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Abstract

Background—Helicobacter cinaedi, an enterohepatic helicobacter species (EHS), is an 

important human pathogen and is associated with a wide range of diseases, especially in 

immunocompromised patients. It has been convincingly demonstrated that innate immune 

response to certain pathogenic enteric bacteria is sufficient to initiate colitis and colon 

carcinogenesis in recombinase-activating gene (Rag)-2-deficient mice model. To better understand 

the mechanisms of human IBD and its association with development of colon cancer, we 

investigated whether H. cinaedi could induce pathological changes noted with murine 

enterohepatic helicobacter infections in the Rag2−/− mouse model.

Materials and Methods—Sixty 129SvEv Rag2−/− mice mouse were experimentally or sham 

infected orally with H. cinaedi strain CCUG 18818. Gastrointestinal pathology and immune 

responses in infected and control mice were analyzed at 3, 6 and 9 months postinfection (MPI). H. 

cinaedi colonized the cecum, colon, and stomach in infected mice.

Results—H. cinaedi induced typhlocolitis in Rag2−/− mice by 3 MPI and intestinal lesions 

became more severe by 9 MPI. H. cinaedi was also associated with the elevation of 

proinflammatory cytokines, interferon-γ, tumor-necrosis factor-α, IL-1β, IL-10; iNOS mRNA 

levels were also upregulated in the cecum of infected mice. However, changes in IL-4, IL-6, 

Cox-2, and c-myc mRNA expressions were not detected.

Conclusions—Our results indicated that the Rag2−/− mouse model will be useful to continue 

investigating the pathogenicity of H. cinaedi, and to study the association of host immune 

responses in IBD caused by EHS.
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Inflammatory bowel diseases (IBD), classified as ulcerative colitis (UC) and Crohn’s 

disease, affect millions of people worldwide and is characterized by chronic, uncontrolled 

inflammation of the intestinal mucosa. Epidemiological evidence indicates that humans with 
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IBD have an increased risk of developing colon cancer [1]. The pathogenesis of IBD 

involves complex interactions including the genetic background of the host, the 

immunological responses of the host to intestinal microbiota, and environmental factors 

leading to dysbiosis of the intestinal microflora. Importantly, data from experimental models 

highlight that enteric flora play a crucial role in initiating and sustaining the inflammatory 

process [2].

Helicobacter species are microaerobic, gram-negative spiral bacteria that have been 

associated with gastric cancer in humans, as well as hepatitis, hepatocellular carcinoma, 

IBD, and colonic adenocarcinoma in mouse models [3–6], H. cinaedi (initially named 

Campylobacter cinaedi) is an enterohepatic Helicobacter species (EHS) first isolated from 

homosexual men suffering from enteritis, proctitis, or proctocolitis [7]. Helicobacter cinaedi 

was subsequently isolated from immunocompromised patients afflicted with meningitis, 

bacteremia, cellulitis, septic arthritis, and enteritis [8], as well as from immunocompetent 

patients with metabolic disease [9]. Recently, it has been associated with nosocomial 

transmission and systemic disease in hospitalized patients [10,11].

In our previous study, we reported that H. cinaedi induced typhlocolitis in IL-10 deficient 

mice; the disease was characterized by an elevated TH1 immune response. We also 

determined that cytolethal distending toxin plays a role in H. cinaedi induced intestinal 

inflammatory responses [12]. To further analyze the immune mechanisms of H. cinaedi 

induced IBD, we used recombinase-activating gene (Rag)-2-deficient mice in the current 

study. In the Rag-deficient mouse model, which lack functional T and B lymphocytes, 

Helicobacter hepaticus-infected mice rapidly developed colitis and large bowel carcinoma, 

establishing the important relationship of microbial driven innate induced chronic 

inflammation and colon cancer development [5,6,13]. We investigated whether H. cinaedi, a 

human pathogen, colonized and induced pathological changes in the Rag2−/− mouse model 

in a manner similar to H. hepaticus-induced colon adenocarcinoma [13,14].

