
ar
X

iv
:1

50
8.

02
69

9v
3

 [
as

tr
o-

ph
.I

M
]

 1
4

A
ug

 2
01

5
Mon. Not. R. Astron. Soc. 000, 1–5 (2015) Printed 17 August 2015 (MN LATEX style file v2.2)

A Fast and Accurate Universal Kepler Solver without

Stumpff Series

Jack Wisdom,1⋆ and David M. Hernandez1
1Massachusetts Institute of Technology, Cambridge, MA, 02139, USA

Accepted XXX. Received YYY; in original form ZZZ

ABSTRACT

We derive and present a fast and accurate solution of the initial value problem for
Keplerian motion in universal variables that does not use the Stumpff series. We find
that it performs better than methods based on the Stumpff series.

Key words: celestial mechanics – methods: numerical

1 INTRODUCTION

Wisdom & Holman (1991) introduced a symplectic mapping
method for the rapid simulation of the n-planet problem (n
planets plus a massive central body). The method splits the
Hamiltonian for the n-planet problem into Kepler Hamilto-
nians and an interaction Hamiltonian, each of which may be
efficiently solved. The evolution of the n-planet problem is
obtained by interleaving the elementary pieces. The rapid
and accurate solution of the Kepler initial value problem
is an essential part of the method. The Wisdom-Holman
method and its variations has been widely adopted for solar
system dynamics investigations.

The method of Wisdom & Holman (1991) evolved from
the mapping method of Wisdom (1982); it relies on the
averaging principle to introduce Dirac delta functions into
the Hamiltonian. An alternate approach, which leads to the
same algorithm, is that of symplectic integration, which
uses the algebra of Lie series to approximate the local evo-
lution to some order in the stepsize by interleaving the
evolution of the pieces. An advantage of the mapping ap-
proach is that the stability of the method can be analyzed in
terms of the overlap of “stepsize resonances,” which can be
read off the delta function Hamiltonian (Wisdom & Holman
1992). Another advantage of the mapping approach is that
perturbation theory can be used to improve the method
by eliminating the high-frequency terms introduced by
the delta functions, leading to the “symplectic corrector”
(Wisdom, Holman & Touma 1996). An advantage of the
symplectic integration approach is its algebraic simplicity.

Jacobi coordinates were used in Wisdom & Holman
(1991) to eliminate the center of mass freedom and to effect
the separation of the Hamiltonian into Keplerian and inter-
action parts. Touma & Wisdom (1993, 1994) used a different
splitting, making use of the canonical heliocentric coordi-
nates. Levison & Duncan (1994) used the Wisdom-Holman

⋆ E-mail: wisdom@mit.edu (JW)

method in Jacobi coordinates, patched together with a non-
symplectic method for handling close encounters among the
bodies. They distributed their program, called RMVS3, in
their SWIFT package. Duncan, Levison & Lee (1998) used
the canonical heliocentric variables with a slightly differ-
ent splitting; they call their method the “democratic he-
liocentric” method. They handle close encounters by recur-
sively subdividing the step in a symplectic manner. Their
program is distributed as SYMBA. Chambers (1999) intro-
duced another method based on the democratic heliocen-
tric splitting, with a symplectic transition to an ordinary
numerical integration method (the Bulirsch-Stoer method)
for close encounters. His program is distributed as MERCURY.
Levison & Duncan (2000) noticed that methods based on
the democratic heliocentric splitting are unstable for large
eccentricities, and modified their SYMBA program to numeri-
cally integrate “close encounters with the Sun.” Their mod-
ified program is called “modified SYMBA.” An essential el-
ement of all of these variations on the Wisdom-Holman
method is that one must solve the Kepler initial value prob-
lem: given the position and velocity at one time, the task
is to find the position and velocity at a different time (dis-
placed by a timestep that can be either positive or negative).

A recent contribution using the Lie series approach is
Hernandez & Bertschinger (2015). They developed a sym-
plectic integrator for the collisional n-body problem. This
method also relies on the rapid and accurate solution of the
Kepler initial value problem.

