciences, Piscataway, 

NJ).

For generating a standard curve of SFB qPCR, a serial 10-fold dilution of 10, 100, 103, 104, 

105, 106 copies of the recombinant plasmid DNA containing the SFB 16S rRNA gene 

fragment was used. SFB levels in each of the respective intestinal segments were quantified 

with the primer pair of SFB736F and SFB844R based on standard curves by qPCR in the 

7500 Fast Real-Time PCR System (Life Technologies). Briefly, a 20-μl mixture contained 5 

μl of each of DNA templates of 50 to 100 ng (in duplicate), 1μl of the primer mixture 

containing 200 nM of each of the forward and reverse primers, 10 μl of 2 x SYGR green 

Fast master mix (Life Technologies), and 4 μl of ddH2O; the qPCR conditions followed the 

manufacturer’s default setting added with the dissociation curve function. The copy numbers 

of the SFB 16S-rRNA gene were then normalized to μg of mouse chromosomal DNA whose 

quantities in the samples were measured by qPCR using the 18S rRNA gene-based primers 

and probe mixture (Life Technologies).

2.4. Expression of select cytokines

For relative mRNA quantitation of selected genes, total RNA from jejunum, ileum, cecum 

and colon of SW mice was prepared using Trizol reagent according to manufacturer’s 
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recommendations (Invitrogen). Five μg of total RNA from each sample was converted into 

cDNA using the High Capacity cDNA Archive kit (Life Technologies). Levels of Il-17A and 

Foxp3 mRNA were measured by qPCR using commercial primers and probes (TaqMan 

Gene Expression Assays) in the 7500 FAST Real-time PCR System. Transcript levels were 

normalized to the endogenous control glyceraldehyde-3-phosphate dehydrogenase mRNA 

levels (Gapdh). Since the values of ΔCts are inversely related to the quantity of target genes, 

the arbitral values of 20 minus ΔCt were used to represent positive correlations between the 

values and relative quantities of each target.

2.5. Statistical analysis

Multiple factor analysis of variance (ANOVA) tests using STATA/IC 13.0 for Mac 

(StataCorp, College Station, TX) were performed to determine if SFB colonization levels 

(continuous variable) varied by H. hepaticus infection status (binary variable) in the 

jejunum, ileum, cecum and colon, considering sex (binary variable), and H. hepaticus 

duration (binary variable; 8 or 16 WPI) with subsequent stratification. ANOVA testing was 

also employed to determine if Il-17A mRNA levels (continuous variable) varied by H. 

hepaticus infection status or by H. hepaticus colonization levels (continuous variable) and 

SFB colonization levels, also considering sex and H. hepaticus duration. Additionally, data 

on the levels of SFB and cytokine expression were also analyzed between two groups using 

a student t test for normally distributed data or Mann-Whitney U test for abnormally 

distributed data. Normality of the data sets was analyzed using the Kolmogorov-Smirnov 

test. Values of P <0.05 were considered significant.

3. Results

3.1. Development of conventional PCR and qPCR assays for detecting SFB in clinical and 
environmental samples

Given that SFB as a potent inducer of proinflammatory Th17 responses potentially 

influences the immune responses and pathology of a SFB-positive host to pathogenic 

infection, it will be very useful to develop conventional and quantitative PCR assays for 

monitoring SFB status in experimental animals used in biomedical research. Several 

previous studies described SFB-specific qPCR assays but the relevant assay conditions were 

not given in detail [11, 18, 20]. Based on two sets of the published primers SFB225F/

SFB558 and SFB736F/844R, a pair of primers SFB225F and SFB844R gave rise to a ~620-

pb PCR amplicon from SFB-positive C57BL/6 mice (Taconic Farms, Germantown, NY) but 

not from SFB-negative mice (The Jackson Laboratory, Bar Harbor, ME), which can be 

visualized on an 1.2 % agarose gel with ethidium bromide staining (Figure 1A and B). Our 

results demonstrate that this primer pair are SFB-specific under the PCR conditions 

described in this study, which can be readily applied to detect SFB in clinical and 

environmental samples.