Material and Methods

Animals

Sixty, 8-week old 129SvEv Rag2−/− mice (30 male, 30 female), mice were used in this 

study. All mice were from a Rag2-deficient breeding colony housed in an Association for 

Assessment and Accreditation of Laboratory Care, International-accredited facility under 

barrier conditions for the duration of the 9-month experiment. Mice were maintained free of 

known murine viral pathogens, Salmonella spp, Citrobacter rodentium, ecto-and 

endoparasites, and Helicobacter spp. Animals were maintained in microisolator, solid-

bottomed polycarbonate cages, fed a commercial pelleted diet (ProLab 3000; Purina Mills, 

St. Louis, MO, USA), and administered water ad libitum. The protocol was approved by the 

Committee on Animal Care of the Massachusetts Institute of Technology.

Experimental infection

Helicobacter cinaedi CCUG 18818 (ATCC type strain) was grown in Brucella broth 

containing 5% fetal calf serum under microaerobic conditions, screened for morphology and 
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motility, and resuspended in Brucella broth at approximately 109 organism/mL as 

determined by spectrophotometry at A660. Mice received 0.2 mL of fresh inoculums by 

gastric gavage every other day for three doses or were sham dosed with broth only. Thirty 

mice were dosed with H. cinaedi, and 30 were sham dosed with broth. Equal numbers of 

male or female mice in each group were utilized in this study. Colonization with H. cinaedi 

was confirmed 1 month postinoculation (p.i.) by PCR analysis of fecal DNA using 

previously described methods [12]. Mice were necropsied at 12, 24, and 36 weeks 

postinfection (WPI). Ten control (five male and five female) and 10 infected mice were 

assayed at each time point.

Isolation of Helicobacter cinaedi

Fresh fecal samples and aseptically collected liver and stomach samples were placed in PBS 

and homogenized before passage through a 0.45-μm filter onto blood agar for incubation at 

37 °C in microaerobic conditions using vented jars containing N2, H2, and CO2 (80:10: 10). 

The plates were assessed for growth after 3–5 days and were maintained for 2 weeks before 

a determination of no growth was made.

Histologic Evaluation

Mice were euthanized with CO2, and stomach, liver, colon, cecum samples were collected 

for histologic analysis. Formalin-fixed tissues were routinely processed, embedded in 

paraffin, cut at 4 μm, and stained with hematoxylin and eosin (H&E). Large bowel lesions 

were scored on a blinded basis; size and frequency of lesions for inflammatory, hyperplastic, 

edema, epithelial defects, and crypt atrophy were scored on a scale of 0–4 with ascending 

severity (0, none; 1, minimal; 2, mild; 3, moderate; and 4, severe). Epithelial dysplasia and 

neoplasia were graded using a scale of 0–4: 0, normal; 1, mild dysplastic changes; 2, 

moderate to severe dysplasia; 3, carcinoma in situ, or intramucosal carcinoma; and 4, 

invasive carcinoma; liver and stomach lesions were scored using criteria as previously 

described [6,16].

Mouse Tissue DNA Extraction

Tissue DNA was extracted from stomach, liver, colon, and cecum samples using a High 

Pure PCR Template Preparation Kit (Roche Molecular Biochemicals, Indianapolis, IN, USA 

following the manufacturer’s protocol.

Real-time Quantitative PCR for Helicobacter cinaedi in Cecum and Colon Samples

Relative concentrations of H. cinaedi DNA in stomach, colon, and cecum samples were 

determined by use of real-time quantitative PCR analysis using the ABI Prism Taqman 7700 

sequence detection system (PE Biosystems, Foster City, CA, USA), as previously described 

by Shen et al. in 2009 [12]. Samples were probed with H. cinaedi DNA primers generated 

from H. cinaedi cdtB gene using Primer Express software (Applied Biosystems Grand 

Island, NY, USA), with forward primer HcCDTF 5′-GAG CAA ATC GCG TGA ATC TTG 

CT-3′; and reverse primer HcCDTR 5′-TGA CAA TCG CAG GTG CAT CTC T-3′. The 

PCR mixture contained the following in duplicate 25 μL volumes: 5 μL of template DNA; 

12.5 μL SYRB Green Master mix; 500 nm of each primer. Thermocycling was performed at 
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50 °C for 2 minutes and 95 °C for 10 minutes and then 40 repeats of 95 °C for 15 seconds 

and 60 °C for 60 seconds. Samples were also probed with 18S rRNA-based primers for 

quantifying host DNA (Applied Biosystems) as described previously [17,18]).