We have found that the solution of the initial value
problem may be efficiently and accurately carried out in
universal variables. The resulting formulation and program
work for all orbits, whether they are elliptic, parabolic, or
hyperbolic. The traditional presentation of univeral vari-
ables (e.g. Danby (1992)) makes use of Stumpff functions
and calculates them using their series representation. Ar-
gument four-folding is used to bring the function argument
into an interval near zero so that the series converge rapidly
enough. However, all of the functions can be represented in

c© 2015 RAS

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by DSpace@MIT

https://core.ac.uk/display/83231195?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://arxiv.org/abs/1508.02699v3

2 J. Wisdom and D.M. Hernandez

terms of ordinary trigonometric functions. But, a straight-
forward computation using this representation has unpleas-
antly large error, so the series and argument four-folding
appear to be necessary. We have been able to circumvent
this problem by reexpressing the functions in a numerically
well defined way. The builtin trigonometric functions are
fast and accurate, and our solution of the initial value prob-
lem compares favorably with solutions based on the Stumpff
series.

2 KEPLER PROBLEM

The Hamiltonian for the Kepler problem is:

H(t,x,p) =
p2

2m
− µ

r
, (1)

where p is the magnitude of p and r is the magnitude
of x. The constants µ and m depend on the context in
which the Kepler problem is found. For example, if x =
x2 − x1 is the relative coordinate in the two-body problem,
then we would be led to take m to be the reduced mass
(1/m1 +1/m2)

−1 and µ = Gm1m2. In the n-body problem,
the constants may be different, depending on the formula-
tion (e.g. Wisdom & Holman (1991)).

Hamilton’s equations may be written as a second order
system:

ẍ = −kx

r3
, (2)

where the “Kepler constant” k = µ/m. The evolution de-
pends on the constants only through this combination. We
use the dot notation for derivative with respect to time.

3 DERIVATION OF THE SOLUTION

A basic reference for the solution of the Kepler initial value
problem is Danby (1992). We refer the reader to that pre-
sentation of universal variables and the Stumpff series for
background on the series approach. We follow some aspects
of that presentation here. Our derivation is self-contained.

We introduce a new independent variable s satisfying

ds

dt
=

1

r
. (3)

The equation of motion, Eq. (2), becomes

x
′′ − r′

r
x
′ +

k

r
x = 0, (4)

where prime indicates differentiation with respect to s.
The Hamiltonian is conserved, since there is no explicit

time dependence. It is conventional to write the conserved
quantity as

β =
k

a
=

2k

r
− ẋ · ẋ. (5)

The constant β is positive for elliptic motion, for which a
is the semimajor axis, β is negative for hyperbolic motion,
and β is zero for parabolic motion.

Expressing β in terms of derivatives with respect to s
yields:

β =
2k

r
− 1

r2
x
′ · x′. (6)

Differentiating this expression with respect to s and using
the derivative of the equation of motion, Eq. (4), yields:

x
′′′ + βx′ = 0. (7)

Next we introduce the f and g functions:

x = fx0 + gv0,

v = ḟx0 + ġv0, (8)

where x0 is the initial position, and v0 is the initial time
rate of change of position (the initial velocity). Substituting
this into Eq. (7), we find

f ′′′ + βf ′ = 0

g′′′ + βg′ = 0, (9)

using the independence of initial position and velocity. The
equations are satisfied by an offset simple harmonic oscilla-
tion in s.

To determine the initial values for the derivatives, we
start with Eq.(2), to find

f̈ +
k

r3
f = 0

g̈ +
k

r3
g = 0. (10)

From Eq. (8), the initial values satisfy f0 = ġ0 = 1 and
ḟ0 = g0 = 0. Then

f ′

0 = r0ḟ0 = 0

g′0 = r0ġ0 = r0

f ′′

0 = r20 f̈0 + r0ṙ0ḟ0 = − k

r0

g′′0 = r20 f̈0 + r0ṙ0ḟ0 = r0ṙ0. (11)

It is convenient to define solutions of Eq. (9) in terms
of functions Gβ

i (s) satisfying

Gβ
i (s) =

d

ds
Gβ

i+1(s). (12)