The 620-pb PCR amplicon cloned into the TOPO plasmid vector was used to generate a 

standard curve consisting of a serial 10-fold dilution of 10, 100, 103, 104, 105, and 106 

copies. The primer pair SFB225F and SFB558R failed to produce quantitative measurement 

of SFB (data not shown). In contrast, the assay efficacy and linear regression of the standard 
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curve with SyBr green using primers SFB736F and SFB844R satisfied qPCR requirements 

as presented in Figure 1C. To test whether the DNA templates from murine feces or 

intestinal tissues have inhibitory effect on the established qPCR assay, 103 or 105 copies of 

the recombinant plasmid DNA used in generating the SFB standard curve were spiked into 

fecal and cecal DNA (~50 ng) from SFB-free C57BL/6 from the Jackson Laboratory. The 

result demonstrated that there was no significant inhibition on the copies of the spiked SFB 

16S rRNA gene noted in the assay, whereas SFB was absent in the non-spiked controls 

(Figure 1C). The low detection limit is ≥10 copies of the SFB 16S rRNA gene.

3.2. Colonization levels of SFB were increased in the large intestine during aging

SFB levels in the jejunum, ileum, cecum and colon of each mouse were quantified using the 

qPCR assay established in this study (Figure 2). At 8 WPI, all 5 females were positive for 

SFB in the jejunum and ileum; all 5 male mice were SFB-positive in the ileum and 4 of 5 in 

the jejunum. In the cecum, 4 of the 5 females and 5 males, respectively, were positive for 

SFB, while 2 of the 5 females and no males were colonized by SFB in the colon. At 16 WPI, 

all 5 female mice were positive for SFB in ileum, cecum and colon, and 3 of the 5 females 

were colonized by SFB in the jejunum. All male mice were positive for SFB in the jejunum, 

ileum and cecum; 4 of 5 also were SFB-positive in the colon. Consistent with previous 

reports, our results indicated that the small intestine of control mice is a primary 

colonization niche of SFB. The colonization levels of SFB in the cecum and colon of males 

was significantly increased at 16 WPI compared to 8 WPI (P <0.05).

3.3. H. hepaticus infection altered colonization dynamics of SFB in a gender-dependent 
manner

Compared to the sham controls, infection of both genders with H. hepaticus did not 

significantly alter SFB colonization levels in the jejunum and ileum of mice at both time 

points. Multiple factor ANOVA stratified by H. hepaticus duration revealed a significant 

difference in SFB colonization levels at 16 WPI in the jejunum [F(2, 13) = 4.15, P<0.05, R2 

= 0.39], but this was related to sex, with male mice having higher SFB colonization levels 

than females. However, H. hepaticus infection did significantly increase SFB levels in the 

cecum and colon of males at 8 WPI (Figure 2, P <0.05). In contrast, infection in the females 

significantly decreased cecal and colonic SFB colonization levels compared to sham 

controls at 16 WPI (P<0.05). There was no correlation between the colonization levels of H. 

hepaticus and SFB (data not shown). Further, H. hepaticus infected mice were found by 

multiple factor ANOVA testing to have lower SFB colonization levels in the cecum at 16 

WPI, compared to non-infected mice [F(2, 17) = 4.10, P<0.05, R2 = 0.33]; the sex of the 

mice was found non-significant, but when included in the model explained 9.5% more 

variance in cecal SFB colonization levels than when excluded, suggesting again that males 

had higher levels of SFB.