Nested PCR for Detection of Helicobacter cinaedi in Liver Samples

Nested DNA PCR was performed using Helicobacter genus-specific primers in the first 

round that amplify a 1200 base-pair (bp) sequence in the 16S rRNA gene using a previously 

described protocol [19]. Ten percent of first-round product was amplified in a second round 

using another set of Helicobacter genus-specific primers to amplify a 383 bp product nested 

within the first-round amplicon (with forward primer C98F 5′-TGG TGT AGG GGT AAA 

ATC C-3′ and reverse primer H3A-20 5′-GCC GTG CAG CAC CTG TTT C-3′) [20]. The 

positive control was H. cinaedi genomic DNA and proven uninfected mouse tissue was used 

as a negative control.

Quantitative PCR for Cytokine mRNA Expression Profile in Cecum

Total RNA was extracted from approximately 25 mg of mouse cecum using Trizol reagent 

per the manufacturer’s protocol (Invitrogen, Carlsbad, CA, USA). Total RNA (2 μg) was 

converted into cDNA using a High Capacity cDNA Archive Kit following the 

manufacturer’s protocol (Applied Biosystems). cDNA levels for TNF-α, IFN-γ, iNOS, 

IL-1β, IL-4, IL-6, IL-10, IL17, IL23, cox-2, and c-myc mRNA were measured by 

quantitative PCR using commercial primers and probes for each cytokine. Briefly, duplicate 

25-μL reactions contained 5 μL of cDNA, 1.25 μL of a commercial 20× primer-probe 

solution, 12.5 μL of 2× master mix (all Applied Biosystems), and 6.25 μL of double-distilled 

H2O. Relative expression of mRNA from the ceca of infected and control mice was 

calculated using the comparative CT method with RNA input standardized between samples 

by expression levels of the endogenous reference gene, GAPDH. Results from duplicate 

samples of 10 mice in each group were plotted as fold changes noted between tissues from 

infected and uninfected control mice. (Applied Biosystems User Bulletin No. 2).

Immunofluorescence Staining for iNOS and Macrophages

Formalin-fixed cecal tissue sections were steam-treated for 20 minutes in citrate-buffered 

(pH 6) Target Retrieval Solution (DAKO Cytomation, Carpinteria, CA, USA) for epitope 

recovery. On an automated immunostainer (i6000, Biogenex; San Ramon CA, USA), 

deparaffinized and rehydrated tissue sections were sequentially overlaid with egg white 

avidin; biotin; primary antibody for Nos2 (Santa Cruz Biotechnology, Inc., Santa Cruz, CA, 

USA) and F4/80 (Invitrogen); secondary biotinylated antibody; Streptavidin-Cy3 (Sigma, St. 

Louis, MO, USA) and fluorescein conjugated Streptavidin (Rockland Immunochemicals, 

Gilbertsville, PA, USA) as previously described [21]. Slides were mounted with antifade 

Vectashield plus DAPI (Vector Laboratories, Burlingame, CA, USA) and 

immunofluorescence visualized with a laser-scanning confocal imaging system (Carl Zeiss 

Microimaging, Thornwood, NY, USA).
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Statistical Analysis

Cecal and colonic lesion scores were analyzed using the Mann–Whitney U nonparametric 

test for ordinal data; levels of H. cinaedi colonization and cytokine mRNA expression were 

compared by Student’s t-test. Values of p < .05 were considered significant.

Results

Helicobacter cinaedi Colonize the Liver and Gastrointestinal Tract of Rag2−/− Mice

Helicobacter cinaedi was isolated by culture from the feces of all the infected mice at 12, 

24, and 36 WPI. H. cinaedi was also isolated from the stomach samples of 20% of infected 

mice at 12 and 36 WPI (Table 1). Although only one of the liver samples was positive for H. 

cinaedi by culture at 36 WPI, 40% of the liver samples of mice infected with H. cinaedi 

were positive at 24 and 36 WPI by nested PCR analysis (Table 1). All the sham-dosed mice 

remained H. cinaedi-free as confirmed by bacterial culture and PCR throughout the 36-week 

experiment.