We start the ladder with

Gβ
0 (s) = cos(

√

βs), (13)

for β > 0, and

Gβ
0 (s) = cosh(

√

−βs), (14)

for β < 0. We can take

Gβ
1 (s) =

sin(
√
βs)√
β

, (15)

for β > 0, and

Gβ
1 (s) =

sinh(
√
−βs)√−β

, (16)

for β < 0. We can then take

Gβ
2 (s) = (1− cos(

√

βs))/β, (17)

for β > 0, and

Gβ
2 (s) = (1− cosh(

√

−βs))/β, (18)

for β < 0. Onward,

Gβ
3 (s) = (s− sin(

√

βs)/
√

β)/β

= (s−Gβ
1 (s))/β. (19)

c© 2015 RAS, MNRAS 000, 1–5

Universal Kepler Solver 3

for β > 0, and

Gβ
3 (s) = (s− sinh(

√

−β)/
√

−β)/β

= (s−Gβ
1 (s))/β, (20)

for β < 0. We could go on, but this is all we need here.
We have chosen the constants so that Gβ

i (0) = 0 for i > 0.
Notice that for i < 3 these functions satisfy

(Gβ
i (s))

′′′ + β(Gβ
i (s))

′ = 0. (21)

Now we can use these functions to find solutions for f
and g. Let

f(s) = AfG
β
1 (s) +BfG

β
2 (s) +Cf . (22)

The condition that f(0) = 1 implies Cf = 1. Then we form
the derivative

f ′(s) = AfG
β
0 (s) +BfG

β
1 (s). (23)

The condition that f ′(0) = 0 implies Af = 0. The next
derivative is

f ′′(s) = BfG
β
0 (s), (24)

using the fact that Af = 0. The condition that f ′′(0) =
−k/r0 implies that Bf = −k/r0. Putting it together we find

f(s) = 1− (k/r0)G
β
2 (s). (25)

Similarly, we let

g(s) = AgG
β
1 (s) +BgG

β
2 (s) + Cg. (26)

We find

g(s) = r0G
β
1 (s) + r0ṙ0G

β
2 (s). (27)

From these we find ḟ and ġ by using the relation ds/dt =
1/r to find

ḟ(s) = −(k/(rr0))G
β
1 (s),

ġ(s) = (r0/r)(G
β
0 (s) + ṙ0G

β
1 (s)). (28)

But we still have to find s!
The relation between t and s is

h = t− t0 =

∫ s

0

r(s)ds. (29)

Let’s express r(s) in terms of Gβ
i (s). First,

r′0 = r0ṙ0 = x0 · ẋ0. (30)

After a small reduction, we find

r′′0 = k − r0β, (31)

and

r′′′0 + βr′0 = 0. (32)

So r(s) may be expressed as

r(s) = r0 + r′0G
β
1 (s) + r′′0G

β
2 (s). (33)

Using Eqs. (30) and (31)

r(s) = r0G
β
0 (s) + r0ṙ0G

β
1 (s) + kGβ

2 (s). (34)

The properties of the Gβ
i allow an immediate integration to

find

h = r0G
β
1 (s) + r0ṙ0G

β
2 (s) + kGβ

3 (s). (35)

This implicit equation for s is our “Kepler equation.” We

can solve this by any of the standard methods: Newton, Hal-
ley, Laguerre, bisection, and so on. In practice, we first try
Newton’s method. If this fails, we try the Laguerre-Conway
method. If this fails, we recursively subdivide the step.

For the hyperbolic case our solution is as follows. For
small stepsizes the equation is well approximated by a
cubic equation. We take the real solution of this cubic
equation as our initial guess in Newton’s method. If New-
ton’s method does not converge, then we use the Laguerre-
Conway method. If this fails we recursively subdivide the
step.

Eq. (34) can be used to rewrite the equation for ġ. We
find

ġ(s) = 1− (k/r)Gβ
2 (s). (36)

The expressions for the parabolic case can be found by
taking a limit as β goes to zero. As it turns out the Kepler
equation becomes a cubic equation in s and so can be solved
without iteration.

4 NUMERICAL REFINEMENT

In order to have expressions that are well defined numeri-
cally we have to do a little more work.

Examining Eqs. (17) and (18), we see that for small ar-
guments of the cosine and hyperbolic cosine functions there
will be cancellation and loss of precision. But this problem
can be fixed by using the half-angle formulas.