3.4. Analysis of intestinal Il-17A and Foxp3 expression levels

It has been reported that the predominant colonization of SFB in the ileum increases the 

robust accumulation of Th17 cells, but SFB colonization has little impact on the population 

of Foxp3-expressing Treg cells in the ileum of SW mice [3]. To ascertain whether SFB 
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colonization levels or H. hepaticus infection affect intestinal Th17 cell response, we 

examined mRNA levels of Il-17A and Foxp3 mRNA levels in jejunum, ileum, cecum and 

colon. Expression of Il-17A in sham controls was significantly higher in the jejunum and 

ileum than in the cecum and colon at both time points (Figure 3A, P<0.05). In contrast, there 

were no significant changes in Foxp3 mRNA levels between the small and large intestine 

regions of the sham controls (Figure 3B). Statistically significant differences in Il-17A 

mRNA levels in the ileum [F(4, 30) = 3.37, P<0.05, R2 = 0.31] were found by multiple 

factor ANOVA testing, with females having greater Il-17A mRNA levels than males, and 

higher SFB colonization levels related to more Il-17A mRNA. Also, Il-17A mRNA levels in 

the colon were greater at 8 WPI, compared to 16 WPI [F(4, 34) = 2.79, P<0.05, R2 = 0.25]. 

Infection with H. hepaticus did not significantly alter the mRNA levels of both Foxp3 and 

Il-17A in any of the sampled regions except for in the cecum of the infected females where 

there was a significant increase in Il-17A mRNA expression compared to the sham controls 

(Figure 3A, P<0.05).

4. Discussion

By use of SFB-qPCR assay established in this study, we examined the colonization 

dynamics of SFB in jejunum, ileum, cecum and colon of SW mice. Our data showed that the 

ileum is a primary niche for SFB colonization, which is consistent with previous 

observations [21]. The colonization levels of SFB in the ileum were not influenced 

significantly by aging, gender or H. hepaticus infection. In addition, SFB were also detected, 

to lesser extent, in the jejunum, cecum and colon. Interestingly, the colonization efficiency 

of SFB (both presence and colonization levels) in the large intestine was significantly 

increased during aging from 8 to 16 WPI. Colonization levels of SFB in the jejunum, cecum 

and colon of the females trended to be higher than those in the males at 8 WPI but the 

opposite was true at 16 WPI.

H. hepaticus infection altered colonization dynamics of SFB in the cecum and colon in a 

gender-dependent manner. At 8WPI, the H. hepaticus infection increased SFB levels in the 

males but did not impact its levels in the females. However, there was a decrease of the SFB 

levels in the infected females compared to the controls, but no significant change was noted 

for males at 16 WPI. We previously reported that H. hepaticus infection in these SW mice 

increased the mRNA levels of a proinflammatory Th1 cytokine Ifn-γ in the ileum and cecum 

of the females but not the males compared to the sham controls [19]. Increased Ifn-γ 

production plays a pivotal role in clearing Yersinia enterocolitica infection in C57BL/6 mice 

[22]. Thus, the enhanced Ifn-γ production in the H. hepaticus-infected females likely 

contributes to the reduced colonization levels of both SFB (compared to the sham female 

controls, this study) and H. hepaticus (compared to the infected males) [19]. In contrast, the 

H. hepaticus infection in the males increased the mRNA levels of ileal Il-10 with 

concomitant down-regulation of the mRNA levels of the ileal Ifn-γ in the infected males 

compared to the infected females [19, 23]. Therefore, the enhanced expression of Il-10 at 

least partially contributed to the higher levels of SFB in the large intestine compared to the 

sham controls at 8 WPI.
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The finding that higher Il-17A mRNA levels were positively correlated with higher SFB 

levels further supports SFB as an inducer of Th17 cell response. In addition, higher Il-17A 

mRNA levels in the ileum of females than males could partially contribute to the lower 

levels of H. hepaticus colonization in the SW females compared to the SW males at 16 WPI 

demonstrated in our previous study, since Th17 cell response plays an important role in 

resistance to bacterial infection [3, 16, 19]. Our data also indicated that the relative mRNA 

levels of Il-17A decreased from the jejunum, ileum, cecum, and colon, particularly at 16 

WPI. In contrast, the mRNA levels of Foxp3 were relatively comparable in these intestinal 

regions of SW mice and were not influenced by age, gender and H. hepaticus infection. The 

results were consistent with the previous findings that Il-17 mRNA levels decreased from 

ileum, cecum and colon of SFB-positive C3H/HeN mice [4, 24]. In addition, there was no 

significant difference in Foxp3-postitive Treg cell populations between ileum and colon of 

C3H/HeN [4, 24]. Intriguingly, alteration of colonization dynamics of SFB associated with 

H. hepaticus infection appeared not to have effects on the mRNA of Il-17A and Foxp3. This 

may be due to the fact that SW mice are out-bred, immune-competent and resistant to the 

development of overt intestinal or hepatic pathology induced by H. hepaticus infection [19].