Quantitative PCR results of stomach, cecum, and colon samples indicated that H. cinaedi 

colonization reached the highest level at 12 WPI (p < .05) and then gradually decreased by 

24 and 36 WPI. The H. cinaedi numbers were greater in the cecum compared to the colon at 

all time points (Fig. 1). H. cinaedi also consistently colonized Rag2−/− mouse stomachs 

during the 9 months of infection. The bacterial numbers were relatively low compared to the 

colonization levels of the cecum and colon (1000 times less than cecum colonization) (Fig. 

1, Table 1).

Helicobacter cinaedi Induced Typhlocolitis in Rag2−/− Mice

Helicobacter cinaedi induced significant typhlocolitis in Rag2−/− mice at all the time points 

(p < .001). Infection with H. cinaedi resulted in mild to moderate typhlitis with hyperplasia, 

submucosal edema, epithelial defects, and dysplasia. Inflammation was limited to the 

mucosa and submucosa, consisting of few to moderate numbers of neutrophils in segmental 

areas. Hyperplastic crypts were elongated and lined by densely packed epithelial cells with 

diminished goblet cell differentiation. Occasional crypt abscesses with dilated crypt glands 

lined by attenuated epithelial cells and luminal cell debris were observed. Lower bowel 

inflammation usually was most severe at the cecocolic junction with limited numbers of 

focal lesions present in the mid-to distal colon. Colonic lesions contained mild mucosal and 

submucosal inflammation, hyperplasia, edema, and occasional crypt abscesses (Fig. 2). The 

intestinal lesions became more severe from 12 to 36 WPI. At 12 WPI, 20% of Rag2−/− mice 

infected with H. cinaedi had developed moderate to severe inflammation that yielded scores 

ranging to >2. At 36 WPI, 70% infected Rag2−/− mice developed moderate to severe 

inflammation. Comparing the total lesion scores of ceca, which included inflammatory, 

hyperplastic, edema, epithelial defects, crypt atrophy, and dysplasia, the lesions of infected 

mice at 36 WPI were significantly more severe than earlier time points (p < .01) (Fig. 3). 

There was no difference in the pathology scores of infected male and female mice. There 

was no significant helicobacter induced gastric inflammation in infected mice. By 36 WPI, 

50% of infected mice had mild liver inflammation, while only 10% had similar lesions in the 
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control group. (p < .05). No significant lesions were observed in the gastrointestinal tracts of 

the control mice at any time point (Fig. 4).

Pro-inflammatory Cytokine and iNOS mRNA Levels in Mouse Cecum were Increased in 
Helicobacter cinaedi-infected Rag2−/− Mice

Inflammatory cytokines and iNOS expression were measured from the cecum RNA samples 

of both infected and non-infected control animals. H. cinaedi progressively increased 

mRNA levels of IL1β, IL10, TNFα, IFNγ, and iNOS expression throughout the 36-week 

study. The mRNA intestinal levels of TNFα, IFNγ, and iNOS of H. cinaedi-infected mice 

were significantly increased at all time points compared to the noninfected control mice (p 

< .001). The TNFα mRNA level in the lower bowel of infected Rag2−/− mice at 24 WPI was 

significantly higher than TNFα levels noted in lower bowel infected tissues at 36 WPI (Fig. 

5). The mRNA level of IFNγ was significantly elevated as well at all three time points in 

infected mice compared to control groups (p < .001), with the highest level at 12 WPI (Fig. 

5) All infected mice had elevated iNOS mRNA at 12, 24, and 36 WPI compared to control 

group (p < .05). IL10 and IL1β expression levels began to increase at 12 WPI; reaching the 

highest level at 24 WPI, with no statistical differences noted with control mice at 36 WPI. 

No significant changes in mRNA expression of IL4, IL6, Cox-2, IL17, IL23, and c-myc 

mRNA were noted in cecal samples.

Immunofluorescence Staining for iNOS and Macrophages

iNOS was upregulated in focal areas in the cecum of infected mice when compared to 

control tissues, iNOS expression was highest in the surface epithelium. Although there were 

macrophages infiltrating between glands of the mucosa, macrophage infiltration was more 

noticeable in the submucosa (Fig. 4).