Assuming β > 0, let

s2 = sin(
√

βs/2)

c2 = cos(
√

βs/2), (37)

then we can write

Gβ
1 (s) = 2s2c2/

√

β

Gβ
2 (s) = 2s2s2/β

Gβ
3 (s) = (s−Gβ

1 (s))/β

Gβ
0 (s) = 1− βGβ

2 (s). (38)

The only expression that might be of concern is the expres-
sion for Gβ

3 (s), but, in practice, it seems to not be a problem.
Similar expressions can be derived for the β < 0 case. Such
changes are made throughout the program.

5 NUMERICAL EXPLORATION

We compare here our method and program (universal.c),
to two universal variable Kepler stepper programs that use
Stumpff series. The program drift one.f was written by
Harold Levison and Martin Duncan. It is based on the pre-
sentation in Danby (1992). The program drift one.f is
available as part of the SWIFT package. This program is used
in a number of programs derived from the Wisdom-Holman
method (Wisdom & Holman 1991). These programs include
RMVS3 (Levison & Duncan 1994), also distributed in the
SWIFT package. The same program is used to advance the Ke-
pler problem in the program SYMBA (Duncan, Levison & Lee
1998), and in MERCURY (Chambers 1999). In order to compare
to our program, written in the C programming language,
we have translated, line by line, the program drift one.f

c© 2015 RAS, MNRAS 000, 1–5

4 J. Wisdom and D.M. Hernandez

to a C version drift one.c. We have not compared our
code directly to the fortran program drift one.f. We also
compare our program to the Kepler stepper in WHFast

(Rein & Tamayo 2015).

Our test is designed to work for both elliptic and hyper-
bolic orbits. Let T = 2π/n where n =

√

k/|a|3. For elliptic
orbits, T is the orbital period, and n is the mean motion.
We choose G = (0.0172)2, which approximates the gravita-
tional constant in units of AU, day, and solar mass. We take
the mass factors to be one; thus the Kepler constant µ/m
is numerically just G. We use the same Kepler constant in
the drift one.c calculations. We take the semimajor axis
for the elliptic case to be 0.4AU. The eccentricity and step-
size are varied. The pericentric distance is q = a(1− e), and
the velocity is determined from a through the value of the
energy. We evolve the Kepler orbit back and forth through
pericenter, adjusting the phase so that the pericenter is en-
countered with a wide range of phases. The chosen stepsize
is h; we make use of the auxillary stepsize h′ = γh, where
γ = (

√
5 − 1)/2 ≈ 0.618, is the irrational golden mean. We

start at pericenter with t = 0, and evolve the orbit with
stepsize h until t > T/2, i.e. until we have passed apocenter
(for elliptic orbits). Then we adjust the phase with a pos-
itive step of h′. At this point we start collecting statistics.
We reverse the timestep and evolve the orbit with timestep
−h until t < −T/2. Then we adjust the phase with a posi-
tive step of h′. We evolve with stepsize h until t > T/2; we
adjust the phase with a postive step of h′, and so on. We re-
peat this process for 100 pericenter passages. At the end we
collect statistics again, and compare to the initial statistics.
This procedure tests all parts of the evolution for a large
variety of phases. It also tests both positive and negative
timesteps.

The results for elliptic orbits for three methods are sum-
marized in Figs. 3-5. The top plot in each set shows the en-
ergy error as a function of eccentricity e and stepsize h. The
middle plot shows the sign of the energy error at the end of
each evolution. We would like this plot to show an intimate
mixture of positive and negative results, so that an evolu-
tion computed with the Kepler solver does not show any
tendency to expand or contract. This “bias” plot was intro-
duced by Rein & Tamayo (2015). The bottom plot shows an
estimate of the computing time per Kepler step. The tests
were run on a 4 GHz iMac, with an Intel i7 chip. All of the
tests were compiled with C compiler optimizer option -O3.
Comparing Figs. 3 and 4, we see that our code is more ac-
curate, faster, and shows less bias than drift one.c. Note
the complicated structure in the bias plot for drift one.c,
and the intimate mixture of colors in the bias plots for
universal.c and the Kepler stepper in WHFast.