Our previous study demonstrated that colonization dynamics of select species of the altered 

Schaedler flora (ASF) is changed by aging and gender [25]. ASF are comprised of 8 

intestinal commensal bacterial species, 2 aerotolerant Lactobacillus strains (ASF360 and 

ASF361), 2 Clostridium sp. strains (ASF356, ASF502), Eubacterium sp. (strain ASF492), 

Bacteroides sp. strain (ASF519), a low-G+C-content gram-positive bacterial strain 

(ASF500), and Mucispirillum schaedleri (ASF457) [26]. During aging from 8 to 16 WPI, 

ASF457 and ASF500 in the cecum and of colon of SW mice of both sexes are increased, 

whereas ASF492 colonization levels are decreased in the colon of males but not females 

[25]. H. hepaticus infection altered colonization levels of ASF360 in the jejunum of both 

males (increased) and females (decreased) as well as in the ileum of males (increased) at 16 

WPI. Cecal ASF502 colonization levels are also decreased in the H. hepaticus-infected male 

mice compared to the sham controls at 8 WPI [25]. These lines of evidence indicate that 

changes in colonization dynamics of the select commensal bacteria such as SFB and ASF 

strains could potentially play an important role in health and disease of the host.

Taken together, we demonstrated that colonization dynamics of SFB in the large intestine is 

altered by gender, during aging and with H. hepaticus infection. The ability of SFB to shape 

the host’s immunity via induction of the skewed differentiation of proinflammatory Th17 

cells and mucosal IgA production highlights the importance of the in vivo interactions 

between SFB and pathogenic infections [3, 4, 17, 18]. In addition, recent identification of 

SFB 16S rRNA gene in the ileum of human subjects further emphasizes the potential effects 

of these bacteria on human health and disease [6–8]. Further investigations are needed to 

ascertain how changes in colonization dynamics of SFB influence intestinal mucosal 

immune responses in the host. Conventional and quantitative PCR assays of SFB established 

in this study will serve as useful tools to detect SFB in clinical and environmental samples 

or murine models of metabolic and intestinal disease [24].
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Figure 1. 
Development of PCR assays for detecting SFB. A, Schematic representation of PCR primer 

locations on the SFB 16S rRNA gene. B, Primers SFB225F and SFB844R specifically PCR-

amplified a product from SFB. Lanes 1–5, Fecal DNA templates from SFB-negative 

C57BL/6 mice of the Jackson Laboratory; Lanes 6–10, fecal DNA from SFB-positive 

C57BL/6 mice of Taconic Farm. C, SFB qPCR assay with optimal amplification efficiency 

and linear regression (slope, −3.4; r2=0.996). 1 and 2 represent 105 and 103 copeis of the 

SFB 16S RNA gene spiked in 50 ng of fecal and cecal DNA from two SFB-negative C57BL 

mice from the Jackson Laboratory, respectively. No fluorescent signal was detected in non-

spiked controls (50 ng).
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Figure 2. 
Colonization dynamics of intestinal SFB is influenced by aging and H. hepaticus infection 

in a gender-dependent manner. Graphs are plotted based mean ± standard deviation of each 

group. All P values are <0.05, * 8 vs 16 WPI for sham males; # the infected vs sham males 

at 8WPI; ¥ the infected vs sham females at 16 WPI. All comparisons represent the 

corresponding intestinal regions.
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Figure 3. 
Relative expression of intestinal Il-17A and Foxp3 mRNA. A. Higher levels of Il-17A 

mRNA in the small intestine compared to the large bowel. B. There were no significant 

differences in mRNA levels of Foxp3 irrespective of aging, intestinal regions, genders or H. 

hepaticus infection.
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