Discussion

Inflammatory bowel disease is a chronic inflammatory disorder of the gastrointestinal tract 

that affects millions of humans. The initiation and pathogenesis of IBD involve interactions 

among genetic, environmental, and immune factors. Results from clinical and experimental 

studies indicate that the normal intestinal mucosal immune response of the host develops 

tolerance to enteric flora [22,23]. This complex homeostasis is breached under conditions of 

chronic intestinal inflammation driven by an excessive host immune responses to intestinal 

microflora.

Helicobacter cinaedi causes bacteremia, cellulitis, arthritis, and osteomyelitis in humans 

[8,24–31]. Although H. cinaedi reportedly affects mostly immunocompromised patients 

[9,24,32–34], it has also been isolated from diarrheic and bacteremic immunocompetent 

adults and children [35,36]. Recently, H. cinaedi has been identified in immunocompetent 

patients suffering from bacteremia and cellulitis following orthopedic surgery [25]. Also, it 

has been frequently isolated from children with diarrhea residing in South Africa [37,38].

Helicobacter cinaedi has also been isolated from rhesus monkeys with colitis and hepatitis. 

The organism has also been cultured from the feces of hamsters, dogs, and cats, which raises 

the zoonotic potential of the organism [39–41].
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Helicobacter species have been widely used to study bacteria induced IBD in animal models 

[42]. Rag2−/− mice on a 129 genetic background lack functional T and B lymphocytes and 

have been used extensively in our laboratory and others to study IBD [6,16]. These studies 

have demonstrated that innate immune responses to certain pathogenic enteric Helicobacter 

spp. are sufficient to initiate colitis, which can progress to colon cancer [5,6,13,14].

In the current study, H. cinaedi colonized Rag2−/− mice, resulting in chronic typhlocolitis. 

The immunocompromised model provides further evidence that innate immune responses 

elicited by select bacteria are sufficient to induce chronic inflammation in the lower bowel. 

In our previous study, H. cinaedi-induced typhlocolitis in B6.129P2 IL10 deficient mice 

caused dysplasia and intramucosal carcinoma with elevated mRNA expression of TNFα, 

IFN-γ, and iNOS in the cecum. In H. cinaedi-infected IL10−/− mice, the severity of typhlitis 

reached the highest level at 12 WPI, and decreased at 24 and 36 WPI. This contrasts with 

this study where the pathology of H. cinaedi-induced in Rag2−/− mice persisted and became 

more severe throughout the 36 weeks of the study. H. cinaedi persistently colonized 

gastrointestinal tracts of Rag2−/− mice during the 9 months of infection, suggesting the lack 

of an adaptive immune system confers susceptibility to progressive H. cinaedi-associated 

colitis. Although the colonization levels decreased over the period of the study, H. cinaedi 

was consistently isolated from feces, stomach, and liver of infected mice at 9-MPI The 

primary colonization niche was the cecocolic junction, which had the highest colonization 

levels. Even though H. cinaedi-induced pathology was primarily localized to the lower 

bowel, its isolation from the liver at 9-MPI indicated that H. cinaedi colonizing the 

gastrointestinal tract can translocate into the enterohepatic circulation and colonize the liver. 

This observation highlights the ability of H. cinaedi to induce bacteremia, cellulitis, arthritis, 

osteomyelitis, meningitis, and myopericarditis in human patients [9–11]. Recent data also 

documents that certain individuals can be intestinal carriers of H. cinaedi, and increase the 

risk of nosocomial infection with H. cinaedi in hospitalized patients [43–45]. Further, the 

ability of H. cinaedi to persistently colonize the stomach of mice emphasizes earlier studies 

where H. cinaedi was identified in the stomachs of humans [46,47].

The pathology scores did not directly correlate with bacterial colonization density; at 9 MPI, 

bacterial numbers were at the lowest level while pathology scores were elevated. The 

decrease of the bacteria colonization levels noted over the course of the experiment may be 

the result of the host’s inflammatory responses which prompted reduction in the quantity of 