We have computed the average ratio of the time per
step for the interval 0.001 < h/T < 0.1, which is the range of
most interest for practical calculations, and find the average
ratio for drift one.c relative to universal.c is about 1.9.
The code universal.c is about twice as fast as drift one.c.
We have also computed the average ratio of the time per
step for the interval 0.001 < h/T < 0.1 for the Kepler solver
in WHFast and find that the time per step is about a fac-
tor of 0.79 smaller than our code—it is about 20% faster.
In Fig. 1, histograms of the relative energy error in the el-
liptic case for the three methods are shown. We see that
drift one.c is less accurate than both universal.c and

log10(|∆E/E|)

−6−8−10−12−14−16

log10(|∆E/E|)

−6−8−10−12−14−16

log10(|∆E/E|)

−6−8−10−12−14−16

Figure 1. These plots histogram the relative error in the elliptic
case for three methods. The bottom plot is for universal.c, the
middle plot is for drift one.c, and the top plot is for the Kepler
solver in WHFast.

.

the Kepler solver in WHFast. Quantitatively, the averages of
the common logarithm of the absolute value of the relative
error are: -11.92, -11.74, and -11.09, for universal.c, the
Kepler solver in WHFast, and drift one.c, respectively. The
error of universal.c is, on average, about 50% smaller than
the Kepler solver in WHFast, and about a factor of 6.5 smaller
than the error in drift one.c.

For the hyperbolic case, we let a = −0.4AU . We start
at pericenter. The pericentric distance is q = a(1 − e); e is
larger than 1. The initial velocity is determined from the
energy. The back and forth procedure is the same as in the
elliptic case.

The results for hyperbolic orbits for our code,
universal.c, and for drift one.c are shown in Figs. 6 and
7. Rein & Tamayo (2015) did not extensively test the hy-
perbolic case, and the Kepler solver in WHFast performs
poorly for unbound orbits. Note again that the bias plot
for our method universal.c shows an intimate mixture,
whereas the bias plot for drift one.c shows evidence of
bias. We find that the average ratio of the time per step of
drift one.c to the time per step of universal.c for the in-
terval 0.001 < h/T < 0.1 is about 1.6; drift one.c is about
60% slower than universal.c.

In Fig. 2, histograms of the relative energy error in
the hyperbolic case for drift one.c and universal.c are
shown. We see that drift one.c is typically less accurate
than universal.c. Quantitatively, the averages of the com-

c© 2015 RAS, MNRAS 000, 1–5

Universal Kepler Solver 5

log10(|∆E/E|)

−6−8−10−12−14−16

log10(|∆E/E|)

−6−8−10−12−14−16

Figure 2. These plots histogram the relative error in the hyper-
bolic case for two methods. The bottom plot is for universal.c,
and the top plot is for drift one.c.

mon logarithm of the absolute value of the relative error
are: -11.72 and -11.03, for universal.c and drift one.c,
respectively. The error of universal.c is, on average, about
a factor of 5 smaller than the error in drift one.c.

6 SUMMARY

We have developed and tested a universal variable solver
for the Kepler initial value problem. The method eschews
the use of Stumpff series in favor of ordinary trigonometric
functions. We have been careful to make sure that all expres-
sions are numerically well defined. We find that our program
performs better, in terms of accuracy, bias, and speed, than
a C version of a widely used Kepler solver, which uses the
Stumpff series. Our code is freely available; contact the au-
thors.

ACKNOWLEDGEMENTS

We thank Hanno Rein, Daniel Tamayo, and Edmund
Bertschinger for helpful discussions. DMH acknowledges
support by a NSF Graduate Research Fellowship under
Grant No. 1122374.

REFERENCES

Chambers J. E., 1999, MNRAS, 304, 793
Danby J. M. A., 1992, Fundamentals of celestial mechanics,
2nd edn. Willmann-Bell, Richmond, Va., U.S.A.

Duncan M. J., Levison H. F., Lee M. H., 1998, AJ, 116,
2067

Hernandez D. M., Bertschinger E., 2015, MNRAS, 452,
1934

Levison H. F., Duncan M. J., 1994, Icarus, 108, 18
Levison H. F., Duncan M. J., 2000, AJ, 120, 2117
Rein H., Tamayo D., 2015, MNRAS, 452, 376

Touma J., Wisdom J., 1993, Science, 259, 1294
Touma J., Wisdom J., 1994, AJ, 107, 1189
Wisdom J., 1982, AJ, 87, 577
Wisdom J., Holman M., 1991, AJ, 102, 1528
Wisdom J., Holman M., 1992, AJ, 104, 2022
Wisdom J., Holman M., Touma J., 1996, Fields Institute
Communications, Vol. 10, p. 217, 10, 217