H. cinaedi. In H. hepaticus-induced colon cancer in Rag−/− mice, H. hepaticus counts were 

not directly correlated with severity of colonic lesions, supporting the hypothesis that host 

inflammatory responses to EHS, rather than a direct quantitative effect of the pathogenic 

organisms, can sustain chronic inflammation, which progresses to premalignant lesions and 

in some cases, cancer [6]. The inflammation was more severe in the cecal colic junction, the 

primary site of H. cinaedi colonization, rather than in the colon during the early phase of 

infection. In Rag2−/− mice, H. hepaticus also efficiently colonized the ileal–cecal colic 

junction. In this model, however, H. hepaticus resulted in the development of prominent 

tumors, including mucinous and poorly differentiated mucosal adenocarcinomas, which 

were more frequent in the transverse and descending colon and not the ileal–cecal junction 

mice [5,6]. Importantly, colonization of EHS is consistent with Helicobacter pylori infection 
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in mice; colonization levels of H. pylori are inversely correlated with severity of gastric 

pathology [48,49].

The genetic background of mice also influences the severity of lower bowel pathology. 

After 9 months of H. hepaticus or Helicobacter bilis infection in the C57BL/ 6J Rag2−/− 

model, there was no clinical indication of IBD (diarrhea, or rectal prolapse); however, two 

of the five Rag2−/− mice, in both the H. hepaticus and H. bilis group, developed mild focal 

mucosal inflammation characterized by minimal to mild epithelial hyperplasia and low 

numbers of a predominantly neutrophilic infiltration [50]. Interestingly, lesions in H. bilis-

infected Rag2−/− mice were found solely in the proximal colon, whereas the lesions in the H. 

hepaticus-infected Rag2−/− mice were noted in the cecum [50]. In contrast, Smad3−/− (129-

Smad3tm/Par/J) mice infected with H. bilis or coinfected with H. bilis and H. hepaticus 

developed severe IBD; the mean survival time for these Rag2−/− mice was only 19 weeks 

[51].

Helicobacter spp. infections in mice are known to induce the expression of proinflammatory 

cytokines [52–54]. In this study, the mRNA levels of IL1β, TNFα, IFNγ and iNOS of H. 

cinaedi-infected mice were significantly increased compared to the noninfected control mice 

(p < .001), suggesting that these pro, inflammatory cytokines are primarily produced by 

nonlymphoid cells such as macrophages dendritic cells, and potentially colonic epithelial 

cells. TNF-α is believed to play a key role in initiating and amplifying the inflammatory 

reaction in the intestinal mucosa of IBD animal models and patients with IBD [55–57]. 

TNF-α stimulates the production of genotoxic molecules such as reactive oxygen species, 

leading to DNA damage and tumor initiation [58]. Studies have indicated that increased 

levels of TNF-α and IFN-γ increase intestinal epithelial paracellular permeability and thus 

may be an important mechanism contributing to intestinal inflammation [59,60]. A recent 

study identified H. typhlonius another EHS, as a key trigger in initiating excess TNFα 

production and promoting colitis in Tbx21−/− Rag2−/− ulcerative colitis (TRUC) mice [61]. 

IL-1β is a prototypical proinflammatory cytokine; it is involved in both the initiation and 

amplification of the inflammatory response leading to intestinal injury. IL-1β has been 

shown to play an important role in the pathogenesis of intestinal inflammation in IBD in 

humans and in animal models of intestinal inflammation. Patients with IBD have elevated 

levels of IL-1β in their intestinal tissue [62]. IBD also requires the presence of phagocytic 

cells such as monocytes, macrophages, and neutrophils. When stimulated, these cells 

produce reactive nitrogen and oxygen species. These free radicals are responsible for killing 

phagocytosed pathogens. However, as a by-product of this protective effect, they also induce 

local tissue injury. Patients with both forms of IBD (Crohn’s disease and ulcerative colitis) 

have increased inducible NO synthase (iNOS) activity and citrulline production in the 

mucosa of colonic biopsy specimens [63]. Infection of 129 Rag2−/− mice with H. hepaticus 

led to infiltration of macrophages and neutrophils into the colon, which was temporally 

related to upregulation of iNOS expression at the site of infection and increased NO 

production evidenced by urinary excretion of nitrate [6]. Concurrent administration of an 

iNOS inhibitor prevented NO production, abrogated the epithelial pathology, and inhibited 

the onset of cancer [6]. Inflammation-mediated carcinogenesis involving infiltration of 

activated phagocytes at sites of infection, with subsequent generation of reactive oxygen, 
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nitrogen, and halogen species that cause molecular damage leads to cell dysfunction, 

mutation, and cell death [13,14]. In the current study, the iNOS expression was significantly 

increased in all H. cinaedi-infected mice, particularly surface epithelium and macrophages 

located in the submucosa and between glands. At all time points. In an in vitro model to 

study oxidative damage, macrophage and epithelial cells synthesized NO when co-infected 

with H. cinaedi. Interestingly, colonic epithelial cells were capable of synthesizing NO at 

rates comparable to macrophages [64]. When infected with H. cinaedi, the 

concentration in the cells was fourfold higher than in the uninfected control cells [64]. We 

also found that alkyl hydroperoxide reductase C (AhpC), which is responsible for 

detoxification of peroxides and protection of peroxide-induced stress played a role in H. 

cinaedi-induced pathogenicity as well. The H. cinaedi ahpC mutant had diminished 

resistance to organic hydroperoxide toxicity. The AhpC mutant was more susceptible to 

killing by macrophages than the WT strain and had reduced colonization ability in BALB/c 

IL-10−/− mice [65].

Helicobacter cinaedi expresses the genotoxin cytolethal distending toxin (CDT) [66]. This 

toxin causes DNA strand breaks, inhibits ATM-dependent response pathways, and 

suppresses repair of DNA adducts [67]. CDT contributed to the severity of the typhlocolitis 

in the IL10 deficient mouse model [12]; whether H. cinaedi CDT functions in Rag2−/− mice 

in the same manner requires further investigation.

In summary, we have documented that the human pathogen, H. cinaedi, persistently 

colonizes the lower bowel and induced typhlocolitis in Rag2−/− mice. Although the roles of 

lymphoid cells in the induction of intestinal inflammation have received considerable 

attention, our results emphasized that innate immune mechanisms are also able to mediate 

significant and persistent intestinal inflammation upon stimulation with pathogenic 

organisms. The availability of this model will allow further in vivo investigations regarding 

the pathogenesis of this emerging human pathogen.
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Figure 1. 
Quantitative PCR of Helicobacter cinaedi colonization levels in cecum, colon, and stomach 

samples of infected mice.
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Figure 2. 
Helicobacter cinaedi-induced Typhlocolitis. (A) Cecum from a 12-WPI control mouse. (B) 

Cecum from a 12-WPI infected mouse with multifocal, mild lamina propria inflammation, 

and mild hyperplasia. (C) Cecum from a 36-week-infected RAG mouse with coalescing, 

moderate lamina propria, and submucosal inflammation, with moderate dysplasia, epithelial 

defects, crypt atrophy, and hyperplasia. (D) Colon from a 12-WPI control mouse. (E) Colon 

from a 12 week and a 36 week. (F) H. cinaedi-infected mouse with multifocal, mild lamina 

propria, and submucosal inflammation. Magnification ×200.
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Figure 3. 
Total pathology scores of inflammation, hyperplasia, dysplasia, edema, epithelia defects, 

and crypt atrophy. (A) cecum; *p< 0.01 (B) colon.
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Figure 4. 
Immunoflurescence stains of Helicobacter cinaedi-infected and noninfected mouse cecum 

with antibodies against iNOS and macrophage marker F4/80. Green, F4/80; Red, iNOS; 

Blue nucleus. (A) noninfected control mouse; (B and C) H. cinaedi-infected mouse. 

Magnification ×200.
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Figure 5. 
Relative expressions of select cytokine and iNOS mRNA levels in the cecum. Expression 

levels of IL10, IL1β, TNFα, IFNγ, and iNOS were higher in infected mice compared to 

control mice at all the time points. Data represent mean and standard error of fold changes in 

mRNA expression from infected mice compared to uninfected controls. p–values when 

compared with sham control, * p < .05.
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Table 1

Culture and PCR results of Helicobacter cinaedi-infected Rag2−/− mice

Rag2−/− mice time points at postinfectiona,b

3 months 6 months 9 months

Liver culture 0/10 0/10 1/10

Liver PCR 1/10 4/10 4/10

Stomach culture 2/10 0/10 2/10

Stomach PCR 8/10 9/10 7/10

a
All fecal samples from infected mice were culture positive for H. cinaedi.

b
All ceca and colon samples from infected mice were PCR positive for H. cinaedi.
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