This paper has been typeset from a TEX/ LATEX file prepared
by the author.

c© 2015 RAS, MNRAS 000, 1–5

6 J. Wisdom and D.M. Hernandez

-6.0

-8.0

-10.0

-12.0

-14.0

-16.0

lo
g
1
0
(1

−
e)

− 8

− 6

− 4

− 2

0

1.0

0.0

-1.0

lo
g
1
0
(1

−
e)

− 8

− 6

− 4

− 2

0

1.0

0.8

0.6

0.4

0.2

0.0

log10(h/T)

lo
g
1
0
(1

−
e)

0−1−2−3

− 8

− 6

− 4

− 2

0

Figure 3. The summary diagrams in the elliptic case for universal.c are plotted. The top plot shows the relative energy error as a
function of eccentricity e and stepsize h. The color bar shows the common logarithm of the magnitude. The middle plot illustrates bias
in the calculation, plotting 1 if the energy error is positive, -1 if the energy error is negative, and 0 for zero energy error. The bottom
plot shows the computing time in microseconds per call to the Kepler stepper.

c© 2015 RAS, MNRAS 000, 1–5

Universal Kepler Solver 7

-6.0

-8.0

-10.0

-12.0

-14.0

-16.0

lo
g
1
0
(1

−
e)

− 8

− 6

− 4

− 2

0

1.0

0.0

-1.0

lo
g
1
0
(1

−
e)

− 8

− 6

− 4

− 2

0

1.0

0.8

0.6

0.4

0.2

0.0

log10(h/T)

lo
g
1
0
(1

−
e)

0−1−2−3

− 8

− 6

− 4

− 2

0

Figure 4. The summary diagrams in the elliptic case for drift one.c are plotted. The details are the same as in Fig. 3.

c© 2015 RAS, MNRAS 000, 1–5

8 J. Wisdom and D.M. Hernandez

-6.0

-8.0

-10.0

-12.0

-14.0

-16.0

lo
g
1
0
(1

−
e)

− 8

− 6

− 4

− 2

0

0.0

lo
g
1
0
(1

−
e)

− 8

− 6

− 4

− 2

0

1.0

0.8

0.6

0.4

0.2

0.0

log10(h/T)

lo
g
1
0
(1

−
e)

0−1−2−3

− 8

− 6

− 4

− 2

0

Figure 5. The summary diagrams in the elliptic case for the Kepler solver in WHFast are plotted. The details are the same as in Fig. 3.

c© 2015 RAS, MNRAS 000, 1–5

Universal Kepler Solver 9

-6.0

-8.0

-10.0

-12.0

-14.0

-16.0

lo
g
1
0
(e

−
1
)

− 8

− 6

− 4

− 2

0

1.0

0.0

-1.0

lo
g
1
0
(e

−
1
)

− 8

− 6

− 4

− 2

0

1.0

0.8

0.6

0.4

0.2

0.0

log10(h/T)

lo
g
1
0
(e

−
1
)

0−1−2−3

− 8

− 6

− 4

− 2

0

Figure 6. The summary diagrams in the hyperbolic case for universal.c are plotted. The details are the same as in Fig. 3.

c© 2015 RAS, MNRAS 000, 1–5

10 J. Wisdom and D.M. Hernandez

-6.0

-8.0

-10.0

-12.0

-14.0

-16.0

lo
g
1
0
(e

−
1
)

− 8

− 6

− 4

− 2

0

1.0

0.0

-1.0

lo
g
1
0
(e

−
1
)

− 8

− 6

− 4

− 2

0

1.0

0.8

0.6

0.4

0.2

0.0

log10(h/T)

lo
g
1
0
(e

−
1
)

0−1−2−3

− 8

− 6

− 4

− 2

0

Figure 7. The summary diagrams in the hyperbolic case for drift one.c are plotted. The details are the same as in Fig. 3.

c© 2015 RAS, MNRAS 000, 1–5

	1 Introduction
	2 Kepler Problem
	3 Derivation of the Solution
	4 Numerical Refinement
	5 Numerical Exploration
	6 Summary

